-
Notifications
You must be signed in to change notification settings - Fork 0
/
nvCuda02.cu
279 lines (228 loc) · 8.03 KB
/
nvCuda02.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*
* nvortexCuda.cpp
*
* (c)2022 Mark J. Stock <[email protected]>
*
* v0.2 add shared memory
*/
#include <vector>
#include <random>
#include <chrono>
#include <cuda_runtime.h>
// compute using float or double
#define FLOAT float
// threads per block (hard coded)
#define THREADS_PER_BLOCK 128
// -------------------------
// compute kernel - GPU
__global__ void nvortex_2d_nograds_gpu(
const int32_t nSrc,
const FLOAT* const sx,
const FLOAT* const sy,
const FLOAT* const ss,
const FLOAT* const sr,
const int32_t tOffset,
const FLOAT* const tx,
const FLOAT* const ty,
const FLOAT* const tr,
FLOAT* const tu,
FLOAT* const tv) {
// local "thread" id - this is the target particle
const int32_t i = tOffset + blockIdx.x*THREADS_PER_BLOCK + threadIdx.x;
// load sources into shared memory (or not)
__shared__ FLOAT s_sx[THREADS_PER_BLOCK];
__shared__ FLOAT s_sy[THREADS_PER_BLOCK];
__shared__ FLOAT s_ss[THREADS_PER_BLOCK];
__shared__ FLOAT s_sr[THREADS_PER_BLOCK];
// velocity accumulators for target point
FLOAT locu = 0.0f;
FLOAT locv = 0.0f;
for (int32_t b=0; b<nSrc/THREADS_PER_BLOCK; ++b) {
const int32_t gidx = b*THREADS_PER_BLOCK + threadIdx.x;
s_sx[threadIdx.x] = sx[gidx];
s_sy[threadIdx.x] = sy[gidx];
s_ss[threadIdx.x] = ss[gidx];
s_sr[threadIdx.x] = sr[gidx];
__syncthreads();
// loop over all source points
for (int32_t j=0; j<THREADS_PER_BLOCK; ++j) {
FLOAT dx = s_sx[j] - tx[i];
FLOAT dy = s_sy[j] - ty[i];
FLOAT distsq = dx*dx + dy*dy + s_sr[j]*s_sr[j] + tr[i]*tr[i];
FLOAT factor = s_ss[j] / distsq;
locu += dy * factor;
locv -= dx * factor;
}
__syncthreads();
}
// save into device view
// use atomics?!?
tu[i] = locu / (2.0f*3.1415926536f);
tv[i] = locv / (2.0f*3.1415926536f);
return;
}
// -------------------------
// compute kernel - CPU
__host__ void nvortex_2d_nograds_cpu(
const int32_t nSrc,
const FLOAT* const sx,
const FLOAT* const sy,
const FLOAT* const ss,
const FLOAT* const sr,
const FLOAT tx,
const FLOAT ty,
const FLOAT tr,
FLOAT* const tu,
FLOAT* const tv) {
// velocity accumulators for target point
FLOAT locu = 0.0f;
FLOAT locv = 0.0f;
// loop over all source points
#pragma omp simd reduction(+:locu,locv)
for (int32_t j=0; j<nSrc; ++j) {
FLOAT dx = sx[j] - tx;
FLOAT dy = sy[j] - ty;
FLOAT distsq = dx*dx + dy*dy + sr[j]*sr[j] + tr*tr;
FLOAT factor = ss[j] / distsq;
locu += dy * factor;
locv -= dx * factor;
}
// save into device view
// use atomics?!?
*tu = locu / (2.0f*3.1415926536f);
*tv = locv / (2.0f*3.1415926536f);
return;
}
// not really alignment, just minimum block sizes
__host__ int32_t buffer(const int32_t _n, const int32_t _align) {
// 63,64 returns 1; 64,64 returns 1; 65,64 returns 2
return _align*(1+(_n-1)/_align);
}
// main program
static void usage() {
fprintf(stderr, "Usage: nvCuda02 [-n=<number>]\n");
exit(1);
}
int main(int argc, char **argv) {
// number of particles/points
int32_t npart = 200000;
if (argc > 1) {
if (strncmp(argv[1], "-n=", 3) == 0) {
int num = atoi(argv[1] + 3);
if (num < 1) usage();
npart = num;
}
}
printf( "performing 2D vortex Biot-Savart on %d points\n", npart);
// number of GPUs present
const int32_t ngpus = 1;
// number of cuda streams to break work into
const int32_t nstreams = 1;
printf( " ngpus ( %d ) and nstreams ( %d )\n", ngpus, nstreams);
// set stream sizes
const int32_t nperstrm = buffer(npart/nstreams, THREADS_PER_BLOCK);
const int32_t npfull = nstreams*nperstrm;
printf( " nperstrm ( %d ) and npfull ( %d )\n", nperstrm, npfull);
// define the host arrays (for now, sources and targets are the same)
std::vector<FLOAT> hsx(npfull), hsy(npfull), hss(npfull), hsr(npfull), htu(npfull), htv(npfull);
const FLOAT thisstrmag = 1.0 / std::sqrt(npart);
const FLOAT thisrad = (2./3.) / std::sqrt(npart);
//std::random_device dev;
//std::mt19937 rng(dev());
std::mt19937 rng(1234);
std::uniform_real_distribution<FLOAT> xrand(0.0,1.0);
for (int32_t i = 0; i < npart; ++i) hsx[i] = xrand(rng);
for (int32_t i = npart; i < npfull; ++i) hsx[i] = 0.0;
for (int32_t i = 0; i < npart; ++i) hsy[i] = xrand(rng);
for (int32_t i = npart; i < npfull; ++i) hsy[i] = 0.0;
for (int32_t i = 0; i < npart; ++i) hss[i] = thisstrmag * (2.0*xrand(rng)-1.0);
for (int32_t i = npart; i < npfull; ++i) hss[i] = 0.0;
for (int32_t i = 0; i < npart; ++i) hsr[i] = thisrad;
for (int32_t i = npart; i < npfull; ++i) hsr[i] = thisrad;
for (int32_t i = 0; i < npfull; ++i) htu[i] = 0.0;
for (int32_t i = 0; i < npfull; ++i) htv[i] = 0.0;
// -------------------------
// do a CPU version
auto start = std::chrono::system_clock::now();
#pragma omp parallel for
for (int32_t i=0; i<npart; ++i) {
nvortex_2d_nograds_cpu(npart, hsx.data(),hsy.data(),hss.data(),hsr.data(), hsx[i],hsy[i],hsr[i], &htu[i],&htv[i]);
}
auto end = std::chrono::system_clock::now();
std::chrono::duration<double> elapsed_seconds = end-start;
double time = elapsed_seconds.count();
printf( " host total time( %g s ) and flops( %g GFlop/s )\n", time, 1.e-9 * (double)npart*(4+14*(double)npart)/time);
printf( " results ( %g %g %g %g %g %g)\n", htu[0], htv[0], htu[1], htv[1], htu[npart-1], htv[npart-1]);
// copy the results into temp vectors
std::vector<FLOAT> htu_cpu(htu);
std::vector<FLOAT> htv_cpu(htv);
// -------------------------
// do the GPU version
// set device pointers, too
FLOAT *dsx, *dsy, *dss, *dsr;
FLOAT *dtx, *dty, *dtr;
FLOAT *dtu, *dtv;
start = std::chrono::system_clock::now();
// move over all source particles first
const int32_t srcsize = npfull*sizeof(FLOAT);
const int32_t trgsize = npart*sizeof(FLOAT);
cudaMalloc (&dsx, srcsize);
cudaMalloc (&dsy, srcsize);
cudaMalloc (&dss, srcsize);
cudaMalloc (&dsr, srcsize);
cudaMalloc (&dtu, srcsize);
cudaMalloc (&dtv, srcsize);
cudaMemcpy (dsx, hsx.data(), srcsize, cudaMemcpyHostToDevice);
cudaMemcpy (dsy, hsy.data(), srcsize, cudaMemcpyHostToDevice);
cudaMemcpy (dss, hss.data(), srcsize, cudaMemcpyHostToDevice);
cudaMemcpy (dsr, hsr.data(), srcsize, cudaMemcpyHostToDevice);
cudaMemset (dtu, 0, trgsize);
cudaMemset (dtv, 0, trgsize);
dtx = dsx;
dty = dsy;
dtr = dsr;
for (int32_t nstrm=0; nstrm<nstreams; ++nstrm) {
// round-robin the GPUs used
//const int32_t thisgpu = nstrm % ngpus;
//cudaSetDevice(0);
const dim3 blocks(npfull/THREADS_PER_BLOCK, 1, 1);
const dim3 threads(THREADS_PER_BLOCK, 1, 1);
// move the data
// launch the kernel
nvortex_2d_nograds_gpu<<<blocks,threads>>>(nperstrm, dsx,dsy,dss,dsr, 0,dtx,dty,dtr,dtu,dtv);
// check
auto err = cudaGetLastError();
if (err != cudaSuccess) {
fprintf(stderr, "Failed to launch kernel: %s!\n", cudaGetErrorString(err));
exit(EXIT_FAILURE);
}
// pull data back down
cudaMemcpy (htu.data(), dtu, trgsize, cudaMemcpyDeviceToHost);
cudaMemcpy (htv.data(), dtv, trgsize, cudaMemcpyDeviceToHost);
}
// time and report
end = std::chrono::system_clock::now();
elapsed_seconds = end-start;
time = elapsed_seconds.count();
printf( " device total time( %g s ) and flops( %g GFlop/s )\n", time, 1.e-9 * (double)npart*(4+14*(double)npart)/time);
printf( " results ( %g %g %g %g %g %g)\n", htu[0], htv[0], htu[1], htv[1], htu[npart-1], htv[npart-1]);
// free resources
cudaFree(dsx);
cudaFree(dsy);
cudaFree(dss);
cudaFree(dsr);
cudaFree(dtu);
cudaFree(dtv);
// compare results
FLOAT errsum = 0.0;
FLOAT errmax = 0.0;
for (int32_t i=0; i<npart; ++i) {
const FLOAT thiserr = std::pow(htu[i]-htu_cpu[i], 2) + std::pow(htv[i]-htv_cpu[i], 2);
errsum += thiserr;
if ((FLOAT)std::sqrt(thiserr) > errmax) {
errmax = (FLOAT)std::sqrt(thiserr);
//printf( " err at %d is %g\n", i, errmax);
}
}
printf( " total host-device error ( %g ) max error ( %g )\n", std::sqrt(errsum/npart), errmax);
}