-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassDecoAlex_onlyDepth.py
199 lines (172 loc) · 6.38 KB
/
classDecoAlex_onlyDepth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import numpy as np
# import matplotlib.pyplot as plt
from torch.nn.modules.module import _addindent
import Alex
def torch_summarize(model, show_weights=True, show_parameters=True):
"""Summarizes torch model by showing trainable parameters and weights."""
tmpstr = model.__class__.__name__ + ' (\n'
total_params = 0
for key, module in model._modules.items():
# if it contains layers let call it recursively to get params and weights
if type(module) in [
torch.nn.modules.container.Container,
torch.nn.modules.container.Sequential
]:
modstr = torch_summarize(module)
else:
modstr = module.__repr__()
modstr = _addindent(modstr, 2)
params = sum([np.prod(p.size()) for p in module.parameters()])
weights = tuple([tuple(p.size()) for p in module.parameters()])
total_params += params
tmpstr += ' (' + key + '): ' + modstr
if show_weights:
tmpstr += ', weights={}'.format(weights)
if show_parameters:
tmpstr += ', parameters={}'.format(params)
tmpstr += '\n'
# get_output_shape(model,module)
# if hasattr(module,'output'):
# tmpstr += ' output_shape={}'.format(module.output.size())
# tmpstr += '\n'
tmpstr = tmpstr + ')'
tmpstr = tmpstr + '\n total number of parameters={}'.format(total_params)
return tmpstr
class ResidualBlock(nn.Module):
def __init__(self, filters, pad=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=pad, bias=True)
self.bn1 = nn.BatchNorm2d(filters, eps=0.0001)
self.Lrelu = nn.LeakyReLU(negative_slope=0.02)
self.conv2 = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=pad, bias=True)
self.bn2 = nn.BatchNorm2d(filters, eps=0.0001)
self.downsample = None
self.filters = filters
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.Lrelu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.Lrelu(out)
return out
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, reduction),
nn.ReLU(inplace=True),
nn.Linear(reduction, channel),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class SEBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16):
super(SEBasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, 1)
self.bn2 = nn.BatchNorm2d(planes)
self.se = SELayer(planes, reduction)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.se(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class DECO(nn.Module):
def __init__(self):
super(DECO, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
# convoluzione1
self.conv1 = nn.Conv2d(1, 64, 7, stride=2, padding=3)
# BN e Leacky ReLU
self.bn1 = nn.BatchNorm1d(64)
self.Lrelu = nn.LeakyReLU(negative_slope=0.01)
# maxPooling
self.pool = nn.MaxPool2d(3, stride=2) # 64x57x57
# 8 blocchi di residual
self.res1 = ResidualBlock(64)
self.res2 = ResidualBlock(64)
self.res3 = ResidualBlock(64)
self.res4 = ResidualBlock(64)
self.res5 = ResidualBlock(64)
self.res6 = ResidualBlock(64)
self.res7 = ResidualBlock(64)
self.res8 = ResidualBlock(64)
# convoluzione2
self.conv2 = nn.Conv2d(64, 3, 1, stride=1) # 1 canale, 3 kernels,
# deconvolution-upsampling porta a 3x228x228
self.deconv = nn.ConvTranspose2d(3, 3, 8, stride=4, padding=2, groups=3, bias=False)
def forward(self, x):
# import code
# code.interact(local=locals())
# import ipdb; ipdb.set_trace()
x = x.view(x.size(0), 1, 228, 228)
x = self.conv1(x)
x = self.bn1(x)
x = self.Lrelu(x)
x = self.pool(x)
x = self.res1(x)
x = self.res2(x)
x = self.res3(x)
x = self.res4(x)
x = self.res5(x)
x = self.res6(x)
x = self.res7(x)
x = self.res8(x)
x = self.conv2(x)
x = self.deconv(x)
# import code
# code.interact(local=locals())
return x
class DecoAlexNet(nn.Module):
def __init__(self, num_classes):
super(DecoAlexNet, self).__init__()
self.Deco = DECO()
self.Alex = Alex.alexnet(pretrained=True)
num_feats = self.Alex.classifier[6].in_features
class_model = list(self.Alex.classifier.children())
class_model.pop()
class_model.append(nn.Linear(num_feats, num_classes))
self.Alex.classifier = nn.Sequential(*class_model)
def forward(self, x):
x = self.Deco(x)
# import code
# code.interact(local=locals())
# vision.utils.save_image(x, './images/output_deco.jpg')
# sm.imsave('./images/output_deco.jpg', x)
# import ipdb; ipdb.set_trace()
# x = Image.cpu().numpy()
# import code
# code.interact(local=locals())
x = self.Alex(x)
return x