forked from Revenue-Academy/Microsimulation_Training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp00.py
127 lines (115 loc) · 5.03 KB
/
app00.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
app00.py illustrates use of pitaxcalc-demo release 2.0.0 (India version).
USAGE: python app0.py > app0.res
CHECK: Use your favorite Windows diff utility to confirm that app0.res is
the same as the app0.out file that is in the repository.
"""
import pandas as pd
from taxcalc import *
# create Records object containing pit.csv and pit_weights.csv input data
recs = Records()
grecs = GSTRecords()
# create CorpRecords object using cross-section data
crecs1 = CorpRecords(data='cit_cross.csv', weights='cit_cross_wgts.csv')
# Note: weights argument is optional
assert isinstance(crecs1, CorpRecords)
assert crecs1.current_year == 2017
# create CorpRecords object using panel data
crecs2 = CorpRecords(data='cit_panel.csv', data_type='panel')
assert isinstance(crecs2, CorpRecords)
assert crecs2.current_year == 2017
# create Policy object containing current-law policy
pol = Policy()
# specify Calculator objects for current-law policy
calc1 = Calculator(policy=pol, records=recs, corprecords=crecs1,
gstrecords=grecs)
calc2 = Calculator(policy=pol, records=recs, corprecords=crecs2,
gstrecords=grecs)
# NOTE: calc1 now contains a PRIVATE COPY of pol and a PRIVATE COPY of recs,
# so we can continue to use pol and recs in this script without any
# concern about side effects from Calculator method calls on calc1.
assert isinstance(calc1, Calculator)
assert calc1.current_year == 2017
assert isinstance(calc2, Calculator)
assert calc2.current_year == 2017
# Produce DataFrame of results using cross-section
calc1.calc_all()
AggInc17c = calc1.carray('GTI_Before_Loss')
GTI17c = calc1.carray('deductions')
citax17c = calc1.carray('citax')
wgt17c = calc1.carray('weight')
calc1.increment_year()
calc1.calc_all()
AggInc18c = calc1.carray('GTI_Before_Loss')
GTI18c = calc1.carray('deductions')
citax18c = calc1.carray('citax')
wgt18c = calc1.carray('weight')
results_cross = pd.DataFrame({'Aggregate_Income2017': AggInc17c,
'citax2017': citax17c,
'Aggregate_Income2018': AggInc18c,
'citax2018': citax18c})
results_cross.to_csv('app00-dump-crosssection.csv', index=False,
float_format='%.0f')
# Produce DataFFrame of results using panel
# First do 2017
calc2.calc_all()
AggInc17p = calc2.carray('GTI_Before_Loss')
GTI17p = calc2.carray('deductions')
citax17p = calc2.carray('citax')
id17p = calc2.carray('ID_NO')
wgt17p = calc2.carray('weight')
results_panel17 = pd.DataFrame({'ID_NO': id17p,
'Aggregate_Income2017': AggInc17p,
'citax2017': citax17p})
# Then do 2018
calc2.increment_year()
calc2.calc_all()
AggInc18p = calc2.carray('GTI_Before_Loss')
GTI18p = calc2.carray('deductions')
citax18p = calc2.carray('citax')
id18p = calc2.carray('ID_NO')
wgt18p = calc2.carray('weight')
results_panel18 = pd.DataFrame({'ID_NO': id18p,
'Aggregate_Income2017': AggInc18p,
'citax2017': citax18p})
# Merge them together
results_panel = results_panel17.merge(right=results_panel18, how='outer',
on='ID_NO')
results_panel.drop(['ID_NO'], axis=1, inplace=True)
results_panel.to_csv('app00-dump-panel.csv', index=False, float_format='%.0f')
print('GTI before loss, 2017, cross-section: ' +
str(sum(AggInc17c * wgt17c) / 10**7))
print('Deductions, 2017, cross-section: ' +
str(sum(GTI17c * wgt17c) / 10**7))
print('Total liability, 2017, cross-section: ' +
str(sum(citax17c * wgt17c) / 10**7))
print('Tax rate, 2017, cross-section: ' +
str(sum(citax17c * wgt17c) / sum(GTI17c * wgt17c)))
print('\n')
print('GTI before loss, 2017, panel: ' +
str(sum(AggInc17p * wgt17p) / 10**7))
print('Deductions, 2017, panel: ' +
str(sum(GTI17p * wgt17p) / 10**7))
print('Total liability, 2017, panel: ' +
str(sum(citax17p * wgt17p) / 10**7))
print('Tax rate, 2017, panel: ' +
str(sum(citax17p * wgt17p) / sum(GTI17p * wgt17p)))
print('\n')
print('GTI before loss, 2018, cross-section: ' +
str(sum(AggInc18c * wgt18c) / 10**7))
print('Deductions, 2018, cross-section: ' + str(sum(GTI18c * wgt18c) / 10**7))
print('Total liability, 2018, cross-section: ' +
str(sum(citax18c * wgt18c) / 10**7))
print('Tax rate, 2018, cross-section: ' +
str(sum(citax18c * wgt18c) / sum(GTI18c * wgt18c)))
print('\n')
print('GTI before loss, 2018, panel: ' + str(sum(AggInc18p * wgt18p) / 10**7))
print('Deductions, 2018, panel: ' + str(sum(GTI18p * wgt18p) / 10**7))
print('Total liability, 2018, panel: ' + str(sum(citax18p * wgt18p) / 10**7))
print('Tax rate, 2018, panel: ' +
str(sum(citax18p * wgt18p) / sum(GTI18p * wgt18p)))
print('\n')
print('Average liability, 2017, cross-section: ' +
str(sum(citax17c * wgt17c) / sum(wgt17c) / 10**7))
print('Average liability, 2017, panel: ' +
str(sum(citax17p * wgt17p) / sum(wgt17p) / 10**7))