-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaceDetectionModule.py
84 lines (65 loc) · 2.62 KB
/
faceDetectionModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import cv2
import mediapipe as mp
import time
class FaceDetector():
def __init__(self, minDetectionCon=0.5):
self.minDetectionCon = minDetectionCon
self.mpFaceDetection = mp.solutions.face_detection
self.mpDraw = mp.solutions.drawing_utils
self.faceDetection = self.mpFaceDetection.FaceDetection(self.minDetectionCon)
def findFaces(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.faceDetection.process(imgRGB)
# print(results)
bboxs = []
if self.results.detections:
for id, detection in enumerate(self.results.detections):
bboxC = detection.location_data.relative_bounding_box
ih, iw, ic = img.shape
bbox = int(bboxC.xmin * iw), int(bboxC.ymin * ih), int(bboxC.width * iw), int(bboxC.height * ih)
bboxs.append([id, bbox, detection.score])
if draw:
self.fancyDraw(img, bbox)
cv2.putText(img, f'{int(detection.score[0] * 100)}%', (bbox[0], bbox[1] - 20), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 255), 2)
return img, bboxs
def fancyDraw(self, img, bbox, l=30, t=5, rt=1):
"""
This function draws a fancy bounding box around the detected face.
t = thickness
rt = rectangle thickness
l = length
bbox = bounding box
img = image/video frame
"""
x, y, w, h = bbox
x1, y1 = x + w, y + h
cv2.rectangle(img, bbox, (255, 0, 255), rt)
# Top Left x,y
cv2.line(img, (x,y), (x+l, y), (255, 0, 255), t)
cv2.line(img, (x,y), (x, y+l), (255, 0, 255), t)
# Top Right x1,y
cv2.line(img, (x1,y), (x1-l, y), (255, 0, 255), t)
cv2.line(img, (x1,y), (x1, y+l), (255, 0, 255), t)
# Bottom Left x,y1
cv2.line(img, (x,y1), (x+l, y1), (255, 0, 255), t)
cv2.line(img, (x,y1), (x, y1-l), (255, 0, 255), t)
# Bottom Right x1,y1
cv2.line(img, (x1,y1), (x1-l, y1), (255, 0, 255), t)
cv2.line(img, (x1,y1), (x1, y1-l), (255, 0, 255), t)
return img
def main():
cap = cv2.VideoCapture("videos/10.mp4")
pTime = 0
detector = FaceDetector()
while True:
success, img = cap.read()
img, bboxs = detector.findFaces(img)
print(bboxs)
cTime = time.time()
fps = 1/(cTime-pTime)
pTime = cTime
cv2.putText(img, f'FPS: {int(fps)}', (20,70), cv2.FONT_HERSHEY_PLAIN, 3, (0,255,0), 2)
cv2.imshow("Image", img)
cv2.waitKey(20)
if __name__ == "__main__":
main()