-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaddvoice.py
92 lines (66 loc) · 2.94 KB
/
addvoice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import face_recognition
import cv2
import numpy as np
import csv
from datetime import datetime
import pyttsx3
# Initialize the text-to-speech engine
engine = pyttsx3.init()
video_capture = cv2.VideoCapture(0)
#load known faces
manas_image = face_recognition.load_image_file("faces/manas.jpeg")
manas_encoding = face_recognition.face_encodings(manas_image)[0]
purbasa_image = face_recognition.load_image_file("faces/purbasa.jpeg")
purbasa_encoding = face_recognition.face_encodings(purbasa_image)[0]
manasi_images = face_recognition.load_image_file("faces/manasi.jpeg")
manasi_encoding = face_recognition.face_encodings(manasi_images)[0]
biswajit_image = face_recognition.load_image_file("faces/biwajit.jpg")
biwajit_encoding = face_recognition.face_encodings(biswajit_image)[0]
known_face_encodings = [manas_encoding,purbasa_encoding,manasi_encoding,biwajit_encoding]
known_face_names = ["Manas","Purbasa","Manasi","Biswajit"]
#list of expected students
students = known_face_names .copy()
face_locations=[]
face_encodings =[]
# Get the current date and time
now = datetime.now()
current_date = now.strftime("%d-%m-%Y")
f = open(f"{current_date}.csv", "w+", newline="")
lnwrite = csv.writer(f)
while True:
_, frame = video_capture.read()
small_frame = cv2.resize(frame,(0, 0), fx = 0.25, fy=0.25)
rgb_small_frame =cv2.cvtColor(small_frame, cv2.COLOR_BGR2RGB)
#RECOGNIZE FACES
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings,face_encoding)
face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distance)
if matches[best_match_index]:
name = known_face_names[best_match_index]
else:
name = None # Initialize name as None if there is no match
# Add the text if a person is present
if name in known_face_names:
font = cv2.FONT_HERSHEY_SIMPLEX
bottomleftcornerofText = (10, 100)
fontScale= 1.5
fontColor = (255, 0, 0)
thickness = 3
lineType = 2
cv2.putText(frame, name + " Present", bottomleftcornerofText, font, fontScale, fontColor, thickness, lineType)
# Speak the name of the recognized person
engine.say(name + " Present")
engine.runAndWait()
if name in students:
students.remove(name)
current_time = datetime.now().strftime("%H:%M:%S")
lnwrite.writerow([name,current_time])
cv2.imshow("Attendance" , frame)
if cv2.waitKey(1) & 0xFF ==ord("q"):
break
video_capture.release()
cv2.destroyAllWindows()
f.close()