Skip to content

Latest commit

 

History

History
158 lines (104 loc) · 7.31 KB

README.md

File metadata and controls

158 lines (104 loc) · 7.31 KB

NGI Pipeline mascot, Mr. Splash

Software designed to take demultiplexed Illumina flowcells and shove 'em through an analysis pipeline (e.g. Piper/GATK).

Nota bene

This document is to be regareded as a internal instruction for developers at NGI at this stage - the instructions are not guaranteed to be complete nor comprehensive. Some time then things are more stable we'll write up a real README here. You have been warned!

Installation

NGI_pipeline is designed to be run on UPPMAX-cluster infrastructure. The main purpose of it is to allow NGI-Uppsala and NGI-Stockholm to automatically process all the Whole Human Genomes samples that will be generated in the next years. However, ngi_pipeline is not limited to Piper as engine and can be easily expanded with other engines.

In the following we will provide a guide to deploy NGI_pipeline and Piper on UPPMAX-clusters.

NGI_pipeline Deployment on Milou/Nestor

Project a2013205 is the designed production project for IGN and future Xten samples. It will be used to process all Human samples produced in the close future and, reasonably, also other projects once we will employ ngi_pipeline as main bioinformatic pipeline.

These are the steps to deploy the pipeline under project a2014205:

 ssh funk_001@milou-b
 cd /proj/a2014205/software/
 git clone [email protected]:NationalGenomicsInfrastructure/ngi_pipeline.git
 conda create -n NGI pip sqlalchemy # create virtual environment if it does not exists
 source activate NGI
 python setup.py develop

Set up config file for ngi_pipeline (an uppmax predefined is available in the main ngi_pipeline folder):

 mkdir /proj/a2014205/ngi_resources
 cd /proj/a2014205/ngi_resources
 ln -s /proj/a2014205/software/ngi_pipeline/uppmax_ngi_config.yaml .

The $HOME/.bashrc should look something like that (to get your API token from Charon on the charon website click users and then click your username) :

#####CHARON#####
export NGI_CONFIG=/proj/a2014205/ngi_resources/uppmax_ngi_config.yaml 
export CHARON_API_TOKEN= YOUR_TOKEN_NOT_FRANCESCO_ONE
export CHARON_BASE_URL=http://charon.scilifelab.se/
#### MAVEN piper dependency #####
export PATH=$PATH:/proj/a2014205/software/apache-maven-3.2.3/bin

To install Piper, make sure that you've installed all dependencies (see https://github.com/NationalGenomicsInfrastructure/piper for more information) then use the following:

git clone [email protected]:NationalGenomicsInfrastructure/piper.git
cd piper
sbt/bin/sbt clean
./setup.sh /proj/a2014205/software/piper_bin/

Follow the instructions and add the following to you .bashrc

#### PIPER ####
module load java/sun_jdk1.7.0_25
PATH=$PATH:/proj/a2014205/software/piper_bin/bin
PATH=$PATH:/proj/a2014205/software/piper_bin/workflows
export LD_LIBRARY_PATH=/sw/apps/build/slurm-drmaa/default/lib/:$LD_LIBRARY_PATH
export PIPER_GLOB_CONF=/proj/a2014205/software/piper_bin/workflows/globalConfig.sh
export PIPER_GLOB_CONF_XML=/proj/a2014205/software/piper_bin/workflows/uppmax_global_config.xml

N.B. by default the uppmax_glocal_config.xml points to files in project a2009002, execute the following command to change this:

sed -i ’s/a2009002/a2014205/' /proj/a2014205/software/piper_bin/workflows/uppmax_global_config.xml

Resources

Project a2014205 contains all resources necessary to execute ngi_pipeline and Piper, in particular:

|-- ngi_resources
|-- piper_references
|-- piper_resources

ngi_resources contains the configuration file needed to ngi_pipeline to know where process data and where find other necessary resources. Moreover it contains the local sql-lite database used to keep track of the jobs currently running on the cluster.

piper_references contains files used by piper to align and to call variants

piper_resources contains tools and other resources used by piper

Running the pipeline

Running ngi_pipeline on the Pilot data.

Pilot project data is stored in INBOX of project a2014205 and it is processed in $WORK_FOLDER=/proj/a2014205/nobackup/NGI/analysis_ready/ $WORK_FOLDER looks like

|— DATA 
|— ANALYSIS

DATA contains the data stored into INBOX but sorted for project/sample/library_prep/run. Currently we soft-link the data here both for testing purposes (the pipeline can be tried from beginning to end without the need to copy huge files) and to alleviate the load on nestor file system. This reshuffling of the data is managed by the ngi_pipeline using the information stored into Charon. For Uppsala project not yet present in the db there is currently a fix that I hope will soon disappear.

ANALYSIS contains the analysis for each project. For each project the following folders are present:

ANALYSIS/
├── 01_raw_alignments
├── 02_preliminary_alignment_qc
├── 03_genotype_concordance
├── 04_merged_aligments
├── 05_processed_alignments
├── 06_final_alignment_qc
├── 07_variant_calls
├── 08_misc
└── logs

which contains all the steps of the piper.

In the folder: /proj/a2014205/software/ngi_pipeline/scripts/ there are a couple of utility scripts to run the pipeline at various stages. This will probably became the scripts called by new pm.

Let us see how to run analysis for M.Kaller_14_06:

Analysis

In the current workflow we want to start alignments every time data is generated. In this context we want to automatically start the pipeline every time data is produced. For now we need to simulate this, and this can be done with the script

ngi_pipeline_start.py analyze flowcell </path/to/flowcell>

This script starts the alignment of all human WGS project (i.e., projects in charon or produced from uppsala) that are present in the flowcell.

The command first checks the local_db to check what processes are running. This is done in order to avoid starting analysis of flowcells that are already under analysis.

The local_db is checked and charon are updated; once this is done, ngi_pipeline attmepts to launch the analysis for the current flowcell (if any analysis is needed).

In general, analyses are triggered automatically through a REST API. An example of how to launch analyses manually follows:

#### M.KALLER_14_05 and M.Kaller_14_08
FCARRAY=()
FCARRAY+=("/proj/a2014205/INBOX/140815_SN1025_0222_AC4HA6ACXX")
FCARRAY+=("/proj/a2014205/INBOX/140815_SN1025_0223_BC4HAPACXX")
FCARRAY+=("/proj/a2014205/INBOX/140919_SN1018_0203_BHA3THADXX")
#### M.Kaller_14_06
FCARRAY+=("/proj/a2014205/INBOX/140702_D00415_0052_AC41A2ANXX")
FCARRAY+=("/proj/a2014205/INBOX/140905_D00415_0057_BC45KVANXX")
##### Uppsala projects
FCARRAY+=("/proj/a2014205/INBOX/140821_D00458_0029_AC45JGANXX")
FCARRAY+=("/proj/a2014205/INBOX/140917_D00458_0034_AC4FF3ANXX")
for flowcell in ${FCARRAY[@]}; do
    ngi_pipeline_start.py analyze flowcell $flowcell
done

(Very soon this script will take as input mulitple flowcells, but now you know how bash arrays work. You're welcome!)

Rerunning failed jobs

In the case a sample failed you can force the re-run:

ngi_pipeline_start.py analyze project —-sample P1170_105 --restart-failed /proj/a2014205/nobackup/NGI/analysis_ready/DATA/M.Kaller_14_05/