-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
163 lines (131 loc) · 5.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
# -*- coding:utf8 -*-
import numpy as np
import time
import scipy.sparse as ssp
import random
import math
from torch_geometric.data import (InMemoryDataset, Data)
import torch
from torch_geometric.utils import to_dense_adj
from torch_geometric.utils import degree
import multiprocessing as mp
from sklearn import metrics
import networkx as nx
from tqdm import tqdm
from torch_geometric.transforms import LineGraph
def construct_matrix_test(data):
node_nums = data.x.shape[0]
adj = to_dense_adj(data.edge_index, max_num_nodes=node_nums)
hop_2_adj = torch.bmm(adj, adj) + adj
hop_2_adj[hop_2_adj == 0] = 999
hop_2_adj[hop_2_adj < 999] = 0
hop_2_adj[hop_2_adj == 999] = 1
del adj
return hop_2_adj
def convert_to_one_hot_label(labels, num_classes, batch_size, device):
one_hot_y = labels.unsqueeze(1).to(device)
n_class = num_classes
batch_size = batch_size
y_onehot = torch.FloatTensor(batch_size, n_class).to(device)
y_onehot.zero_()
y_onehot = y_onehot.scatter(1, one_hot_y, 1)
return y_onehot
class ProcessedDataset(InMemoryDataset):
pass
def precompute_edge_label_and_reverse(dataset: InMemoryDataset):
data_list = []
for data in dataset:
u, v = data.edge_index
yu, yv = data.y[u], data.y[v]
data.edge_labels = yu * dataset.num_classes + yv
edge_dict = torch.sparse_coo_tensor(indices=data.edge_index,
values=torch.arange(data.num_edges),
size=(data.num_nodes,
data.num_nodes)).to_dense()
data.edge_index_reversed = edge_dict[v, u]
data_list.append(data)
new_data, new_slices = InMemoryDataset.collate(data_list)
new_dataset = ProcessedDataset('.')
new_dataset.data = new_data
new_dataset.slices = new_slices
return new_dataset
class CitationDataset(InMemoryDataset):
def __init__(self, root=None, split='train', transform=None,
pre_transform=None, pre_filter=None):
assert split in ['train', 'val', 'test']
super(CitationDataset, self).__init__(root, transform, pre_transform,
pre_filter)
saved_data = torch.load(root)
self.data = Data(edge_index=saved_data['{}_e'.format(split)],
x=saved_data['{}_x'.format(split)],
y=saved_data['{}_y'.format(split)])
num_nodes = self.data.x.size(0)
num_edges = self.data.edge_index.size(1)
self.slices = {
'x': torch.LongTensor([0, num_nodes]),
'y': torch.LongTensor([0, num_nodes]),
'edge_index': torch.LongTensor([0, num_edges])
}
if self.pre_transform is not None:
self.data = self.pre_transform(self.data)
def sim_matrix(a, b, eps=1e-8):
"""
added eps for numerical stability
"""
a_n, b_n = a.norm(dim=1)[:, None], b.norm(dim=1)[:, None]
a_norm = a / torch.max(a_n, eps * torch.ones_like(a_n))
b_norm = b / torch.max(b_n, eps * torch.ones_like(b_n))
sim_mt = torch.mm(a_norm, b_norm.transpose(0, 1))
return sim_mt
def find_common_neighbors_matrix(batch_data,
num_nodes,
device,
model_name=None):
if model_name == 'gcnii':
row, col, edge_attr = batch_data.adj_t.t().coo()
edge_index = torch.stack([row, col], dim=0)
batch_data.edge_index = edge_index
adj = to_dense_adj(batch_data.edge_index,
max_num_nodes=num_nodes)[0]
adj1 = torch.index_select(adj,
0,
batch_data.n_id[:batch_data.batch_size]).to(
device)
adj2 = torch.index_select(adj1.T,
0,
batch_data.n_id[:batch_data.batch_size]).to(
device)
common_neighbors_tensor = []
for i in range(adj1.shape[0]):
common_neighbors_tensor.append(
torch.sum(torch.logical_and(adj2[i], adj2), dim=1))
common_neighbors_tensor = torch.stack(common_neighbors_tensor)
mask = torch.eye(batch_data.batch_size,
batch_data.batch_size).byte().to(device)
common_neighbors_tensor.masked_fill_(mask, 0)
return common_neighbors_tensor
def count_degree(batch_data,
num_nodes,
device,
model_name=None):
if model_name == 'gcnii':
row, col, edge_attr = batch_data.adj_t.t().coo()
edge_index = torch.stack([row, col], dim=0)
batch_data.edge_index = edge_index
degree_vec = degree(batch_data.edge_index[1], num_nodes=num_nodes) + degree(
batch_data.edge_index[0], num_nodes=num_nodes)
degree_res = []
for i in range(degree_vec.shape[0]):
degree_res.append(degree_vec - degree_vec[i])
degree_res = -torch.abs(torch.stack(degree_res))
degree_res.fill_diagonal_(-999)
adj1 = torch.index_select(degree_res,
0,
batch_data.n_id[:batch_data.batch_size]).to(
device)
adj2 = torch.index_select(adj1.T,
0,
batch_data.n_id[:batch_data.batch_size]).to(
device)
return adj2