-
Notifications
You must be signed in to change notification settings - Fork 1
/
Homogenity.cs
81 lines (69 loc) · 2.41 KB
/
Homogenity.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
using System;
using System.Collections.Generic;
using System.Linq;
using MNCD.Core;
namespace MNCD.Evaluation.MultiLayer
{
/// <summary>
/// Class implementing homogenity measure.
/// Finding Redundant and Complementary Communities in Multidimensional Networks
/// http://www.michelecoscia.com/wp-content/uploads/2012/08/cosciacikm11.pdf
/// Michele Berlingerio, Michele Coscia, Fosca Giannotti.
/// </summary>
public static class Homogenity
{
/// <summary>
/// Computes homogenity for supplied community in supplied network.
/// </summary>
/// <param name="community">Community for which homogenity will be computed.</param>
/// <param name="network">Network in which community resides.</param>
/// <returns>Homogenity value for community.</returns>
public static double Compute(Community community, Network network)
{
if (network.LayerCount <= 1)
{
throw new ArgumentException("Homogenity can be computed only for multi-layered networkx.");
}
if (community.Size == 0)
{
return 1;
}
var d = network.Layers.Count;
var edgeLayerCounts = new List<double>();
foreach (var layer in network.Layers)
{
var edgesInLayer = 0;
foreach (var edge in layer.Edges)
{
if (community.Actors.Contains(edge.From) &&
community.Actors.Contains(edge.To))
{
edgesInLayer++;
}
}
edgeLayerCounts.Add(edgesInLayer);
}
var sigmaC = GetSigmaC(edgeLayerCounts, d);
var sigmaCMax = GetSigmaCMax(edgeLayerCounts);
if (sigmaCMax == 0)
{
return 1.0;
}
return 1.0 - (sigmaC / sigmaCMax);
}
private static double GetSigmaC(List<double> pcds, int d)
{
var avgC = pcds.Average();
var res = 0.0;
foreach (var pcd in pcds)
{
res += Math.Pow(pcd - avgC, 2);
}
return Math.Sqrt(res);
}
private static double GetSigmaCMax(List<double> pcds)
{
return Math.Sqrt(Math.Pow(pcds.Max() - 1, 2) / 2.0);
}
}
}