title | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Communication-Efficient Distributed Optimization with Quantized Preconditioners |
We investigate fast and communication-efficient algorithms for the classic problem of minimizing a sum of strongly convex and smooth functions that are distributed among |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
alimisis21a |
0 |
Communication-Efficient Distributed Optimization with Quantized Preconditioners |
196 |
206 |
196-206 |
196 |
false |
Alimisis, Foivos and Davies, Peter and Alistarh, Dan |
|
2021-07-01 |
Proceedings of the 38th International Conference on Machine Learning |
139 |
inproceedings |
|
|