Skip to content

Latest commit

 

History

History
53 lines (53 loc) · 2.23 KB

2021-07-01-aladago21a.md

File metadata and controls

53 lines (53 loc) · 2.23 KB
title abstract layout series publisher issn id month tex_title firstpage lastpage page order cycles bibtex_author author date address container-title volume genre issued pdf extras
Slot Machines: Discovering Winning Combinations of Random Weights in Neural Networks
In contrast to traditional weight optimization in a continuous space, we demonstrate the existence of effective random networks whose weights are never updated. By selecting a weight among a fixed set of random values for each individual connection, our method uncovers combinations of random weights that match the performance of traditionally-trained networks of the same capacity. We refer to our networks as "slot machines" where each reel (connection) contains a fixed set of symbols (random values). Our backpropagation algorithm "spins" the reels to seek "winning" combinations, i.e., selections of random weight values that minimize the given loss. Quite surprisingly, we find that allocating just a few random values to each connection (e.g., 8 values per connection) yields highly competitive combinations despite being dramatically more constrained compared to traditionally learned weights. Moreover, finetuning these combinations often improves performance over the trained baselines. A randomly initialized VGG-19 with 8 values per connection contains a combination that achieves 91% test accuracy on CIFAR-10. Our method also achieves an impressive performance of 98.2% on MNIST for neural networks containing only random weights.
inproceedings
Proceedings of Machine Learning Research
PMLR
2640-3498
aladago21a
0
Slot Machines: Discovering Winning Combinations of Random Weights in Neural Networks
163
174
163-174
163
false
Aladago, Maxwell M and Torresani, Lorenzo
given family
Maxwell M
Aladago
given family
Lorenzo
Torresani
2021-07-01
Proceedings of the 38th International Conference on Machine Learning
139
inproceedings
date-parts
2021
7
1