-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathshow_results.py
89 lines (70 loc) · 2.69 KB
/
show_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
from matplotlib import pyplot as plt
from skimage.transform import resize
from interpolator_tools import interp23tap
def show(starting_img_ms, img_pan, algorithm_outcome, ratio, method, q_min=0.02, q_max=0.98):
"""
Auxiliary function for results visualization.
Parameters
----------
starting_img_ms : Numpy Array
The Multi-Spectral image. Dimensions: H, W, Bands
img_pan : Numpy Array
The PAN image. Dimensions: H, W
algorithm_outcome : NumPy Array
The Fused image. Dimensions: H, W, Bands
ratio : int
PAN-MS resolution ratio
method : str
The name of the pansharpening algorithm
q_min : float
Minimum quantile to compute, which must be between 0 and 1 inclusive.
q_max : float
Maximum quantile to compute, which must be between 0 and 1 inclusive.
Return
------
None
"""
Q_MS = np.quantile(starting_img_ms, (q_min, q_max), (0, 1), keepdims=True)
Q_PAN = np.quantile(img_pan, (q_min, q_max), (0, 1), keepdims=True)
ms_shape = (starting_img_ms.shape[0] * ratio, starting_img_ms.shape[1] * ratio, starting_img_ms.shape[2])
I_MS_LR_4x = resize(starting_img_ms, ms_shape, order=0)
I_interp = interp23tap(starting_img_ms, ratio)
DP = algorithm_outcome - I_interp
Q_d = np.quantile(abs(DP), q_max, (0, 1))
if starting_img_ms.shape[-1] == 8:
RGB = (4, 2, 1)
RYB = (4, 3, 1)
else:
RGB = (2, 1, 0)
RYB = (2, 3, 0)
plt.figure()
ax1 = plt.subplot(2, 4, 1)
plt.imshow((img_pan - Q_PAN[0, :, :]) / (Q_PAN[1, :, :] - Q_PAN[0, :, :]), cmap='gray')
ax1.set_title('PAN')
T = (I_MS_LR_4x - Q_MS[0, :, :]) / (Q_MS[1, :, :] - Q_MS[0, :, :])
T = np.clip(T, 0, 1)
ax2 = plt.subplot(2, 4, 2, sharex=ax1, sharey=ax1)
plt.imshow(T[:, :, RGB])
ax2.set_title('MS (RGB)')
ax6 = plt.subplot(2, 4, 6, sharex=ax1, sharey=ax1)
plt.imshow(T[:, :, RYB])
ax6.set_title('MS (RYB)')
T = (algorithm_outcome - Q_MS[0, :, :]) / (Q_MS[1, :, :] - Q_MS[0, :, :])
T = np.clip(T, 0, 1)
ax3 = plt.subplot(2, 4, 3, sharex=ax1, sharey=ax1)
plt.imshow(T[:, :, RGB])
ax3.set_title(method + ' (RGB)')
ax7 = plt.subplot(2, 4, 7, sharex=ax1, sharey=ax1)
plt.imshow(T[:, :, RYB])
ax7.set_title(method + ' (RYB)')
T = 0.5 + DP / (2 * Q_d)
T = np.clip(T, 0, 1)
ax4 = plt.subplot(2, 4, 4, sharex=ax1, sharey=ax1)
plt.imshow(T[:, :, RGB])
ax4.set_title('Detail (RGB)')
ax8 = plt.subplot(2, 4, 8, sharex=ax1, sharey=ax1)
plt.imshow(T[:, :, RYB])
ax8.set_title('Detail (RYB)')
plt.show()
return