We basically categorize model components into 4 types.
- backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet.
- neck: the component between backbones and heads, e.g., ChannelMapper, FPN.
- head: the component for specific tasks, e.g., tracking bbox prediction.
- loss: the component in head for calculating losses, e.g., FocalLoss, L1Loss.
Here we show how to develop new components with an example of MobileNet.
Create a new file mmtrack/models/backbones/mobilenet.py
.
import torch.nn as nn
from mmdet.models.builder import BACKBONES
@BACKBONES.register_module()
class MobileNet(nn.Module):
def __init__(self, arg1, arg2):
pass
def forward(self, x): # should return a tuple
pass
def init_weights(self, pretrained=None):
pass
You can either add the following line to mmtrack/models/backbones/__init__.py
from .mobilenet import MobileNet
or alternatively add
custom_imports = dict(
imports=['mmtrack.models.backbones.mobilenet'],
allow_failed_imports=False)
to the config file to avoid modifying the original code.
model = dict(
...
backbone=dict(
type='MobileNet',
arg1=xxx,
arg2=xxx),
...
Create a new file mmtrack/models/necks/my_fpn.py
.
from mmdet.models.builder import NECKS
@NECKS.register_module()
class MyFPN(nn.Module):
def __init__(self,
in_channels,
out_channels,
num_outs,
start_level=0,
end_level=-1,
add_extra_convs=False):
pass
def forward(self, inputs):
# implementation is ignored
pass
You can either add the following line to mmtrack/models/necks/__init__.py
,
from .my_fpn import MyFPN
or alternatively add
custom_imports = dict(
imports=['mmtrack.models.necks.my_fpn.py'],
allow_failed_imports=False)
to the config file and avoid modifying the original code.
neck=dict(
type='MyFPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5)
Create a new file mmtrack/models/track_heads/my_head.py
.
from mmdet.models import HEADS
@HEADS.register_module()
class MyHead(nn.Module):
def __init__(self,
arg1,
arg2):
pass
def forward(self, inputs):
# implementation is ignored
pass
You can either add the following line to mmtrack/models/track_heads/__init__.py
,
from .my_head import MyHead
or alternatively add
custom_imports = dict(
imports=['mmtrack.models.track_heads.my_head.py'],
allow_failed_imports=False)
to the config file and avoid modifying the original code.
head=dict(
type='MyHead',
arg1=xxx,
arg2=xxx)
Assume you want to add a new loss as MyLoss
, for bounding box regression.
To add a new loss function, the users need implement it in mmtrack/models/losses/my_loss.py
.
The decorator weighted_loss
enable the loss to be weighted for each element.
import torch
import torch.nn as nn
from mmdet.models import LOSSES, weighted_loss
@weighted_loss
def my_loss(pred, target):
assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)
return loss
@LOSSES.register_module()
class MyLoss(nn.Module):
def __init__(self, reduction='mean', loss_weight=1.0):
super(MyLoss, self).__init__()
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
loss_bbox = self.loss_weight * my_loss(
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss_bbox
Then the users need to add it in the mmtrack/models/losses/__init__.py
.
from .my_loss import MyLoss, my_loss
Alternatively, you can add
custom_imports=dict(
imports=['mmtrack.models.losses.my_loss'])
to the config file and achieve the same goal.
To use it, modify the loss_xxx
field.
Since MyLoss is for regression, you need to modify the loss_bbox
field in the head.
loss_bbox=dict(type='MyLoss', loss_weight=1.0))