forked from Revenue-Academy/Microsimulation_Training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp0.py
62 lines (44 loc) · 1.94 KB
/
app0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
"""
app0.py illustrates use of pitaxcalc-demo release 2.0.0 (India version).
USAGE: python app0.py > app0.res
CHECK: Use your favorite Windows diff utility to confirm that app0.res is
the same as the app0.out file that is in the repository.
"""
from taxcalc import *
# create Records object containing pit.csv and pit_weights.csv input data
recs = Records()
assert isinstance(recs, Records)
assert recs.data_year == 2017
assert recs.current_year == 2017
# create GSTRecords object containing gst.csv and gst_weights.csv input data
grecs = GSTRecords()
assert isinstance(grecs, GSTRecords)
assert grecs.data_year == 2017
assert grecs.current_year == 2017
# create CorpRecords object containing cit.csv and cit_weights.csv input data
crecs = CorpRecords()
assert isinstance(crecs, CorpRecords)
assert crecs.data_year == 2017
assert crecs.current_year == 2017
# create Policy object containing current-law policy
pol = Policy()
assert isinstance(pol, Policy)
assert pol.current_year == 2017
# specify Calculator object for current-law policy
calc1 = Calculator(policy=pol, records=recs, gstrecords=grecs,
corprecords=crecs, verbose=False)
# NOTE: calc1 now contains a PRIVATE COPY of pol and a PRIVATE COPY of recs,
# so we can continue to use pol and recs in this script without any
# concern about side effects from Calculator method calls on calc1.
assert isinstance(calc1, Calculator)
assert calc1.current_year == 2017
calc1.calc_all()
dump_vars = ['FILING_SEQ_NO', 'AGEGRP', 'SALARIES', 'INCOME_HP',
'Income_BP', 'TOTAL_INCOME_OS', 'Aggregate_Income',
'TI_special_rates', 'tax_TI_special_rates', 'GTI', 'TTI', 'pitax']
dumpdf = calc1.dataframe(dump_vars)
column_order = dumpdf.columns
assert len(dumpdf.index) == calc1.array_len
dumpdf.to_csv('app0-dump.csv', columns=column_order,
index=False, float_format='%.0f')
print(dumpdf)