-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparsemoddotplot.py
81 lines (65 loc) · 2.97 KB
/
parsemoddotplot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import argparse
# Function to read TSV file and convert it to a NumPy array
def read_tsv_to_numpy(file_path):
return np.genfromtxt(file_path, delimiter='\t', dtype=object, encoding=None)
# Function to process the data
def process_data(data):
output = []
# Initialize variables to keep track of the current group
current_query_name = None
current_query_start = None
current_reference_start = None
current_reference_end = None
identities = []
rows_merged = 0
def finalize_group():
if current_query_name is not None:
avg_identity = sum(identities) / len(identities)
output.append([current_query_name, current_query_start, current_reference_start, current_reference_end, round(avg_identity, 2), rows_merged])
for row in data:
query_name, query_start, query_end, _, reference_start, reference_end, identity = row
query_start = int(query_start)
query_end = int(query_end)
reference_start = int(reference_start)
reference_end = int(reference_end)
identity = float(identity)
# If starting a new group
if current_reference_start is None or query_start != current_query_start or reference_start > current_reference_end + 30001:
# Finalize the previous group
finalize_group()
# Start a new group
current_query_name = query_name
current_query_start = query_start
current_reference_start = reference_start
current_reference_end = reference_end
identities = [identity]
rows_merged = 1
else:
# Continue the current group
current_reference_end = reference_end
identities.append(identity)
rows_merged += 1
# Finalize the last group
finalize_group()
# Filter out groups with 3 or fewer rows merged
output = [row for row in output if row[5] > 3]
# Convert the output to a NumPy array for consistency
output_array = np.array(output, dtype=object)
# Sort the output by the reference start column (3rd column) and then by the query start column (2nd column)
output_array = output_array[np.lexsort((output_array[:, 1], output_array[:, 3]))]
return output_array
# Function to print the output in the desired format
def print_output(output_array):
for row in output_array:
print("\t".join(map(str, row)))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process a TSV file and output the filtered results.')
parser.add_argument('input_file', type=str, help='Path to the input TSV file')
parser.add_argument('output_file', type=str, help='Path to the output TSV file')
args = parser.parse_args()
data = read_tsv_to_numpy(args.input_file)
output_array = process_data(data)
#print_output(output_array)
# Save filtered output to a file
np.savetxt(args.output_file, output_array, fmt='%s', delimiter='\t')