-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsentimennn.py
33 lines (24 loc) · 1009 Bytes
/
sentimennn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#import pandas as pd
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from sklearn.metrics import classification_report
dataset = pd.read_csv('stock_data.csv',encoding= 'unicode_escape' )
dataset=dataset.loc[:,['Text','Sentiment']]
X = dataset['Text']
tfidf = TfidfVectorizer(max_features=5000, ngram_range=(1,2))
X = tfidf.fit_transform(X)
y = dataset['Sentiment']
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2, random_state = 0)
klasifikasiModel = LinearSVC()
klasifikasiModel.fit(X_train, y_train)
y_pred = klasifikasiModel.predict(X_test)
text = input("masukkan text berita saham dari twitter dalam bahasa inggris: ")
output = tfidf.transform([text])
klasifikasiModel.predict(output)
if klasifikasiModel.predict(output) == 1:
print(text,"======== is positif - sentiment")
else:
print(text,'======== is negatif - sentiment')