From c11758a333642f13beee17255e51a5a8594dcbe0 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Thu, 7 Mar 2024 15:58:05 +0800 Subject: [PATCH 01/21] relocate KPOINTS --- .../test_bandstructure.py | 2 +- tests/electronic_structure/test_plotter.py | 2 +- tests/files/{ => vasp/inputs}/KPOINTS | 0 tests/files/{ => vasp/inputs}/KPOINTS.auto | 0 tests/files/{ => vasp/inputs}/KPOINTS.band | 0 .../files/{ => vasp/inputs}/KPOINTS.cartesian | 0 .../files/{ => vasp/inputs}/KPOINTS.explicit | 0 .../{ => vasp/inputs}/KPOINTS.explicit_tet | 0 .../inputs}/KPOINTS.force_hybrid_like_calc | 0 .../files/{ => vasp/inputs}/KPOINTS_Si_bands | 0 .../{ => vasp/inputs}/KPOINTS_band.lobster | 0 tests/files/{ => vasp/inputs}/POSCAR.Li2O | 0 tests/io/lobster/test_inputs.py | 2 +- tests/io/vasp/test_inputs.py | 24 +++++++++---------- tests/io/vasp/test_outputs.py | 12 +++++----- 15 files changed, 21 insertions(+), 21 deletions(-) rename tests/files/{ => vasp/inputs}/KPOINTS (100%) rename tests/files/{ => vasp/inputs}/KPOINTS.auto (100%) rename tests/files/{ => vasp/inputs}/KPOINTS.band (100%) rename tests/files/{ => vasp/inputs}/KPOINTS.cartesian (100%) rename tests/files/{ => vasp/inputs}/KPOINTS.explicit (100%) rename tests/files/{ => vasp/inputs}/KPOINTS.explicit_tet (100%) rename tests/files/{ => vasp/inputs}/KPOINTS.force_hybrid_like_calc (100%) rename tests/files/{ => vasp/inputs}/KPOINTS_Si_bands (100%) rename tests/files/{ => vasp/inputs}/KPOINTS_band.lobster (100%) rename tests/files/{ => vasp/inputs}/POSCAR.Li2O (100%) diff --git a/tests/electronic_structure/test_bandstructure.py b/tests/electronic_structure/test_bandstructure.py index 4365746edea..e5e5f545f19 100644 --- a/tests/electronic_structure/test_bandstructure.py +++ b/tests/electronic_structure/test_bandstructure.py @@ -268,7 +268,7 @@ def test_vasprun_bs(self): parse_projected_eigen=True, parse_potcar_file=True, ) - bs = bsv.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/KPOINTS.band", line_mode=True) + bs = bsv.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.band", line_mode=True) bs.get_projection_on_elements() diff --git a/tests/electronic_structure/test_plotter.py b/tests/electronic_structure/test_plotter.py index 96c09f36bef..cbecd51cfa9 100644 --- a/tests/electronic_structure/test_plotter.py +++ b/tests/electronic_structure/test_plotter.py @@ -214,7 +214,7 @@ class TestBSDOSPlotter(unittest.TestCase): def test_methods(self): vasp_run = Vasprun(f"{VASP_OUT_DIR}/vasprun_Si_bands.xml.gz") plotter = BSDOSPlotter() - band_struct = vasp_run.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/KPOINTS_Si_bands") + band_struct = vasp_run.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands") ax = plotter.get_plot(band_struct) assert isinstance(ax, plt.Axes) plt.close() diff --git a/tests/files/KPOINTS b/tests/files/vasp/inputs/KPOINTS similarity index 100% rename from tests/files/KPOINTS rename to tests/files/vasp/inputs/KPOINTS diff --git a/tests/files/KPOINTS.auto b/tests/files/vasp/inputs/KPOINTS.auto similarity index 100% rename from tests/files/KPOINTS.auto rename to tests/files/vasp/inputs/KPOINTS.auto diff --git a/tests/files/KPOINTS.band b/tests/files/vasp/inputs/KPOINTS.band similarity index 100% rename from tests/files/KPOINTS.band rename to tests/files/vasp/inputs/KPOINTS.band diff --git a/tests/files/KPOINTS.cartesian b/tests/files/vasp/inputs/KPOINTS.cartesian similarity index 100% rename from tests/files/KPOINTS.cartesian rename to tests/files/vasp/inputs/KPOINTS.cartesian diff --git a/tests/files/KPOINTS.explicit b/tests/files/vasp/inputs/KPOINTS.explicit similarity index 100% rename from tests/files/KPOINTS.explicit rename to tests/files/vasp/inputs/KPOINTS.explicit diff --git a/tests/files/KPOINTS.explicit_tet b/tests/files/vasp/inputs/KPOINTS.explicit_tet similarity index 100% rename from tests/files/KPOINTS.explicit_tet rename to tests/files/vasp/inputs/KPOINTS.explicit_tet diff --git a/tests/files/KPOINTS.force_hybrid_like_calc b/tests/files/vasp/inputs/KPOINTS.force_hybrid_like_calc similarity index 100% rename from tests/files/KPOINTS.force_hybrid_like_calc rename to tests/files/vasp/inputs/KPOINTS.force_hybrid_like_calc diff --git a/tests/files/KPOINTS_Si_bands b/tests/files/vasp/inputs/KPOINTS_Si_bands similarity index 100% rename from tests/files/KPOINTS_Si_bands rename to tests/files/vasp/inputs/KPOINTS_Si_bands diff --git a/tests/files/KPOINTS_band.lobster b/tests/files/vasp/inputs/KPOINTS_band.lobster similarity index 100% rename from tests/files/KPOINTS_band.lobster rename to tests/files/vasp/inputs/KPOINTS_band.lobster diff --git a/tests/files/POSCAR.Li2O b/tests/files/vasp/inputs/POSCAR.Li2O similarity index 100% rename from tests/files/POSCAR.Li2O rename to tests/files/vasp/inputs/POSCAR.Li2O diff --git a/tests/io/lobster/test_inputs.py b/tests/io/lobster/test_inputs.py index 608a487a5fb..a906c94ed13 100644 --- a/tests/io/lobster/test_inputs.py +++ b/tests/io/lobster/test_inputs.py @@ -1808,7 +1808,7 @@ def test_write_kpoints(self): assert kpoint.kpts[-1][1] == approx(0.5) assert kpoint.kpts[-1][2] == approx(0.5) assert kpoint.labels[-1] == "T" - kpoint2 = Kpoints.from_file(f"{TEST_FILES_DIR}/KPOINTS_band.lobster") + kpoint2 = Kpoints.from_file(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_band.lobster") labels = [] number = 0 diff --git a/tests/io/vasp/test_inputs.py b/tests/io/vasp/test_inputs.py index 9e6267ece1d..a35a03a557d 100644 --- a/tests/io/vasp/test_inputs.py +++ b/tests/io/vasp/test_inputs.py @@ -881,26 +881,26 @@ def test_from_str(self): class TestKpoints: def test_init(self): - filepath = f"{TEST_FILES_DIR}/KPOINTS.auto" + filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.auto" kpoints = Kpoints.from_file(filepath) assert kpoints.kpts == [[10]], "Wrong kpoint lattice read" - filepath = f"{TEST_FILES_DIR}/KPOINTS.cartesian" + filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.cartesian" kpoints = Kpoints.from_file(filepath) assert kpoints.kpts == [[0.25, 0, 0], [0, 0.25, 0], [0, 0, 0.25]], "Wrong kpoint lattice read" assert kpoints.kpts_shift == [0.5, 0.5, 0.5], "Wrong kpoint shift read" - filepath = f"{TEST_FILES_DIR}/KPOINTS" + filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS" kpoints = Kpoints.from_file(filepath) self.kpoints = kpoints assert kpoints.kpts == [[2, 4, 6]] - filepath = f"{TEST_FILES_DIR}/KPOINTS.band" + filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.band" kpoints = Kpoints.from_file(filepath) assert kpoints.labels is not None assert kpoints.style == Kpoints.supported_modes.Line_mode assert str(kpoints).split("\n")[3] == "Reciprocal" - filepath = f"{TEST_FILES_DIR}/KPOINTS.explicit" + filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.explicit" kpoints = Kpoints.from_file(filepath) assert kpoints.kpts_weights is not None expected_kpt_str = """Example file @@ -912,12 +912,12 @@ def test_init(self): 0.5 0.5 0.5 4 None""" assert str(kpoints).strip() == expected_kpt_str - filepath = f"{TEST_FILES_DIR}/KPOINTS.explicit_tet" + filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.explicit_tet" kpoints = Kpoints.from_file(filepath) assert kpoints.tet_connections == [(6, [1, 2, 3, 4])] def test_style_setter(self): - filepath = f"{TEST_FILES_DIR}/KPOINTS" + filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS" kpoints = Kpoints.from_file(filepath) assert kpoints.style == Kpoints.supported_modes.Monkhorst kpoints.style = "G" @@ -970,7 +970,7 @@ def test_as_dict_from_dict(self): assert kpts.kpts_shift == kpts_from_dict.kpts_shift def test_kpt_bands_as_dict_from_dict(self): - file_name = f"{TEST_FILES_DIR}/KPOINTS.band" + file_name = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.band" kpts = Kpoints.from_file(file_name) dct = kpts.as_dict() @@ -990,8 +990,8 @@ def test_eq(self): auto_g_kpts = Kpoints.gamma_automatic() assert auto_g_kpts == auto_g_kpts assert auto_g_kpts == Kpoints.gamma_automatic() - file_kpts = Kpoints.from_file(f"{TEST_FILES_DIR}/KPOINTS") - assert file_kpts == Kpoints.from_file(f"{TEST_FILES_DIR}/KPOINTS") + file_kpts = Kpoints.from_file(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS") + assert file_kpts == Kpoints.from_file(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS") assert auto_g_kpts != file_kpts auto_m_kpts = Kpoints.monkhorst_automatic([2, 2, 2], [0, 0, 0]) assert auto_m_kpts == Kpoints.monkhorst_automatic([2, 2, 2], [0, 0, 0]) @@ -1344,7 +1344,7 @@ def setUp(self): os.environ["PMG_VASP_PSP_DIR"] = str(TEST_FILES_DIR) filepath = f"{FAKE_POTCAR_DIR}/POTCAR.gz" potcar = Potcar.from_file(filepath) - filepath = f"{TEST_FILES_DIR}/KPOINTS.auto" + filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.auto" kpoints = Kpoints.from_file(filepath) self.vasp_input = VaspInput(incar, kpoints, poscar, potcar) @@ -1390,7 +1390,7 @@ def test_from_directory(self): # that was sorted to the top of a list of POTCARs for the test to work. # That's far too brittle - isolating requisite files here for file in ("INCAR", "KPOINTS", "POSCAR.Li2O"): - copyfile(f"{TEST_FILES_DIR}/{file}", f"{self.tmp_path}/{file.split('.')[0]}") + copyfile(f"{TEST_FILES_DIR}/vasp/inputs/{file}", f"{self.tmp_path}/{file.split('.')[0]}") Potcar(symbols=["Li_sv", "O"], functional="PBE").write_file(f"{self.tmp_path}/POTCAR") diff --git a/tests/io/vasp/test_outputs.py b/tests/io/vasp/test_outputs.py index 9ea8efa1bd0..799eedf0f6b 100644 --- a/tests/io/vasp/test_outputs.py +++ b/tests/io/vasp/test_outputs.py @@ -472,7 +472,7 @@ def test_as_dict(self): def test_get_band_structure(self): filepath = f"{VASP_OUT_DIR}/vasprun_Si_bands.xml.gz" vasp_run = Vasprun(filepath, parse_projected_eigen=True, parse_potcar_file=False) - bs = vasp_run.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/KPOINTS_Si_bands") + bs = vasp_run.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands") cbm = bs.get_cbm() vbm = bs.get_vbm() assert cbm["kpoint_index"] == [13], "wrong cbm kpoint index" @@ -500,7 +500,7 @@ def test_get_band_structure(self): _ = vasp_run.get_band_structure(line_mode=True) # Check KPOINTS.gz successfully inferred and used if present - with open(f"{TEST_FILES_DIR}/KPOINTS_Si_bands", "rb") as f_in, gzip.open("KPOINTS.gz", "wb") as f_out: + with open(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands", "rb") as f_in, gzip.open("KPOINTS.gz", "wb") as f_out: copyfileobj(f_in, f_out) bs_kpts_gzip = vasp_run.get_band_structure() assert bs.efermi == bs_kpts_gzip.efermi @@ -508,7 +508,7 @@ def test_get_band_structure(self): # Test compressed files case 2: compressed vasprun in another dir os.mkdir("deeper") - copyfile(f"{TEST_FILES_DIR}/KPOINTS_Si_bands", Path("deeper") / "KPOINTS") + copyfile(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands", Path("deeper") / "KPOINTS") copyfile(f"{VASP_OUT_DIR}/vasprun_Si_bands.xml.gz", Path("deeper") / "vasprun.xml.gz") vasp_run = Vasprun( os.path.join("deeper", "vasprun.xml.gz"), @@ -521,7 +521,7 @@ def test_get_band_structure(self): # test hybrid band structures vasp_run.actual_kpoints_weights[-1] = 0.0 - bs = vasp_run.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/KPOINTS_Si_bands") + bs = vasp_run.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands") cbm = bs.get_cbm() vbm = bs.get_vbm() assert cbm["kpoint_index"] == [0] @@ -538,7 +538,7 @@ def test_get_band_structure(self): parse_potcar_file=False, ) bs = vasp_run.get_band_structure( - kpoints_filename=f"{TEST_FILES_DIR}/KPOINTS.force_hybrid_like_calc", + kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.force_hybrid_like_calc", force_hybrid_mode=True, line_mode=True, ) @@ -1363,7 +1363,7 @@ class TestBSVasprun(PymatgenTest): def test_get_band_structure(self): filepath = f"{VASP_OUT_DIR}/vasprun_Si_bands.xml.gz" vasprun = BSVasprun(filepath, parse_potcar_file=False) - bs = vasprun.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/KPOINTS_Si_bands") + bs = vasprun.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands") cbm = bs.get_cbm() vbm = bs.get_vbm() assert cbm["kpoint_index"] == [13], "wrong cbm kpoint index" From e560c467ffa5dd402a8a1a60826cb96b5213b871 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Thu, 7 Mar 2024 08:05:02 +0000 Subject: [PATCH 02/21] pre-commit auto-fixes --- tests/io/vasp/test_outputs.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/tests/io/vasp/test_outputs.py b/tests/io/vasp/test_outputs.py index 799eedf0f6b..9f5ad19ff60 100644 --- a/tests/io/vasp/test_outputs.py +++ b/tests/io/vasp/test_outputs.py @@ -500,7 +500,10 @@ def test_get_band_structure(self): _ = vasp_run.get_band_structure(line_mode=True) # Check KPOINTS.gz successfully inferred and used if present - with open(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands", "rb") as f_in, gzip.open("KPOINTS.gz", "wb") as f_out: + with ( + open(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands", "rb") as f_in, + gzip.open("KPOINTS.gz", "wb") as f_out, + ): copyfileobj(f_in, f_out) bs_kpts_gzip = vasp_run.get_band_structure() assert bs.efermi == bs_kpts_gzip.efermi From 29d7f5cd7f4193716972700115af2a5f9255d61a Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Thu, 7 Mar 2024 16:24:35 +0800 Subject: [PATCH 03/21] define VASP_IN_DIR for vasp inputs test files --- pymatgen/util/testing/__init__.py | 1 + .../test_bandstructure.py | 4 +-- tests/electronic_structure/test_plotter.py | 4 +-- tests/io/lobster/test_inputs.py | 4 +-- tests/io/vasp/test_inputs.py | 26 +++++++++---------- tests/io/vasp/test_outputs.py | 17 +++++------- 6 files changed, 27 insertions(+), 29 deletions(-) diff --git a/pymatgen/util/testing/__init__.py b/pymatgen/util/testing/__init__.py index 1d7f071ee60..6dba6b369d5 100644 --- a/pymatgen/util/testing/__init__.py +++ b/pymatgen/util/testing/__init__.py @@ -26,6 +26,7 @@ MODULE_DIR = Path(__file__).absolute().parent STRUCTURES_DIR = MODULE_DIR / ".." / "structures" TEST_FILES_DIR = Path(SETTINGS.get("PMG_TEST_FILES_DIR", f"{ROOT}/tests/files")) +VASP_IN_DIR = f"{TEST_FILES_DIR}/vasp/inputs" VASP_OUT_DIR = f"{TEST_FILES_DIR}/vasp/outputs" # fake POTCARs have original header information, meaning properties like number of electrons, # nuclear charge, core radii, etc. are unchanged (important for testing) while values of the and diff --git a/tests/electronic_structure/test_bandstructure.py b/tests/electronic_structure/test_bandstructure.py index e5e5f545f19..aded93bd8b6 100644 --- a/tests/electronic_structure/test_bandstructure.py +++ b/tests/electronic_structure/test_bandstructure.py @@ -20,7 +20,7 @@ from pymatgen.electronic_structure.core import Orbital, Spin from pymatgen.electronic_structure.plotter import BSPlotterProjected from pymatgen.io.vasp import BSVasprun -from pymatgen.util.testing import TEST_FILES_DIR, VASP_OUT_DIR, PymatgenTest +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, VASP_OUT_DIR, PymatgenTest class TestKpoint(unittest.TestCase): @@ -268,7 +268,7 @@ def test_vasprun_bs(self): parse_projected_eigen=True, parse_potcar_file=True, ) - bs = bsv.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.band", line_mode=True) + bs = bsv.get_band_structure(kpoints_filename=f"{VASP_IN_DIR}/KPOINTS.band", line_mode=True) bs.get_projection_on_elements() diff --git a/tests/electronic_structure/test_plotter.py b/tests/electronic_structure/test_plotter.py index cbecd51cfa9..45ca3df4a5c 100644 --- a/tests/electronic_structure/test_plotter.py +++ b/tests/electronic_structure/test_plotter.py @@ -30,7 +30,7 @@ plot_ellipsoid, ) from pymatgen.io.vasp import Vasprun -from pymatgen.util.testing import TEST_FILES_DIR, VASP_OUT_DIR, PymatgenTest +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, VASP_OUT_DIR, PymatgenTest rc("text", usetex=False) # Disabling latex is needed for this test to work. @@ -214,7 +214,7 @@ class TestBSDOSPlotter(unittest.TestCase): def test_methods(self): vasp_run = Vasprun(f"{VASP_OUT_DIR}/vasprun_Si_bands.xml.gz") plotter = BSDOSPlotter() - band_struct = vasp_run.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands") + band_struct = vasp_run.get_band_structure(kpoints_filename=f"{VASP_IN_DIR}/KPOINTS_Si_bands") ax = plotter.get_plot(band_struct) assert isinstance(ax, plt.Axes) plt.close() diff --git a/tests/io/lobster/test_inputs.py b/tests/io/lobster/test_inputs.py index a906c94ed13..0589e9f2feb 100644 --- a/tests/io/lobster/test_inputs.py +++ b/tests/io/lobster/test_inputs.py @@ -32,7 +32,7 @@ from pymatgen.io.lobster.inputs import get_all_possible_basis_combinations from pymatgen.io.vasp import Vasprun from pymatgen.io.vasp.inputs import Incar, Kpoints, Potcar -from pymatgen.util.testing import FAKE_POTCAR_DIR, TEST_FILES_DIR, VASP_OUT_DIR, PymatgenTest +from pymatgen.util.testing import FAKE_POTCAR_DIR, TEST_FILES_DIR, VASP_IN_DIR, VASP_OUT_DIR, PymatgenTest __author__ = "Janine George, Marco Esters" __copyright__ = "Copyright 2017, The Materials Project" @@ -1808,7 +1808,7 @@ def test_write_kpoints(self): assert kpoint.kpts[-1][1] == approx(0.5) assert kpoint.kpts[-1][2] == approx(0.5) assert kpoint.labels[-1] == "T" - kpoint2 = Kpoints.from_file(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_band.lobster") + kpoint2 = Kpoints.from_file(f"{VASP_IN_DIR}/KPOINTS_band.lobster") labels = [] number = 0 diff --git a/tests/io/vasp/test_inputs.py b/tests/io/vasp/test_inputs.py index a35a03a557d..474c0bfbf64 100644 --- a/tests/io/vasp/test_inputs.py +++ b/tests/io/vasp/test_inputs.py @@ -34,7 +34,7 @@ VaspInput, _gen_potcar_summary_stats, ) -from pymatgen.util.testing import FAKE_POTCAR_DIR, TEST_FILES_DIR, VASP_OUT_DIR, PymatgenTest +from pymatgen.util.testing import FAKE_POTCAR_DIR, TEST_FILES_DIR, VASP_IN_DIR, VASP_OUT_DIR, PymatgenTest # make sure _gen_potcar_summary_stats runs and works with all tests in this file _summ_stats = _gen_potcar_summary_stats(append=False, vasp_psp_dir=str(FAKE_POTCAR_DIR), summary_stats_filename=None) @@ -881,26 +881,26 @@ def test_from_str(self): class TestKpoints: def test_init(self): - filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.auto" + filepath = f"{VASP_IN_DIR}/KPOINTS.auto" kpoints = Kpoints.from_file(filepath) assert kpoints.kpts == [[10]], "Wrong kpoint lattice read" - filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.cartesian" + filepath = f"{VASP_IN_DIR}/KPOINTS.cartesian" kpoints = Kpoints.from_file(filepath) assert kpoints.kpts == [[0.25, 0, 0], [0, 0.25, 0], [0, 0, 0.25]], "Wrong kpoint lattice read" assert kpoints.kpts_shift == [0.5, 0.5, 0.5], "Wrong kpoint shift read" - filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS" + filepath = f"{VASP_IN_DIR}/KPOINTS" kpoints = Kpoints.from_file(filepath) self.kpoints = kpoints assert kpoints.kpts == [[2, 4, 6]] - filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.band" + filepath = f"{VASP_IN_DIR}/KPOINTS.band" kpoints = Kpoints.from_file(filepath) assert kpoints.labels is not None assert kpoints.style == Kpoints.supported_modes.Line_mode assert str(kpoints).split("\n")[3] == "Reciprocal" - filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.explicit" + filepath = f"{VASP_IN_DIR}/KPOINTS.explicit" kpoints = Kpoints.from_file(filepath) assert kpoints.kpts_weights is not None expected_kpt_str = """Example file @@ -912,12 +912,12 @@ def test_init(self): 0.5 0.5 0.5 4 None""" assert str(kpoints).strip() == expected_kpt_str - filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.explicit_tet" + filepath = f"{VASP_IN_DIR}/KPOINTS.explicit_tet" kpoints = Kpoints.from_file(filepath) assert kpoints.tet_connections == [(6, [1, 2, 3, 4])] def test_style_setter(self): - filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS" + filepath = f"{VASP_IN_DIR}/KPOINTS" kpoints = Kpoints.from_file(filepath) assert kpoints.style == Kpoints.supported_modes.Monkhorst kpoints.style = "G" @@ -970,7 +970,7 @@ def test_as_dict_from_dict(self): assert kpts.kpts_shift == kpts_from_dict.kpts_shift def test_kpt_bands_as_dict_from_dict(self): - file_name = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.band" + file_name = f"{VASP_IN_DIR}/KPOINTS.band" kpts = Kpoints.from_file(file_name) dct = kpts.as_dict() @@ -990,8 +990,8 @@ def test_eq(self): auto_g_kpts = Kpoints.gamma_automatic() assert auto_g_kpts == auto_g_kpts assert auto_g_kpts == Kpoints.gamma_automatic() - file_kpts = Kpoints.from_file(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS") - assert file_kpts == Kpoints.from_file(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS") + file_kpts = Kpoints.from_file(f"{VASP_IN_DIR}/KPOINTS") + assert file_kpts == Kpoints.from_file(f"{VASP_IN_DIR}/KPOINTS") assert auto_g_kpts != file_kpts auto_m_kpts = Kpoints.monkhorst_automatic([2, 2, 2], [0, 0, 0]) assert auto_m_kpts == Kpoints.monkhorst_automatic([2, 2, 2], [0, 0, 0]) @@ -1344,7 +1344,7 @@ def setUp(self): os.environ["PMG_VASP_PSP_DIR"] = str(TEST_FILES_DIR) filepath = f"{FAKE_POTCAR_DIR}/POTCAR.gz" potcar = Potcar.from_file(filepath) - filepath = f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.auto" + filepath = f"{VASP_IN_DIR}/KPOINTS.auto" kpoints = Kpoints.from_file(filepath) self.vasp_input = VaspInput(incar, kpoints, poscar, potcar) @@ -1390,7 +1390,7 @@ def test_from_directory(self): # that was sorted to the top of a list of POTCARs for the test to work. # That's far too brittle - isolating requisite files here for file in ("INCAR", "KPOINTS", "POSCAR.Li2O"): - copyfile(f"{TEST_FILES_DIR}/vasp/inputs/{file}", f"{self.tmp_path}/{file.split('.')[0]}") + copyfile(f"{VASP_IN_DIR}/{file}", f"{self.tmp_path}/{file.split('.')[0]}") Potcar(symbols=["Li_sv", "O"], functional="PBE").write_file(f"{self.tmp_path}/POTCAR") diff --git a/tests/io/vasp/test_outputs.py b/tests/io/vasp/test_outputs.py index 9f5ad19ff60..508633869df 100644 --- a/tests/io/vasp/test_outputs.py +++ b/tests/io/vasp/test_outputs.py @@ -42,7 +42,7 @@ Xdatcar, ) from pymatgen.io.wannier90 import Unk -from pymatgen.util.testing import FAKE_POTCAR_DIR, TEST_FILES_DIR, VASP_OUT_DIR, PymatgenTest +from pymatgen.util.testing import FAKE_POTCAR_DIR, TEST_FILES_DIR, VASP_IN_DIR, VASP_OUT_DIR, PymatgenTest try: import h5py @@ -472,7 +472,7 @@ def test_as_dict(self): def test_get_band_structure(self): filepath = f"{VASP_OUT_DIR}/vasprun_Si_bands.xml.gz" vasp_run = Vasprun(filepath, parse_projected_eigen=True, parse_potcar_file=False) - bs = vasp_run.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands") + bs = vasp_run.get_band_structure(kpoints_filename=f"{VASP_IN_DIR}/KPOINTS_Si_bands") cbm = bs.get_cbm() vbm = bs.get_vbm() assert cbm["kpoint_index"] == [13], "wrong cbm kpoint index" @@ -500,10 +500,7 @@ def test_get_band_structure(self): _ = vasp_run.get_band_structure(line_mode=True) # Check KPOINTS.gz successfully inferred and used if present - with ( - open(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands", "rb") as f_in, - gzip.open("KPOINTS.gz", "wb") as f_out, - ): + with open(f"{VASP_IN_DIR}/KPOINTS_Si_bands", "rb") as f_in, gzip.open("KPOINTS.gz", "wb") as f_out: copyfileobj(f_in, f_out) bs_kpts_gzip = vasp_run.get_band_structure() assert bs.efermi == bs_kpts_gzip.efermi @@ -511,7 +508,7 @@ def test_get_band_structure(self): # Test compressed files case 2: compressed vasprun in another dir os.mkdir("deeper") - copyfile(f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands", Path("deeper") / "KPOINTS") + copyfile(f"{VASP_IN_DIR}/KPOINTS_Si_bands", Path("deeper") / "KPOINTS") copyfile(f"{VASP_OUT_DIR}/vasprun_Si_bands.xml.gz", Path("deeper") / "vasprun.xml.gz") vasp_run = Vasprun( os.path.join("deeper", "vasprun.xml.gz"), @@ -524,7 +521,7 @@ def test_get_band_structure(self): # test hybrid band structures vasp_run.actual_kpoints_weights[-1] = 0.0 - bs = vasp_run.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands") + bs = vasp_run.get_band_structure(kpoints_filename=f"{VASP_IN_DIR}/KPOINTS_Si_bands") cbm = bs.get_cbm() vbm = bs.get_vbm() assert cbm["kpoint_index"] == [0] @@ -541,7 +538,7 @@ def test_get_band_structure(self): parse_potcar_file=False, ) bs = vasp_run.get_band_structure( - kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS.force_hybrid_like_calc", + kpoints_filename=f"{VASP_IN_DIR}/KPOINTS.force_hybrid_like_calc", force_hybrid_mode=True, line_mode=True, ) @@ -1366,7 +1363,7 @@ class TestBSVasprun(PymatgenTest): def test_get_band_structure(self): filepath = f"{VASP_OUT_DIR}/vasprun_Si_bands.xml.gz" vasprun = BSVasprun(filepath, parse_potcar_file=False) - bs = vasprun.get_band_structure(kpoints_filename=f"{TEST_FILES_DIR}/vasp/inputs/KPOINTS_Si_bands") + bs = vasprun.get_band_structure(kpoints_filename=f"{VASP_IN_DIR}/KPOINTS_Si_bands") cbm = bs.get_cbm() vbm = bs.get_vbm() assert cbm["kpoint_index"] == [13], "wrong cbm kpoint index" From 08f32da29f57526411e3153239fdcc0abd87b0c2 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Thu, 7 Mar 2024 16:31:18 +0800 Subject: [PATCH 04/21] unify naming with underscore --- tests/electronic_structure/test_bandstructure.py | 2 +- .../vasp/inputs/{KPOINTS.auto => KPOINTS_auto} | 0 .../vasp/inputs/{KPOINTS.band => KPOINTS_band} | 0 .../{KPOINTS.cartesian => KPOINTS_cartesian} | 0 .../inputs/{KPOINTS.explicit => KPOINTS_explicit} | 0 .../{KPOINTS.explicit_tet => KPOINTS_explicit_tet} | 0 ...id_like_calc => KPOINTS_force_hybrid_like_calc} | 0 tests/io/vasp/test_inputs.py | 14 +++++++------- tests/io/vasp/test_outputs.py | 2 +- 9 files changed, 9 insertions(+), 9 deletions(-) rename tests/files/vasp/inputs/{KPOINTS.auto => KPOINTS_auto} (100%) rename tests/files/vasp/inputs/{KPOINTS.band => KPOINTS_band} (100%) rename tests/files/vasp/inputs/{KPOINTS.cartesian => KPOINTS_cartesian} (100%) rename tests/files/vasp/inputs/{KPOINTS.explicit => KPOINTS_explicit} (100%) rename tests/files/vasp/inputs/{KPOINTS.explicit_tet => KPOINTS_explicit_tet} (100%) rename tests/files/vasp/inputs/{KPOINTS.force_hybrid_like_calc => KPOINTS_force_hybrid_like_calc} (100%) diff --git a/tests/electronic_structure/test_bandstructure.py b/tests/electronic_structure/test_bandstructure.py index aded93bd8b6..e1b667fa7b2 100644 --- a/tests/electronic_structure/test_bandstructure.py +++ b/tests/electronic_structure/test_bandstructure.py @@ -268,7 +268,7 @@ def test_vasprun_bs(self): parse_projected_eigen=True, parse_potcar_file=True, ) - bs = bsv.get_band_structure(kpoints_filename=f"{VASP_IN_DIR}/KPOINTS.band", line_mode=True) + bs = bsv.get_band_structure(kpoints_filename=f"{VASP_IN_DIR}/KPOINTS_band", line_mode=True) bs.get_projection_on_elements() diff --git a/tests/files/vasp/inputs/KPOINTS.auto b/tests/files/vasp/inputs/KPOINTS_auto similarity index 100% rename from tests/files/vasp/inputs/KPOINTS.auto rename to tests/files/vasp/inputs/KPOINTS_auto diff --git a/tests/files/vasp/inputs/KPOINTS.band b/tests/files/vasp/inputs/KPOINTS_band similarity index 100% rename from tests/files/vasp/inputs/KPOINTS.band rename to tests/files/vasp/inputs/KPOINTS_band diff --git a/tests/files/vasp/inputs/KPOINTS.cartesian b/tests/files/vasp/inputs/KPOINTS_cartesian similarity index 100% rename from tests/files/vasp/inputs/KPOINTS.cartesian rename to tests/files/vasp/inputs/KPOINTS_cartesian diff --git a/tests/files/vasp/inputs/KPOINTS.explicit b/tests/files/vasp/inputs/KPOINTS_explicit similarity index 100% rename from tests/files/vasp/inputs/KPOINTS.explicit rename to tests/files/vasp/inputs/KPOINTS_explicit diff --git a/tests/files/vasp/inputs/KPOINTS.explicit_tet b/tests/files/vasp/inputs/KPOINTS_explicit_tet similarity index 100% rename from tests/files/vasp/inputs/KPOINTS.explicit_tet rename to tests/files/vasp/inputs/KPOINTS_explicit_tet diff --git a/tests/files/vasp/inputs/KPOINTS.force_hybrid_like_calc b/tests/files/vasp/inputs/KPOINTS_force_hybrid_like_calc similarity index 100% rename from tests/files/vasp/inputs/KPOINTS.force_hybrid_like_calc rename to tests/files/vasp/inputs/KPOINTS_force_hybrid_like_calc diff --git a/tests/io/vasp/test_inputs.py b/tests/io/vasp/test_inputs.py index 474c0bfbf64..5e4b5ff26a9 100644 --- a/tests/io/vasp/test_inputs.py +++ b/tests/io/vasp/test_inputs.py @@ -881,10 +881,10 @@ def test_from_str(self): class TestKpoints: def test_init(self): - filepath = f"{VASP_IN_DIR}/KPOINTS.auto" + filepath = f"{VASP_IN_DIR}/KPOINTS_auto" kpoints = Kpoints.from_file(filepath) assert kpoints.kpts == [[10]], "Wrong kpoint lattice read" - filepath = f"{VASP_IN_DIR}/KPOINTS.cartesian" + filepath = f"{VASP_IN_DIR}/KPOINTS_cartesian" kpoints = Kpoints.from_file(filepath) assert kpoints.kpts == [[0.25, 0, 0], [0, 0.25, 0], [0, 0, 0.25]], "Wrong kpoint lattice read" assert kpoints.kpts_shift == [0.5, 0.5, 0.5], "Wrong kpoint shift read" @@ -894,13 +894,13 @@ def test_init(self): self.kpoints = kpoints assert kpoints.kpts == [[2, 4, 6]] - filepath = f"{VASP_IN_DIR}/KPOINTS.band" + filepath = f"{VASP_IN_DIR}/KPOINTS_band" kpoints = Kpoints.from_file(filepath) assert kpoints.labels is not None assert kpoints.style == Kpoints.supported_modes.Line_mode assert str(kpoints).split("\n")[3] == "Reciprocal" - filepath = f"{VASP_IN_DIR}/KPOINTS.explicit" + filepath = f"{VASP_IN_DIR}/KPOINTS_explicit" kpoints = Kpoints.from_file(filepath) assert kpoints.kpts_weights is not None expected_kpt_str = """Example file @@ -912,7 +912,7 @@ def test_init(self): 0.5 0.5 0.5 4 None""" assert str(kpoints).strip() == expected_kpt_str - filepath = f"{VASP_IN_DIR}/KPOINTS.explicit_tet" + filepath = f"{VASP_IN_DIR}/KPOINTS_explicit_tet" kpoints = Kpoints.from_file(filepath) assert kpoints.tet_connections == [(6, [1, 2, 3, 4])] @@ -970,7 +970,7 @@ def test_as_dict_from_dict(self): assert kpts.kpts_shift == kpts_from_dict.kpts_shift def test_kpt_bands_as_dict_from_dict(self): - file_name = f"{VASP_IN_DIR}/KPOINTS.band" + file_name = f"{VASP_IN_DIR}/KPOINTS_band" kpts = Kpoints.from_file(file_name) dct = kpts.as_dict() @@ -1344,7 +1344,7 @@ def setUp(self): os.environ["PMG_VASP_PSP_DIR"] = str(TEST_FILES_DIR) filepath = f"{FAKE_POTCAR_DIR}/POTCAR.gz" potcar = Potcar.from_file(filepath) - filepath = f"{VASP_IN_DIR}/KPOINTS.auto" + filepath = f"{VASP_IN_DIR}/KPOINTS_auto" kpoints = Kpoints.from_file(filepath) self.vasp_input = VaspInput(incar, kpoints, poscar, potcar) diff --git a/tests/io/vasp/test_outputs.py b/tests/io/vasp/test_outputs.py index 508633869df..fbc1fc447f1 100644 --- a/tests/io/vasp/test_outputs.py +++ b/tests/io/vasp/test_outputs.py @@ -538,7 +538,7 @@ def test_get_band_structure(self): parse_potcar_file=False, ) bs = vasp_run.get_band_structure( - kpoints_filename=f"{VASP_IN_DIR}/KPOINTS.force_hybrid_like_calc", + kpoints_filename=f"{VASP_IN_DIR}/KPOINTS_force_hybrid_like_calc", force_hybrid_mode=True, line_mode=True, ) From 00f1beb74bd30170109a6c68b2efb42a54e9dc5e Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Thu, 7 Mar 2024 20:23:55 +0800 Subject: [PATCH 05/21] relocate POSCARs --- tests/alchemy/test_transmuters.py | 6 ++-- tests/analysis/test_ewald.py | 6 ++-- tests/analysis/test_structure_analyzer.py | 4 +-- tests/analysis/test_structure_matcher.py | 8 +++--- tests/command_line/test_gulp_caller.py | 6 ++-- tests/core/test_structure.py | 4 +-- tests/core/test_trajectory.py | 4 +-- tests/files/POSCAR.C2.gz | Bin 85 -> 0 bytes tests/files/POSCAR.CdS_HSE | 12 -------- tests/files/{ => vasp/inputs}/POSCAR | 0 .../inputs}/POSCAR.lobster.nonspin_DOS | 0 .../inputs}/POSCAR.lobster.nonspin_DOSzip.gz | Bin .../{ => vasp/inputs}/POSCAR.lobster.spin_DOS | 0 .../inputs/POSCAR_Al12O18} | 0 tests/files/vasp/inputs/POSCAR_C2 | 10 +++++++ .../inputs/POSCAR_Fe3O4} | 0 .../vasp/inputs/{POSCAR.Li2O => POSCAR_Li2O} | 0 .../inputs/POSCAR_LiFePO4} | 0 .../{POSCAR.MnO => vasp/inputs/POSCAR_MnO} | 0 .../{POSCAR.O2 => vasp/inputs/POSCAR_O2} | 0 tests/files/{ => vasp/inputs}/POSCAR_bcc | 0 tests/files/{ => vasp/inputs}/POSCAR_fcc | 0 tests/files/{ => vasp/inputs}/POSCAR_hcp | 0 tests/files/{ => vasp/inputs}/POSCAR_overlap | 0 .../inputs/POSCAR_symbols_natoms_multilines} | 0 .../inputs/POSCAR_tricky_symmetry} | 0 tests/io/lobster/test_inputs.py | 26 +++++++++--------- tests/io/test_ase.py | 18 ++++++------ tests/io/test_cif.py | 12 ++++---- tests/io/test_cssr.py | 4 +-- tests/io/test_jarvis.py | 6 ++-- tests/io/test_xr.py | 4 +-- tests/io/test_xyz.py | 4 +-- tests/io/test_zeopp.py | 12 ++++---- tests/io/vasp/test_inputs.py | 22 +++++++-------- tests/io/vasp/test_outputs.py | 2 +- tests/io/vasp/test_sets.py | 26 +++++++++--------- tests/symmetry/test_analyzer.py | 8 +++--- .../test_advanced_transformations.py | 12 ++++---- .../test_standard_transformations.py | 8 +++--- 40 files changed, 111 insertions(+), 113 deletions(-) delete mode 100644 tests/files/POSCAR.C2.gz delete mode 100644 tests/files/POSCAR.CdS_HSE rename tests/files/{ => vasp/inputs}/POSCAR (100%) rename tests/files/{ => vasp/inputs}/POSCAR.lobster.nonspin_DOS (100%) rename tests/files/{ => vasp/inputs}/POSCAR.lobster.nonspin_DOSzip.gz (100%) rename tests/files/{ => vasp/inputs}/POSCAR.lobster.spin_DOS (100%) rename tests/files/{POSCAR.Al12O18 => vasp/inputs/POSCAR_Al12O18} (100%) create mode 100644 tests/files/vasp/inputs/POSCAR_C2 rename tests/files/{POSCAR.Fe3O4 => vasp/inputs/POSCAR_Fe3O4} (100%) rename tests/files/vasp/inputs/{POSCAR.Li2O => POSCAR_Li2O} (100%) rename tests/files/{POSCAR.LiFePO4 => vasp/inputs/POSCAR_LiFePO4} (100%) rename tests/files/{POSCAR.MnO => vasp/inputs/POSCAR_MnO} (100%) rename tests/files/{POSCAR.O2 => vasp/inputs/POSCAR_O2} (100%) rename tests/files/{ => vasp/inputs}/POSCAR_bcc (100%) rename tests/files/{ => vasp/inputs}/POSCAR_fcc (100%) rename tests/files/{ => vasp/inputs}/POSCAR_hcp (100%) rename tests/files/{ => vasp/inputs}/POSCAR_overlap (100%) rename tests/files/{POSCAR.symbols_natoms_multilines => vasp/inputs/POSCAR_symbols_natoms_multilines} (100%) rename tests/files/{POSCAR.tricky_symmetry => vasp/inputs/POSCAR_tricky_symmetry} (100%) diff --git a/tests/alchemy/test_transmuters.py b/tests/alchemy/test_transmuters.py index b0c4c2ae996..303fa3d2c38 100644 --- a/tests/alchemy/test_transmuters.py +++ b/tests/alchemy/test_transmuters.py @@ -8,7 +8,7 @@ RemoveSpeciesTransformation, SubstitutionTransformation, ) -from pymatgen.util.testing import TEST_FILES_DIR, PymatgenTest +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, PymatgenTest class TestCifTransmuter(PymatgenTest): @@ -25,7 +25,7 @@ def test_init(self): class TestPoscarTransmuter(PymatgenTest): def test_init(self): trafos = [SubstitutionTransformation({"Fe": "Mn"})] - tsc = PoscarTransmuter.from_filenames([f"{TEST_FILES_DIR}/POSCAR", f"{TEST_FILES_DIR}/POSCAR"], trafos) + tsc = PoscarTransmuter.from_filenames([f"{VASP_IN_DIR}/POSCAR", f"{VASP_IN_DIR}/POSCAR"], trafos) assert len(tsc) == 2 expected = {"Mn", "O", "P"} for substitution in tsc: @@ -33,7 +33,7 @@ def test_init(self): assert expected == els def test_transmuter(self): - tsc = PoscarTransmuter.from_filenames([f"{TEST_FILES_DIR}/POSCAR"]) + tsc = PoscarTransmuter.from_filenames([f"{VASP_IN_DIR}/POSCAR"]) tsc.append_transformation(RemoveSpeciesTransformation("O")) assert len(tsc[0].final_structure) == 8 diff --git a/tests/analysis/test_ewald.py b/tests/analysis/test_ewald.py index 8edc2d3a0e8..c13cdb24722 100644 --- a/tests/analysis/test_ewald.py +++ b/tests/analysis/test_ewald.py @@ -8,12 +8,12 @@ from pymatgen.analysis.ewald import EwaldMinimizer, EwaldSummation from pymatgen.core.structure import Structure -from pymatgen.util.testing import TEST_FILES_DIR +from pymatgen.util.testing import VASP_IN_DIR class TestEwaldSummation(unittest.TestCase): def setUp(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" self.original_struct = Structure.from_file(filepath) self.struct = self.original_struct.copy() self.struct.add_oxidation_state_by_element({"Li": 1, "Fe": 2, "P": 5, "O": -2}) @@ -107,7 +107,7 @@ def test_init(self): def test_site(self): """Test that uses an uncharged structure.""" - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" struct = Structure.from_file(filepath) s = struct.copy() s.add_oxidation_state_by_element({"Li": 1, "Fe": 3, "P": 5, "O": -2}) diff --git a/tests/analysis/test_structure_analyzer.py b/tests/analysis/test_structure_analyzer.py index 2972227aa67..f2ae327d7f2 100644 --- a/tests/analysis/test_structure_analyzer.py +++ b/tests/analysis/test_structure_analyzer.py @@ -18,7 +18,7 @@ ) from pymatgen.core import Element, Lattice, Structure from pymatgen.io.vasp.outputs import Xdatcar -from pymatgen.util.testing import TEST_FILES_DIR, VASP_OUT_DIR, PymatgenTest +from pymatgen.util.testing import VASP_IN_DIR, VASP_OUT_DIR, PymatgenTest class TestVoronoiAnalyzer(PymatgenTest): @@ -39,7 +39,7 @@ def test_analyze(self): class TestRelaxationAnalyzer(unittest.TestCase): def setUp(self): - s1 = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.Li2O") + s1 = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_Li2O") s2 = Structure.from_file(f"{VASP_OUT_DIR}/CONTCAR.Li2O") self.analyzer = RelaxationAnalyzer(s1, s2) diff --git a/tests/analysis/test_structure_matcher.py b/tests/analysis/test_structure_matcher.py index 2124fc06ca5..2d63659c383 100644 --- a/tests/analysis/test_structure_matcher.py +++ b/tests/analysis/test_structure_matcher.py @@ -17,7 +17,7 @@ ) from pymatgen.core import Element, Lattice, Structure, SymmOp from pymatgen.util.coord import find_in_coord_list_pbc -from pymatgen.util.testing import TEST_FILES_DIR, PymatgenTest +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, PymatgenTest class TestStructureMatcher(PymatgenTest): @@ -27,12 +27,12 @@ def setUp(self): self.struct_list = [ent.structure for ent in entries] self.oxi_structs = [ self.get_structure("Li2O"), - Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.Li2O"), + Structure.from_file(f"{VASP_IN_DIR}/POSCAR_Li2O"), ] def test_ignore_species(self): s1 = Structure.from_file(f"{TEST_FILES_DIR}/LiFePO4.cif") - s2 = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + s2 = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") matcher = StructureMatcher(ignored_species=["Li"], primitive_cell=False, attempt_supercell=True) assert matcher.fit(s1, s2) assert matcher.fit_anonymous(s1, s2) @@ -317,7 +317,7 @@ def test_class(self): def test_mix(self): structures = list(map(self.get_structure, ["Li2O", "Li2O2", "LiFePO4"])) - structures += [Structure.from_file(f"{TEST_FILES_DIR}/{fname}") for fname in ["POSCAR.Li2O", "POSCAR.LiFePO4"]] + structures += [Structure.from_file(f"{VASP_IN_DIR}/{fname}") for fname in ["POSCAR.Li2O", "POSCAR_LiFePO4"]] sm = StructureMatcher(comparator=ElementComparator()) groups = sm.group_structures(structures) for group in groups: diff --git a/tests/command_line/test_gulp_caller.py b/tests/command_line/test_gulp_caller.py index af3016ee753..c920908c83a 100644 --- a/tests/command_line/test_gulp_caller.py +++ b/tests/command_line/test_gulp_caller.py @@ -25,7 +25,7 @@ get_energy_tersoff, ) from pymatgen.core.structure import Structure -from pymatgen.util.testing import TEST_FILES_DIR +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR gulp_present = which("gulp") and os.getenv("GULP_LIB") and ("win" not in sys.platform) # disable gulp tests for now. Right now, it is compiled against libgfortran3, which is no longer supported in the new @@ -99,7 +99,7 @@ def test_decimal(self): @unittest.skipIf(not gulp_present, "gulp not present.") class TestGulpIO(unittest.TestCase): def setUp(self): - self.structure = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.Al12O18") + self.structure = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_Al12O18") self.gio = GulpIO() def test_keyword_line_with_correct_keywords(self): @@ -280,7 +280,7 @@ def setUp(self): self.val_dict = dict(zip(el, val)) def test_get_energy_tersoff(self): - structure = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.Al12O18") + structure = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_Al12O18") energy = get_energy_tersoff(structure) assert isinstance(energy, float) diff --git a/tests/core/test_structure.py b/tests/core/test_structure.py index 3f99002ee97..e6b0b19c3e9 100644 --- a/tests/core/test_structure.py +++ b/tests/core/test_structure.py @@ -29,7 +29,7 @@ from pymatgen.io.ase import AseAtomsAdaptor from pymatgen.io.cif import CifParser from pymatgen.symmetry.analyzer import SpacegroupAnalyzer -from pymatgen.util.testing import TEST_FILES_DIR, PymatgenTest +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, PymatgenTest try: from ase.atoms import Atoms @@ -1803,7 +1803,7 @@ def test_to_ase_atoms(self): assert AseAtomsAdaptor.get_structure(atoms) == self.struct def test_struct_with_isotope(self): - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") struct = struct.replace_species({"Li": "H"}) struct_deuter = struct.copy() diff --git a/tests/core/test_trajectory.py b/tests/core/test_trajectory.py index 61572c7b2e3..5130d9cc766 100644 --- a/tests/core/test_trajectory.py +++ b/tests/core/test_trajectory.py @@ -10,7 +10,7 @@ from pymatgen.core.trajectory import Trajectory from pymatgen.io.qchem.outputs import QCOutput from pymatgen.io.vasp.outputs import Xdatcar -from pymatgen.util.testing import TEST_FILES_DIR, VASP_OUT_DIR, PymatgenTest +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, VASP_OUT_DIR, PymatgenTest class TestTrajectory(PymatgenTest): @@ -418,7 +418,7 @@ def test_length(self): assert len(self.traj_mols) == len(self.molecules) def test_displacements(self): - structures = [Structure.from_file(f"{TEST_FILES_DIR}/POSCAR")] + structures = [Structure.from_file(f"{VASP_IN_DIR}/POSCAR")] displacements = np.zeros((11, *np.shape(structures[-1].frac_coords))) for i in range(10): diff --git a/tests/files/POSCAR.C2.gz b/tests/files/POSCAR.C2.gz deleted file mode 100644 index 554d360c8198077ed571f92fa01cfca7ba52af06..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 85 zcmb2|=HR$1!=?vQZ1%|Litz)Z3&sr0tj@N@+{WC&!4}QjdQA)4xSb7S oc&8gr7Yz4G3(P9wypW?Dyur?=&G=9fkPv6MxsUboTm}XP07k7E*8l(j diff --git a/tests/files/POSCAR.CdS_HSE b/tests/files/POSCAR.CdS_HSE deleted file mode 100644 index 8b19c8e2ade..00000000000 --- a/tests/files/POSCAR.CdS_HSE +++ /dev/null @@ -1,12 +0,0 @@ -Cd2 S2 HSE optimized - 1.00000000000000 - 4.1704589747753724 0.0000000049514629 0.0000000000000000 - -2.0852299788115007 3.6117232476351271 -0.0000000000000000 - 0.0000000000000000 -0.0000000000000000 6.7822968954189937 - Cd S - 2 2 -Direct - 0.6666669999999968 0.3333330000000032 0.5001535716160643 - 0.3333330000000032 0.6666669999999968 0.0001535716160644 - 0.6666669999999968 0.3333330000000032 0.8768464283839381 - 0.3333330000000032 0.6666669999999968 0.3768464283839381 diff --git a/tests/files/POSCAR b/tests/files/vasp/inputs/POSCAR similarity index 100% rename from tests/files/POSCAR rename to tests/files/vasp/inputs/POSCAR diff --git a/tests/files/POSCAR.lobster.nonspin_DOS b/tests/files/vasp/inputs/POSCAR.lobster.nonspin_DOS similarity index 100% rename from tests/files/POSCAR.lobster.nonspin_DOS rename to tests/files/vasp/inputs/POSCAR.lobster.nonspin_DOS diff --git a/tests/files/POSCAR.lobster.nonspin_DOSzip.gz b/tests/files/vasp/inputs/POSCAR.lobster.nonspin_DOSzip.gz similarity index 100% rename from tests/files/POSCAR.lobster.nonspin_DOSzip.gz rename to tests/files/vasp/inputs/POSCAR.lobster.nonspin_DOSzip.gz diff --git a/tests/files/POSCAR.lobster.spin_DOS b/tests/files/vasp/inputs/POSCAR.lobster.spin_DOS similarity index 100% rename from tests/files/POSCAR.lobster.spin_DOS rename to tests/files/vasp/inputs/POSCAR.lobster.spin_DOS diff --git a/tests/files/POSCAR.Al12O18 b/tests/files/vasp/inputs/POSCAR_Al12O18 similarity index 100% rename from tests/files/POSCAR.Al12O18 rename to tests/files/vasp/inputs/POSCAR_Al12O18 diff --git a/tests/files/vasp/inputs/POSCAR_C2 b/tests/files/vasp/inputs/POSCAR_C2 new file mode 100644 index 00000000000..60372cb9dd7 --- /dev/null +++ b/tests/files/vasp/inputs/POSCAR_C2 @@ -0,0 +1,10 @@ +C2 +1.0 +0.000000 1.786855 1.786855 +1.786855 0.000000 1.786855 +1.786855 1.786855 0.000000 +C +2 +direct +0.250000 0.250000 0.250000 C +0.000000 0.000000 0.000000 C diff --git a/tests/files/POSCAR.Fe3O4 b/tests/files/vasp/inputs/POSCAR_Fe3O4 similarity index 100% rename from tests/files/POSCAR.Fe3O4 rename to tests/files/vasp/inputs/POSCAR_Fe3O4 diff --git a/tests/files/vasp/inputs/POSCAR.Li2O b/tests/files/vasp/inputs/POSCAR_Li2O similarity index 100% rename from tests/files/vasp/inputs/POSCAR.Li2O rename to tests/files/vasp/inputs/POSCAR_Li2O diff --git a/tests/files/POSCAR.LiFePO4 b/tests/files/vasp/inputs/POSCAR_LiFePO4 similarity index 100% rename from tests/files/POSCAR.LiFePO4 rename to tests/files/vasp/inputs/POSCAR_LiFePO4 diff --git a/tests/files/POSCAR.MnO b/tests/files/vasp/inputs/POSCAR_MnO similarity index 100% rename from tests/files/POSCAR.MnO rename to tests/files/vasp/inputs/POSCAR_MnO diff --git a/tests/files/POSCAR.O2 b/tests/files/vasp/inputs/POSCAR_O2 similarity index 100% rename from tests/files/POSCAR.O2 rename to tests/files/vasp/inputs/POSCAR_O2 diff --git a/tests/files/POSCAR_bcc b/tests/files/vasp/inputs/POSCAR_bcc similarity index 100% rename from tests/files/POSCAR_bcc rename to tests/files/vasp/inputs/POSCAR_bcc diff --git a/tests/files/POSCAR_fcc b/tests/files/vasp/inputs/POSCAR_fcc similarity index 100% rename from tests/files/POSCAR_fcc rename to tests/files/vasp/inputs/POSCAR_fcc diff --git a/tests/files/POSCAR_hcp b/tests/files/vasp/inputs/POSCAR_hcp similarity index 100% rename from tests/files/POSCAR_hcp rename to tests/files/vasp/inputs/POSCAR_hcp diff --git a/tests/files/POSCAR_overlap b/tests/files/vasp/inputs/POSCAR_overlap similarity index 100% rename from tests/files/POSCAR_overlap rename to tests/files/vasp/inputs/POSCAR_overlap diff --git a/tests/files/POSCAR.symbols_natoms_multilines b/tests/files/vasp/inputs/POSCAR_symbols_natoms_multilines similarity index 100% rename from tests/files/POSCAR.symbols_natoms_multilines rename to tests/files/vasp/inputs/POSCAR_symbols_natoms_multilines diff --git a/tests/files/POSCAR.tricky_symmetry b/tests/files/vasp/inputs/POSCAR_tricky_symmetry similarity index 100% rename from tests/files/POSCAR.tricky_symmetry rename to tests/files/vasp/inputs/POSCAR_tricky_symmetry diff --git a/tests/io/lobster/test_inputs.py b/tests/io/lobster/test_inputs.py index 0589e9f2feb..ac32e236f29 100644 --- a/tests/io/lobster/test_inputs.py +++ b/tests/io/lobster/test_inputs.py @@ -603,11 +603,11 @@ class TestDoscar(unittest.TestCase): def setUp(self): # first for spin polarized version doscar = f"{VASP_OUT_DIR}/DOSCAR.lobster.spin" - poscar = f"{TEST_FILES_DIR}/POSCAR.lobster.spin_DOS" + poscar = f"{VASP_IN_DIR}/POSCAR.lobster.spin_DOS" # not spin polarized doscar2 = f"{VASP_OUT_DIR}/DOSCAR.lobster.nonspin" - poscar2 = f"{TEST_FILES_DIR}/POSCAR.lobster.nonspin_DOS" + poscar2 = f"{VASP_IN_DIR}/POSCAR.lobster.nonspin_DOS" self.DOSCAR_spin_pol = Doscar(doscar=doscar, structure_file=poscar) self.DOSCAR_nonspin_pol = Doscar(doscar=doscar2, structure_file=poscar2) @@ -824,7 +824,7 @@ def test_get_structure_with_charges(self): "@module": "pymatgen.core.structure", } s2 = Structure.from_dict(structure_dict2) - assert s2 == self.charge2.get_structure_with_charges(f"{TEST_FILES_DIR}/POSCAR.MnO") + assert s2 == self.charge2.get_structure_with_charges(f"{VASP_IN_DIR}/POSCAR_MnO") def test_msonable(self): dict_data = self.charge2.as_dict() @@ -1531,7 +1531,7 @@ def test_initialize_from_dict(self): lobsterin2 = Lobsterin({"cohpstartenergy": -15.0}) # can only calculate nbands if basis functions are provided with pytest.raises(IOError, match="No basis functions are provided. The program cannot calculate nbands"): - lobsterin2._get_nbands(structure=Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.Fe3O4")) + lobsterin2._get_nbands(structure=Structure.from_file(f"{VASP_IN_DIR}/POSCAR_Fe3O4")) def test_standard_settings(self): # test standard settings @@ -1548,7 +1548,7 @@ def test_standard_settings(self): "onlycohpcoopcobi", ]: lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( - f"{TEST_FILES_DIR}/POSCAR.Fe3O4", + f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{TEST_FILES_DIR}/INCAR.lobster", f"{TEST_FILES_DIR}/POTCAR.Fe3O4", option=option, @@ -1625,7 +1625,7 @@ def test_standard_settings(self): assert lobsterin1["skipdos"], True # test basis functions by dict lobsterin_new = Lobsterin.standard_calculations_from_vasp_files( - f"{TEST_FILES_DIR}/POSCAR.Fe3O4", + f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{TEST_FILES_DIR}/INCAR.lobster", dict_for_basis={"Fe": "3d 4p 4s", "O": "2s 2p"}, option="standard", @@ -1634,7 +1634,7 @@ def test_standard_settings(self): # test gaussian smearing lobsterin_new = Lobsterin.standard_calculations_from_vasp_files( - f"{TEST_FILES_DIR}/POSCAR.Fe3O4", + f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{TEST_FILES_DIR}/INCAR.lobster2", dict_for_basis={"Fe": "3d 4p 4s", "O": "2s 2p"}, option="standard", @@ -1644,7 +1644,7 @@ def test_standard_settings(self): # fatband and ISMEAR=-5 does not work together with pytest.raises(ValueError, match="ISMEAR has to be 0 for a fatband calculation with Lobster"): lobsterin_new = Lobsterin.standard_calculations_from_vasp_files( - f"{TEST_FILES_DIR}/POSCAR.Fe3O4", + f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{TEST_FILES_DIR}/INCAR.lobster2", dict_for_basis={"Fe": "3d 4p 4s", "O": "2s 2p"}, option="standard_with_fatband", @@ -1653,7 +1653,7 @@ def test_standard_settings(self): def test_standard_with_energy_range_from_vasprun(self): # test standard_with_energy_range_from_vasprun lobsterin_comp = Lobsterin.standard_calculations_from_vasp_files( - f"{TEST_FILES_DIR}/POSCAR.C2.gz", + f"{VASP_IN_DIR}/POSCAR_C2", f"{TEST_FILES_DIR}/INCAR.C2.gz", f"{TEST_FILES_DIR}/POTCAR.C2.gz", f"{VASP_OUT_DIR}/vasprun.C2.xml.gz", @@ -1753,7 +1753,7 @@ def test_write_lobsterin(self): # write lobsterin, read it and compare it outfile_path = tempfile.mkstemp()[1] lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( - f"{TEST_FILES_DIR}/POSCAR.Fe3O4", + f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{TEST_FILES_DIR}/INCAR.lobster", f"{TEST_FILES_DIR}/POTCAR.Fe3O4", option="standard", @@ -1766,7 +1766,7 @@ def test_write_incar(self): # write INCAR and compare outfile_path = tempfile.mkstemp()[1] lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( - f"{TEST_FILES_DIR}/POSCAR.Fe3O4", + f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{TEST_FILES_DIR}/INCAR.lobster", f"{TEST_FILES_DIR}/POTCAR.Fe3O4", option="standard", @@ -1774,7 +1774,7 @@ def test_write_incar(self): lobsterin1.write_INCAR( f"{TEST_FILES_DIR}/INCAR.lobster3", outfile_path, - f"{TEST_FILES_DIR}/POSCAR.Fe3O4", + f"{VASP_IN_DIR}/POSCAR_Fe3O4", ) incar1 = Incar.from_file(f"{TEST_FILES_DIR}/INCAR.lobster3") @@ -1794,7 +1794,7 @@ def test_write_kpoints(self): lobsterin1 = Lobsterin({}) # test writing primitive cell lobsterin1.write_POSCAR_with_standard_primitive( - POSCAR_input=f"{TEST_FILES_DIR}/POSCAR.Fe3O4", POSCAR_output=outfile_path2 + POSCAR_input=f"{VASP_IN_DIR}/POSCAR_Fe3O4", POSCAR_output=outfile_path2 ) lobsterin1.write_KPOINTS( diff --git a/tests/io/test_ase.py b/tests/io/test_ase.py index 7d924e67c84..fafc760a9c9 100644 --- a/tests/io/test_ase.py +++ b/tests/io/test_ase.py @@ -7,14 +7,14 @@ from pymatgen.core import Composition, Lattice, Molecule, Structure from pymatgen.core.structure import StructureError from pymatgen.io.ase import AseAtomsAdaptor, MSONAtoms -from pymatgen.util.testing import TEST_FILES_DIR, VASP_OUT_DIR +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, VASP_OUT_DIR try: import ase except ImportError: ase = None -structure = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") +structure = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") skip_if_no_ase = pytest.mark.skipif(ase is None, reason="ase not installed") @@ -146,18 +146,18 @@ def test_get_atoms_from_molecule_dyn(): @skip_if_no_ase def test_get_structure(): - atoms = ase.io.read(f"{TEST_FILES_DIR}/POSCAR") + atoms = ase.io.read(f"{VASP_IN_DIR}/POSCAR") struct = AseAtomsAdaptor.get_structure(atoms) assert struct.formula == "Fe4 P4 O16" assert [s.species_string for s in struct] == atoms.get_chemical_symbols() - atoms = ase.io.read(f"{TEST_FILES_DIR}/POSCAR") + atoms = ase.io.read(f"{VASP_IN_DIR}/POSCAR") prop = np.array([3.14] * len(atoms)) atoms.set_array("prop", prop) struct = AseAtomsAdaptor.get_structure(atoms) assert struct.site_properties["prop"] == prop.tolist() - atoms = ase.io.read(f"{TEST_FILES_DIR}/POSCAR_overlap") + atoms = ase.io.read(f"{VASP_IN_DIR}/POSCAR_overlap") struct = AseAtomsAdaptor.get_structure(atoms) assert [s.species_string for s in struct] == atoms.get_chemical_symbols() with pytest.raises( @@ -169,7 +169,7 @@ def test_get_structure(): @skip_if_no_ase def test_get_structure_mag(): - atoms = ase.io.read(f"{TEST_FILES_DIR}/POSCAR") + atoms = ase.io.read(f"{VASP_IN_DIR}/POSCAR") mags = [1.0] * len(atoms) atoms.set_initial_magnetic_moments(mags) structure = AseAtomsAdaptor.get_structure(atoms) @@ -190,7 +190,7 @@ def test_get_structure_mag(): [[True, True, True], [False, False, False], np.array([True, True, True]), np.array([False, False, False])], ) def test_get_structure_dyn(select_dyn): - atoms = ase.io.read(f"{TEST_FILES_DIR}/POSCAR") + atoms = ase.io.read(f"{VASP_IN_DIR}/POSCAR") atoms.set_constraint(ase.constraints.FixAtoms(mask=[True] * len(atoms))) structure = AseAtomsAdaptor.get_structure(atoms) assert structure.site_properties["selective_dynamics"][-1][0] is False @@ -259,7 +259,7 @@ def test_back_forth(filename): @skip_if_no_ase def test_back_forth_v2(): # Structure --> Atoms --> Structure --> Atoms - structure = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + structure = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") structure.add_site_property("final_magmom", [1.0] * len(structure)) structure.add_site_property("magmom", [2.0] * len(structure)) structure.add_site_property("final_charge", [3.0] * len(structure)) @@ -316,7 +316,7 @@ def test_back_forth_v4(): @skip_if_no_ase def test_msonable_atoms(): - structure = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + structure = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") atoms = ase.io.read(f"{VASP_OUT_DIR}/OUTCAR.gz") atoms_info = {"test": "hi", "structure": structure} diff --git a/tests/io/test_cif.py b/tests/io/test_cif.py index b2ec3822e82..179337c267d 100644 --- a/tests/io/test_cif.py +++ b/tests/io/test_cif.py @@ -11,7 +11,7 @@ from pymatgen.electronic_structure.core import Magmom from pymatgen.io.cif import CifBlock, CifParser, CifWriter from pymatgen.symmetry.structure import SymmetrizedStructure -from pymatgen.util.testing import TEST_FILES_DIR, PymatgenTest +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, PymatgenTest try: import pybtex @@ -421,7 +421,7 @@ def test_parse_symbol(self): assert parser._parse_symbol(sym) == expected_symbol def test_cif_writer(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" struct = Structure.from_file(filepath) writer = CifWriter(struct, symprec=0.01) answer = """# generated using pymatgen @@ -466,7 +466,7 @@ def test_cif_writer(self): assert l1.strip() == l2.strip() def test_symmetrized(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" struct = Structure.from_file(filepath) writer = CifWriter(struct, symprec=0.1) @@ -712,7 +712,7 @@ def test_get_lattice_from_lattice_type(self): """ parser = CifParser.from_str(cif_structure) s_test = parser.parse_structures(primitive=False)[0] - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" struct = Structure.from_file(filepath) sm = StructureMatcher(stol=0.05, ltol=0.01, angle_tol=0.1) @@ -856,7 +856,7 @@ def test_no_check_occu(self): assert structs[0].species.as_dict()["Te"] == 1.5 def test_cif_writer_write_file(self): - struct1 = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + struct1 = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") out_path = f"{self.tmp_path}/test.cif" CifWriter(struct1).write_file(out_path) read_structs = CifParser(out_path).parse_structures() @@ -945,7 +945,7 @@ def test_skipping_relative_stoichiometry_check(self): def test_cif_writer_site_properties(self): # check CifWriter(write_site_properties=True) adds Structure site properties to # CIF with _atom_site_ prefix - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") struct.add_site_property(label := "hello", [1.0] * (len(struct) - 1) + [-1.0]) out_path = f"{self.tmp_path}/test2.cif" CifWriter(struct, write_site_properties=True).write_file(out_path) diff --git a/tests/io/test_cssr.py b/tests/io/test_cssr.py index 66ca301f998..afffbb3379f 100644 --- a/tests/io/test_cssr.py +++ b/tests/io/test_cssr.py @@ -6,7 +6,7 @@ from pymatgen.core.structure import Structure from pymatgen.io.cssr import Cssr -from pymatgen.util.testing import TEST_FILES_DIR +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2012, The Materials Project" @@ -18,7 +18,7 @@ class TestCssr(unittest.TestCase): def setUp(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" self.cssr = Cssr(Structure.from_file(filepath)) def test_str(self): diff --git a/tests/io/test_jarvis.py b/tests/io/test_jarvis.py index 58b368fb33a..9194793d1b0 100644 --- a/tests/io/test_jarvis.py +++ b/tests/io/test_jarvis.py @@ -4,13 +4,13 @@ from pymatgen.core import Structure from pymatgen.io.jarvis import Atoms, JarvisAtomsAdaptor -from pymatgen.util.testing import TEST_FILES_DIR +from pymatgen.util.testing import VASP_IN_DIR @unittest.skipIf(not Atoms, "JARVIS-tools not loaded.") class TestJarvisAtomsAdaptor(unittest.TestCase): def test_get_atoms_from_structure(self): - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") atoms = JarvisAtomsAdaptor.get_atoms(struct) jarvis_composition = atoms.composition.reduced_formula assert jarvis_composition == struct.reduced_formula @@ -18,7 +18,7 @@ def test_get_atoms_from_structure(self): assert atoms.lattice_mat.any() def test_get_structure(self): - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") atoms = JarvisAtomsAdaptor.get_atoms(struct) assert len(atoms.frac_coords) == len(struct) == 24 round_trip = JarvisAtomsAdaptor.get_structure(atoms) diff --git a/tests/io/test_xr.py b/tests/io/test_xr.py index 2e12e808c6a..95f24422a84 100644 --- a/tests/io/test_xr.py +++ b/tests/io/test_xr.py @@ -4,7 +4,7 @@ from pymatgen.core.structure import Structure from pymatgen.io.xr import Xr -from pymatgen.util.testing import TEST_FILES_DIR +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR __author__ = "Nils Edvin Richard Zimmermann" __copyright__ = "Copyright 2016, The Materials Project" @@ -16,7 +16,7 @@ class TestXr(unittest.TestCase): def setUp(self): - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") self.xr = Xr(struct) def test_str(self): diff --git a/tests/io/test_xyz.py b/tests/io/test_xyz.py index 4d9b7a677e8..9738cd08622 100644 --- a/tests/io/test_xyz.py +++ b/tests/io/test_xyz.py @@ -9,7 +9,7 @@ from pymatgen.core import Structure from pymatgen.core.structure import Molecule from pymatgen.io.xyz import XYZ -from pymatgen.util.testing import TEST_FILES_DIR +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR class TestXYZ(unittest.TestCase): @@ -134,7 +134,7 @@ def test_from_file(self): assert list(mxyz.molecule.cart_coords[-1]) == [5.5355550720000002, 0.0282305931, -0.30993102189999999] def test_init_from_structure(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" struct = Structure.from_file(filepath) xyz = XYZ(struct) expected = """24 diff --git a/tests/io/test_zeopp.py b/tests/io/test_zeopp.py index a701839bbbd..5edea1031a9 100644 --- a/tests/io/test_zeopp.py +++ b/tests/io/test_zeopp.py @@ -13,7 +13,7 @@ get_high_accuracy_voronoi_nodes, get_voronoi_nodes, ) -from pymatgen.util.testing import TEST_FILES_DIR +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR try: import zeo @@ -31,7 +31,7 @@ @unittest.skipIf(not zeo, "zeo not present.") class TestZeoCssr(unittest.TestCase): def setUp(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" self.zeo_cssr = ZeoCssr(Structure.from_file(filepath)) def test_str(self): @@ -74,7 +74,7 @@ def test_from_file(self): @unittest.skipIf(not zeo, "zeo not present.") class TestZeoCssrOxi(unittest.TestCase): def setUp(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" structure = BVAnalyzer().get_oxi_state_decorated_structure(Structure.from_file(filepath)) self.zeo_cssr = ZeoCssr(structure) @@ -149,7 +149,7 @@ def test_from_file(self): @unittest.skipIf(not zeo, "zeo not present.") class TestGetVoronoiNodes(unittest.TestCase): def setUp(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" self.structure = Structure.from_file(filepath) bv = BVAnalyzer() valences = bv.get_valences(self.structure) @@ -195,7 +195,7 @@ def test_get_free_sphere_params(self): @unittest.skipIf(not zeo, "zeo not present.") class TestGetHighAccuracyVoronoiNodes(unittest.TestCase): def setUp(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" self.structure = Structure.from_file(filepath) bv = BVAnalyzer() valences = bv.get_valences(self.structure) @@ -215,7 +215,7 @@ def test_get_voronoi_nodes(self): @unittest.skipIf(not zeo, "zeo not present.") class TestGetVoronoiNodesMultiOxi(unittest.TestCase): def setUp(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" self.structure = Structure.from_file(filepath) bv = BVAnalyzer() self.structure = bv.get_oxi_state_decorated_structure(self.structure) diff --git a/tests/io/vasp/test_inputs.py b/tests/io/vasp/test_inputs.py index 5e4b5ff26a9..c01f4959198 100644 --- a/tests/io/vasp/test_inputs.py +++ b/tests/io/vasp/test_inputs.py @@ -60,7 +60,7 @@ def _mock_complete_potcar_summary_stats(monkeypatch: MonkeyPatch) -> None: class TestPoscar(PymatgenTest): def test_init(self): - comp = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR").composition + comp = Structure.from_file(f"{VASP_IN_DIR}/POSCAR").composition assert comp == Composition("Fe4P4O16") # VASP 4 type with symbols at the end. @@ -113,7 +113,7 @@ def test_init(self): self.selective_poscar = poscar def test_from_file(self): - filepath = f"{TEST_FILES_DIR}/POSCAR.symbols_natoms_multilines" + filepath = f"{VASP_IN_DIR}/POSCAR_symbols_natoms_multilines" poscar = Poscar.from_file(filepath, check_for_potcar=False, read_velocities=False) ordered_expected_elements = [ "Fe", @@ -336,7 +336,7 @@ def test_write_md_poscar(self): assert_allclose(poscar.lattice_velocities, p3.lattice_velocities, 5) def test_setattr(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" poscar = Poscar.from_file(filepath, check_for_potcar=False) with pytest.raises(ValueError, match="velocities array must be same length as the structure"): poscar.velocities = [[0, 0, 0]] @@ -410,7 +410,7 @@ def test_velocities(self): assert temperature == approx(700, abs=1e-4), "Temperature instantiated incorrectly" def test_write(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" poscar = Poscar.from_file(filepath) tmp_file = f"{self.tmp_path}/POSCAR.testing" poscar.write_file(tmp_file) @@ -421,7 +421,7 @@ def test_selective_dynamics(self): # Previously, this test relied on the existence of a file named POTCAR # that was sorted to the top of a list of POTCARs for the test to work. # That's far too brittle - isolating requisite files here - copyfile(f"{TEST_FILES_DIR}/POSCAR.Fe3O4", tmp_poscar_path := f"{self.tmp_path}/POSCAR") + copyfile(f"{VASP_IN_DIR}/POSCAR_Fe3O4", tmp_poscar_path := f"{self.tmp_path}/POSCAR") copyfile(f"{TEST_FILES_DIR}/fake_potcars/POTCAR.gz", f"{self.tmp_path}/POTCAR.gz") poscar = Poscar.from_file(tmp_poscar_path) @@ -525,7 +525,7 @@ def test_vasp_6_4_2_format(self): # be a slash in the element names # Test that Poscar works for these too poscar_str = "" - with open(f"{TEST_FILES_DIR}/POSCAR.LiFePO4") as file: + with open(f"{VASP_IN_DIR}/POSCAR_LiFePO4") as file: for idx, line in enumerate(file): if idx == 5: line = " ".join(f"{x}/" for x in line.split()) + "\n" @@ -933,7 +933,7 @@ def test_static_constructors(self): kpoints = Kpoints.automatic(100) assert kpoints.style == Kpoints.supported_modes.Automatic assert kpoints.kpts == [[100]] - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" struct = Structure.from_file(filepath) kpoints = Kpoints.automatic_density(struct, 500) assert kpoints.kpts == [[1, 3, 3]] @@ -1022,7 +1022,7 @@ def test_automatic_kpoint(self): def test_automatic_density_by_lengths(self): # Load a structure from a POSCAR file - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" structure = Structure.from_file(filepath) # test different combos of length densities and expected kpoints @@ -1042,7 +1042,7 @@ def test_automatic_density_by_lengths(self): Kpoints.automatic_density_by_lengths(structure, [50, 50]) def test_automatic_monkhorst_vs_gamma_style_selection(self): - structs = {key: Structure.from_file(f"{TEST_FILES_DIR}/POSCAR_{key}") for key in ("bcc", "fcc", "hcp")} + structs = {key: Structure.from_file(f"{VASP_IN_DIR}/POSCAR_{key}") for key in ("bcc", "fcc", "hcp")} # bcc structures should allow both Monkhorst and Gamma for struct_type, struct in structs.items(): @@ -1338,7 +1338,7 @@ class TestVaspInput(PymatgenTest): def setUp(self): filepath = f"{TEST_FILES_DIR}/INCAR" incar = Incar.from_file(filepath) - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" poscar = Poscar.from_file(filepath, check_for_potcar=False) if "PMG_VASP_PSP_DIR" not in os.environ: os.environ["PMG_VASP_PSP_DIR"] = str(TEST_FILES_DIR) @@ -1389,7 +1389,7 @@ def test_from_directory(self): # Previously, this test relied on the existence of a file named POTCAR # that was sorted to the top of a list of POTCARs for the test to work. # That's far too brittle - isolating requisite files here - for file in ("INCAR", "KPOINTS", "POSCAR.Li2O"): + for file in ("INCAR", "KPOINTS", "POSCAR_Li2O"): copyfile(f"{VASP_IN_DIR}/{file}", f"{self.tmp_path}/{file.split('.')[0]}") Potcar(symbols=["Li_sv", "O"], functional="PBE").write_file(f"{self.tmp_path}/POTCAR") diff --git a/tests/io/vasp/test_outputs.py b/tests/io/vasp/test_outputs.py index fbc1fc447f1..6417866cfab 100644 --- a/tests/io/vasp/test_outputs.py +++ b/tests/io/vasp/test_outputs.py @@ -1856,7 +1856,7 @@ def test_fft_mesh_advanced(self): assert np.abs(mesh_ncl[p1]) / np.abs(mesh_ncl[p2]) == approx(np.abs(v1_ncl) / np.abs(v2_ncl), abs=1e-6) def test_get_parchg(self): - poscar = Poscar.from_file(f"{TEST_FILES_DIR}/POSCAR") + poscar = Poscar.from_file(f"{VASP_IN_DIR}/POSCAR") w = self.wavecar c = w.get_parchg(poscar, 0, 0, spin=0, phase=False) diff --git a/tests/io/vasp/test_sets.py b/tests/io/vasp/test_sets.py index f9ac163fc37..e711fb960d5 100644 --- a/tests/io/vasp/test_sets.py +++ b/tests/io/vasp/test_sets.py @@ -55,7 +55,7 @@ get_valid_magmom_struct, ) from pymatgen.symmetry.analyzer import SpacegroupAnalyzer -from pymatgen.util.testing import FAKE_POTCAR_DIR, TEST_FILES_DIR, VASP_OUT_DIR, PymatgenTest +from pymatgen.util.testing import FAKE_POTCAR_DIR, TEST_FILES_DIR, VASP_IN_DIR, VASP_OUT_DIR, PymatgenTest dec = MontyDecoder() @@ -132,7 +132,7 @@ def test_sets_changed(self): class TestDictSet(PymatgenTest): @classmethod def setUpClass(cls): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" cls.structure = Structure.from_file(filepath) def test_as_dict(self): @@ -173,7 +173,7 @@ def setUpClass(cls): cls.mp_set = MPRelaxSet cls.monkeypatch = MonkeyPatch() - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" cls.structure = Structure.from_file(filepath) cls.coords = [[0, 0, 0], [0.75, 0.5, 0.75]] cls.lattice = Lattice([[3.8401979337, 0, 0], [1.9200989668, 3.3257101909, 0], [0, -2.2171384943, 3.1355090603]]) @@ -796,7 +796,7 @@ def test_grid_size_from_struct(self): class TestMatPESStaticSet(PymatgenTest): def setUp(self): - self.struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + self.struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") self.prev_incar = Incar.from_file(f"{TEST_FILES_DIR}/INCAR") def test_default(self): @@ -1114,7 +1114,7 @@ def test_ln_magmom(self): class TestMITMDSet(PymatgenTest): def setUp(self): self.set = MITMDSet - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" self.struct = Structure.from_file(filepath) self.mit_md_param = self.set(structure=self.struct, start_temp=300, end_temp=1200, nsteps=10000) @@ -1155,7 +1155,7 @@ def test_user_heat_speed(self): @skip_if_no_psp_dir class TestMVLNPTMDSet(PymatgenTest): def setUp(self): - file_path = f"{TEST_FILES_DIR}/POSCAR" + file_path = f"{VASP_IN_DIR}/POSCAR" self.struct = Structure.from_file(file_path) self.mvl_npt_set = MVLNPTMDSet(self.struct, start_temp=0, end_temp=300, nsteps=1000) @@ -1191,9 +1191,9 @@ def test_as_from_dict(self): class TestMPMDSet(PymatgenTest): def setUp(self): - filepath = f"{TEST_FILES_DIR}/POSCAR" + filepath = f"{VASP_IN_DIR}/POSCAR" self.struct = Structure.from_file(filepath) - self.struct_with_H = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR_hcp") + self.struct_with_H = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_hcp") self.mp_md_set_noTS = MPMDSet(self.struct, start_temp=0, end_temp=300, nsteps=1000) self.mp_md_set_noTS_with_H = MPMDSet(self.struct_with_H, start_temp=0, end_temp=300, nsteps=1000) self.mp_md_set_TS1 = MPMDSet(self.struct, start_temp=0, end_temp=300, nsteps=1000, time_step=1.0) @@ -1552,7 +1552,7 @@ def test_override_from_prev_calc(self): class TestMVLScanRelaxSet(PymatgenTest): def setUp(self): self.set = MVLScanRelaxSet - file_path = f"{TEST_FILES_DIR}/POSCAR" + file_path = f"{VASP_IN_DIR}/POSCAR" self.struct = Structure.from_file(file_path) self.mvl_scan_set = self.set(self.struct, user_potcar_functional="PBE_54", user_incar_settings={"NSW": 500}) @@ -1617,7 +1617,7 @@ def test_as_from_dict(self): class TestMPScanRelaxSet(PymatgenTest): def setUp(self): - file_path = f"{TEST_FILES_DIR}/POSCAR" + file_path = f"{VASP_IN_DIR}/POSCAR" self.struct = Structure.from_file(file_path) self.mp_scan_set = MPScanRelaxSet( self.struct, user_potcar_functional="PBE_52", user_incar_settings={"NSW": 500} @@ -1664,7 +1664,7 @@ def test_bandgap_tol(self): def test_kspacing(self): # Test that KSPACING is capped at 0.44 for insulators - file_path = f"{TEST_FILES_DIR}/POSCAR.O2" + file_path = f"{VASP_IN_DIR}/POSCAR_O2" struct = Structure.from_file(file_path) for bandgap, expected in ((10, 0.44), (3, 0.4136617), (1.1, 0.3064757), (0.5, 0.2832948), (0, 0.22)): incar = MPScanRelaxSet(struct, bandgap=bandgap).incar @@ -1858,7 +1858,7 @@ def test_kpoints(self): class TestMVLRelax52Set(PymatgenTest): def setUp(self): self.set = MVLRelax52Set - file_path = f"{TEST_FILES_DIR}/POSCAR" + file_path = f"{VASP_IN_DIR}/POSCAR" self.struct = Structure.from_file(file_path) self.mvl_rlx_set = self.set(self.struct, user_potcar_functional="PBE_54", user_incar_settings={"NSW": 500}) @@ -1891,7 +1891,7 @@ def test_as_from_dict(self): class TestLobsterSet(PymatgenTest): def setUp(self): self.set = LobsterSet - file_path = f"{TEST_FILES_DIR}/POSCAR" + file_path = f"{VASP_IN_DIR}/POSCAR" self.struct = Structure.from_file(file_path) # test for different parameters! self.lobsterset1 = self.set(self.struct, isym=-1, ismear=-5) diff --git a/tests/symmetry/test_analyzer.py b/tests/symmetry/test_analyzer.py index ec80de35075..3f6e90cadb7 100644 --- a/tests/symmetry/test_analyzer.py +++ b/tests/symmetry/test_analyzer.py @@ -11,14 +11,14 @@ from pymatgen.io.vasp.outputs import Vasprun from pymatgen.symmetry.analyzer import PointGroupAnalyzer, SpacegroupAnalyzer, cluster_sites, iterative_symmetrize from pymatgen.symmetry.structure import SymmetrizedStructure -from pymatgen.util.testing import TEST_FILES_DIR, VASP_OUT_DIR, PymatgenTest +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, VASP_OUT_DIR, PymatgenTest TEST_DIR = f"{TEST_FILES_DIR}/molecules" class TestSpacegroupAnalyzer(PymatgenTest): def setUp(self): - self.structure = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + self.structure = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") self.sg = SpacegroupAnalyzer(self.structure, 0.001) self.disordered_structure = self.get_structure("Li10GeP2S12") self.disordered_sg = SpacegroupAnalyzer(self.disordered_structure, 0.001) @@ -358,7 +358,7 @@ def test_get_primitive_standard_structure(self): def test_tricky_structure(self): # for some reason this structure kills spglib1.9 # 1.7 can't find symmetry either, but at least doesn't kill python - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.tricky_symmetry") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_tricky_symmetry") sa = SpacegroupAnalyzer(struct, 0.1) assert sa.get_space_group_symbol() == "I4/mmm" assert sa.get_space_group_number() == 139 @@ -369,7 +369,7 @@ def test_tricky_structure(self): class TestSpacegroup(unittest.TestCase): def setUp(self): - self.structure = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR") + self.structure = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") self.sg1 = SpacegroupAnalyzer(self.structure, 0.001).get_space_group_operations() def test_are_symmetrically_equivalent(self): diff --git a/tests/transformations/test_advanced_transformations.py b/tests/transformations/test_advanced_transformations.py index b20cf223a71..cd716a12454 100644 --- a/tests/transformations/test_advanced_transformations.py +++ b/tests/transformations/test_advanced_transformations.py @@ -41,7 +41,7 @@ OxidationStateDecorationTransformation, SubstitutionTransformation, ) -from pymatgen.util.testing import TEST_FILES_DIR, PymatgenTest +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, PymatgenTest try: import hiphive @@ -162,7 +162,7 @@ class TestEnumerateStructureTransformation(unittest.TestCase): def test_apply_transformation(self): enum_trans = EnumerateStructureTransformation(refine_structure=True) enum_trans2 = EnumerateStructureTransformation(refine_structure=True, sort_criteria="nsites") - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") expected = [1, 3, 1] for idx, frac in enumerate([0.25, 0.5, 0.75]): trans = SubstitutionTransformation({"Fe": {"Fe": frac}}) @@ -192,7 +192,7 @@ def test_apply_transformation(self): def test_m3gnet(self): pytest.importorskip("matgl") enum_trans = EnumerateStructureTransformation(refine_structure=True, sort_criteria="m3gnet_relax") - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") trans = SubstitutionTransformation({"Fe": {"Fe": 0.5, "Mn": 0.5}}) s = trans.apply_transformation(struct) alls = enum_trans.apply_transformation(s, 100) @@ -218,7 +218,7 @@ def sort_criteria(s): return relax_results["final_structure"], energy enum_trans = EnumerateStructureTransformation(refine_structure=True, sort_criteria=sort_criteria) - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") trans = SubstitutionTransformation({"Fe": {"Fe": 0.5, "Mn": 0.5}}) s = trans.apply_transformation(struct) alls = enum_trans.apply_transformation(s, 100) @@ -299,7 +299,7 @@ def setUp(self): def test_apply_transformation(self): trans = MagOrderingTransformation({"Fe": 5}) - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") alls = trans.apply_transformation(struct, 10) assert len(alls) == 3 spg_analyzer = SpacegroupAnalyzer(alls[0]["structure"], 0.1) @@ -329,7 +329,7 @@ def test_apply_transformation(self): def test_ferrimagnetic(self): trans = MagOrderingTransformation({"Fe": 5}, order_parameter=0.75, max_cell_size=1) - struct = Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") spg_analyzer = SpacegroupAnalyzer(struct, 0.1) struct = spg_analyzer.get_refined_structure() alls = trans.apply_transformation(struct, 10) diff --git a/tests/transformations/test_standard_transformations.py b/tests/transformations/test_standard_transformations.py index 750a40c7228..daee458455a 100644 --- a/tests/transformations/test_standard_transformations.py +++ b/tests/transformations/test_standard_transformations.py @@ -38,7 +38,7 @@ SubstitutionTransformation, SupercellTransformation, ) -from pymatgen.util.testing import TEST_FILES_DIR +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR enumlib_present = which("enum.x") and which("makestr.x") @@ -189,7 +189,7 @@ def test_apply_transformation(self): class TestAutoOxiStateDecorationTransformation(unittest.TestCase): def test_apply_transformation(self): trafo = AutoOxiStateDecorationTransformation() - struct = trafo.apply_transformation(Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.LiFePO4")) + struct = trafo.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4")) expected_oxi = {"Li": 1, "P": 5, "O": -2, "Fe": 2} for site in struct: assert site.specie.oxi_state == expected_oxi[site.specie.symbol] @@ -248,13 +248,13 @@ def test_apply_transformation_fast(self): def test_apply_transformations_complete_ranking(self): t1 = OxidationStateDecorationTransformation({"Li": 1, "Fe": 2, "P": 5, "O": -2}) - struct = t1.apply_transformation(Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.LiFePO4")) + struct = t1.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4")) trafo = PartialRemoveSpecieTransformation("Li+", 0.5, PartialRemoveSpecieTransformation.ALGO_COMPLETE) assert len(trafo.apply_transformation(struct, 10)) == 6 def test_apply_transformations_best_first(self): t1 = OxidationStateDecorationTransformation({"Li": 1, "Fe": 2, "P": 5, "O": -2}) - struct = t1.apply_transformation(Structure.from_file(f"{TEST_FILES_DIR}/POSCAR.LiFePO4")) + struct = t1.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4")) trafo = PartialRemoveSpecieTransformation("Li+", 0.5, PartialRemoveSpecieTransformation.ALGO_BEST_FIRST) assert len(trafo.apply_transformation(struct)) == 26 From 090f8473c5bbe4b2ce6f1b05ede99a05273daeab Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Thu, 7 Mar 2024 20:33:08 +0800 Subject: [PATCH 06/21] relocate POTCARs --- tests/command_line/test_bader_caller.py | 6 +++--- .../inputs/POTCAR2_LiFePO4.gz} | Bin .../{POTCAR.C2.gz => vasp/inputs/POTCAR_C2.gz} | Bin .../{POTCAR.Fe3O4 => vasp/inputs/POTCAR_Fe3O4} | 0 .../inputs/POTCAR_LiFePO4.gz} | Bin .../{POTCAR.spec => vasp/inputs/POTCAR_spec} | 0 .../inputs/POTCAR_split_charged.gz} | Bin .../wrong_potcars/POT_GGA_PAW_PBE/POTCAR.Fe.gz | Bin .../wrong_potcars/POT_GGA_PAW_PBE/POTCAR.P.gz | Bin tests/io/lobster/test_inputs.py | 14 +++++++------- tests/io/vasp/test_outputs.py | 6 +++--- tests/io/vasp/test_sets.py | 2 +- 12 files changed, 14 insertions(+), 14 deletions(-) rename tests/files/{POTCAR2.LiFePO4.gz => vasp/inputs/POTCAR2_LiFePO4.gz} (100%) rename tests/files/{POTCAR.C2.gz => vasp/inputs/POTCAR_C2.gz} (100%) rename tests/files/{POTCAR.Fe3O4 => vasp/inputs/POTCAR_Fe3O4} (100%) rename tests/files/{POTCAR.LiFePO4.gz => vasp/inputs/POTCAR_LiFePO4.gz} (100%) rename tests/files/{POTCAR.spec => vasp/inputs/POTCAR_spec} (100%) rename tests/files/{POTCAR.split.charged.gz => vasp/inputs/POTCAR_split_charged.gz} (100%) rename tests/files/{ => vasp/inputs}/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.Fe.gz (100%) rename tests/files/{ => vasp/inputs}/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.P.gz (100%) diff --git a/tests/command_line/test_bader_caller.py b/tests/command_line/test_bader_caller.py index b40a48c1092..9402d0751b4 100644 --- a/tests/command_line/test_bader_caller.py +++ b/tests/command_line/test_bader_caller.py @@ -12,7 +12,7 @@ from pytest import approx from pymatgen.command_line.bader_caller import BaderAnalysis, bader_analysis_from_path -from pymatgen.util.testing import TEST_FILES_DIR, VASP_OUT_DIR, PymatgenTest +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR, VASP_OUT_DIR, PymatgenTest @unittest.skipIf(not which("bader"), "bader executable not present") @@ -24,7 +24,7 @@ def test_init(self): # test with reference file analysis = BaderAnalysis( chgcar_filename=f"{VASP_OUT_DIR}/CHGCAR.Fe3O4.gz", - potcar_filename=f"{TEST_FILES_DIR}/POTCAR.Fe3O4", + potcar_filename=f"{VASP_IN_DIR}/POTCAR_Fe3O4", chgref_filename=f"{VASP_OUT_DIR}/CHGCAR.Fe3O4_ref.gz", ) assert len(analysis.data) == 14 @@ -119,7 +119,7 @@ def test_atom_parsing(self): # test with reference file analysis = BaderAnalysis( chgcar_filename=f"{VASP_OUT_DIR}/CHGCAR.Fe3O4.gz", - potcar_filename=f"{TEST_FILES_DIR}/POTCAR.Fe3O4", + potcar_filename=f"{VASP_IN_DIR}/POTCAR_Fe3O4", chgref_filename=f"{VASP_OUT_DIR}/CHGCAR.Fe3O4_ref.gz", parse_atomic_densities=True, ) diff --git a/tests/files/POTCAR2.LiFePO4.gz b/tests/files/vasp/inputs/POTCAR2_LiFePO4.gz similarity index 100% rename from tests/files/POTCAR2.LiFePO4.gz rename to tests/files/vasp/inputs/POTCAR2_LiFePO4.gz diff --git a/tests/files/POTCAR.C2.gz b/tests/files/vasp/inputs/POTCAR_C2.gz similarity index 100% rename from tests/files/POTCAR.C2.gz rename to tests/files/vasp/inputs/POTCAR_C2.gz diff --git a/tests/files/POTCAR.Fe3O4 b/tests/files/vasp/inputs/POTCAR_Fe3O4 similarity index 100% rename from tests/files/POTCAR.Fe3O4 rename to tests/files/vasp/inputs/POTCAR_Fe3O4 diff --git a/tests/files/POTCAR.LiFePO4.gz b/tests/files/vasp/inputs/POTCAR_LiFePO4.gz similarity index 100% rename from tests/files/POTCAR.LiFePO4.gz rename to tests/files/vasp/inputs/POTCAR_LiFePO4.gz diff --git a/tests/files/POTCAR.spec b/tests/files/vasp/inputs/POTCAR_spec similarity index 100% rename from tests/files/POTCAR.spec rename to tests/files/vasp/inputs/POTCAR_spec diff --git a/tests/files/POTCAR.split.charged.gz b/tests/files/vasp/inputs/POTCAR_split_charged.gz similarity index 100% rename from tests/files/POTCAR.split.charged.gz rename to tests/files/vasp/inputs/POTCAR_split_charged.gz diff --git a/tests/files/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.Fe.gz b/tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.Fe.gz similarity index 100% rename from tests/files/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.Fe.gz rename to tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.Fe.gz diff --git a/tests/files/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.P.gz b/tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.P.gz similarity index 100% rename from tests/files/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.P.gz rename to tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.P.gz diff --git a/tests/io/lobster/test_inputs.py b/tests/io/lobster/test_inputs.py index ac32e236f29..d5281a8e21c 100644 --- a/tests/io/lobster/test_inputs.py +++ b/tests/io/lobster/test_inputs.py @@ -1550,7 +1550,7 @@ def test_standard_settings(self): lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{TEST_FILES_DIR}/INCAR.lobster", - f"{TEST_FILES_DIR}/POTCAR.Fe3O4", + f"{VASP_IN_DIR}/POTCAR_Fe3O4", option=option, ) assert lobsterin1["cohpstartenergy"] == approx(-35.0) @@ -1655,7 +1655,7 @@ def test_standard_with_energy_range_from_vasprun(self): lobsterin_comp = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_C2", f"{TEST_FILES_DIR}/INCAR.C2.gz", - f"{TEST_FILES_DIR}/POTCAR.C2.gz", + f"{VASP_IN_DIR}/POTCAR_C2.gz", f"{VASP_OUT_DIR}/vasprun.C2.xml.gz", option="standard_with_energy_range_from_vasprun", ) @@ -1712,7 +1712,7 @@ def test_read_write_lobsterin(self): def test_get_basis(self): # get basis functions lobsterin1 = Lobsterin({}) - potcar = Potcar.from_file(f"{TEST_FILES_DIR}/POTCAR.Fe3O4") + potcar = Potcar.from_file(f"{VASP_IN_DIR}/POTCAR_Fe3O4") potcar_names = [name["symbol"] for name in potcar.spec] assert lobsterin1.get_basis( @@ -1727,7 +1727,7 @@ def test_get_basis(self): ) == ["Ga 3d 4p 4s ", "As 4p 4s "] def test_get_all_possible_basis_functions(self): - potcar = Potcar.from_file(f"{TEST_FILES_DIR}/POTCAR.Fe3O4") + potcar = Potcar.from_file(f"{VASP_IN_DIR}/POTCAR_Fe3O4") potcar_names = [name["symbol"] for name in potcar.spec] result = Lobsterin.get_all_possible_basis_functions( Structure.from_file(f"{TEST_FILES_DIR}/Fe3O4.cif"), @@ -1746,7 +1746,7 @@ def test_get_all_possible_basis_functions(self): def test_get_potcar_symbols(self): lobsterin1 = Lobsterin({}) - assert lobsterin1._get_potcar_symbols(f"{TEST_FILES_DIR}/POTCAR.Fe3O4") == ["Fe", "O"] + assert lobsterin1._get_potcar_symbols(f"{VASP_IN_DIR}/POTCAR_Fe3O4") == ["Fe", "O"] assert lobsterin1._get_potcar_symbols(f"{TEST_FILES_DIR}/cohp/POTCAR.GaAs") == ["Ga_d", "As"] def test_write_lobsterin(self): @@ -1755,7 +1755,7 @@ def test_write_lobsterin(self): lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{TEST_FILES_DIR}/INCAR.lobster", - f"{TEST_FILES_DIR}/POTCAR.Fe3O4", + f"{VASP_IN_DIR}/POTCAR_Fe3O4", option="standard", ) lobsterin1.write_lobsterin(outfile_path) @@ -1768,7 +1768,7 @@ def test_write_incar(self): lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{TEST_FILES_DIR}/INCAR.lobster", - f"{TEST_FILES_DIR}/POTCAR.Fe3O4", + f"{VASP_IN_DIR}/POTCAR_Fe3O4", option="standard", ) lobsterin1.write_INCAR( diff --git a/tests/io/vasp/test_outputs.py b/tests/io/vasp/test_outputs.py index 6417866cfab..42000f9ed4c 100644 --- a/tests/io/vasp/test_outputs.py +++ b/tests/io/vasp/test_outputs.py @@ -604,8 +604,8 @@ def test_float_overflow(self): def test_update_potcar(self): filepath = f"{VASP_OUT_DIR}/vasprun.xml.gz" - potcar_path = f"{TEST_FILES_DIR}/POTCAR.LiFePO4.gz" - potcar_path2 = f"{TEST_FILES_DIR}/POTCAR2.LiFePO4.gz" + potcar_path = f"{VASP_IN_DIR}/POTCAR_LiFePO4.gz" + potcar_path2 = f"{VASP_IN_DIR}/POTCAR2.LiFePO4.gz" vasp_run = Vasprun(filepath, parse_potcar_file=False) potcars = Potcar.from_file(potcar_path) @@ -682,7 +682,7 @@ def test_charged_structure(self): assert vasp_run.final_structure.charge == -1 vpath = f"{VASP_OUT_DIR}/vasprun.split.charged.xml.gz" - potcar_path = f"{TEST_FILES_DIR}/POTCAR.split.charged.gz" + potcar_path = f"{VASP_IN_DIR}/POTCAR.split.charged.gz" vasp_run = Vasprun(vpath, parse_potcar_file=False) vasp_run.update_charge_from_potcar(potcar_path) assert vasp_run.parameters.get("NELECT", 0) == 7 diff --git a/tests/io/vasp/test_sets.py b/tests/io/vasp/test_sets.py index e711fb960d5..edd579ca5e1 100644 --- a/tests/io/vasp/test_sets.py +++ b/tests/io/vasp/test_sets.py @@ -256,7 +256,7 @@ def test_potcar_validation(self): # Use pytest's monkeypatch to temporarily point pymatgen to a directory # containing the wrong POTCARs (LDA potcars in a PBE directory) with self.monkeypatch.context() as m: - m.setitem(SETTINGS, "PMG_VASP_PSP_DIR", str(f"{TEST_FILES_DIR}/wrong_potcars")) + m.setitem(SETTINGS, "PMG_VASP_PSP_DIR", str(f"{VASP_IN_DIR}/wrong_potcars")) with pytest.warns(BadInputSetWarning, match="not known by pymatgen"): _ = self.set(structure).potcar From 2ebe5927e1e4ebd6752b34e8f17076f9c8986066 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Thu, 7 Mar 2024 20:50:38 +0800 Subject: [PATCH 07/21] relocate INCARs --- tests/files/INCAR.C2.gz | Bin 196 -> 0 bytes tests/files/{ => vasp/inputs}/INCAR | 0 tests/files/{ => vasp/inputs}/INCAR.lobster | 0 tests/files/{ => vasp/inputs}/INCAR.lobster2 | 0 tests/files/{ => vasp/inputs}/INCAR.lobster3 | 0 tests/files/{INCAR.2 => vasp/inputs/INCAR_2} | 0 tests/files/{INCAR.3 => vasp/inputs/INCAR_3} | 0 tests/files/vasp/inputs/INCAR_C2 | 20 ++++++++++++++++++ ...POTCAR2_LiFePO4.gz => POTCAR_2_LiFePO4.gz} | Bin tests/io/lobster/test_inputs.py | 18 ++++++++-------- tests/io/vasp/test_inputs.py | 11 +++++----- tests/io/vasp/test_outputs.py | 4 ++-- tests/io/vasp/test_sets.py | 4 ++-- tests/test_cli.py | 4 ++-- 14 files changed, 41 insertions(+), 20 deletions(-) delete mode 100644 tests/files/INCAR.C2.gz rename tests/files/{ => vasp/inputs}/INCAR (100%) rename tests/files/{ => vasp/inputs}/INCAR.lobster (100%) rename tests/files/{ => vasp/inputs}/INCAR.lobster2 (100%) rename tests/files/{ => vasp/inputs}/INCAR.lobster3 (100%) rename tests/files/{INCAR.2 => vasp/inputs/INCAR_2} (100%) rename tests/files/{INCAR.3 => vasp/inputs/INCAR_3} (100%) create mode 100644 tests/files/vasp/inputs/INCAR_C2 rename tests/files/vasp/inputs/{POTCAR2_LiFePO4.gz => POTCAR_2_LiFePO4.gz} (100%) diff --git a/tests/files/INCAR.C2.gz b/tests/files/INCAR.C2.gz deleted file mode 100644 index 5c53218ec9da44b66afffa102de759a1b8defd62..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 196 zcmV;#06YI5iwFqa91dat14&LpK~exUjmrvyFc3xe^A)ZON|Ivfri)Qy4CEn+t#m2k zu0;_2|4xMN&V9^WG|Fd>%&psZ`haY7+mhr<&Tb%G{TxV@f`P7r_Krl(LDwAyMND?o zsedJ~5<|*M;$Ek!AbQ)gXE631(Xbs07#}K~9&-*RNHm0a>?@cNU-I9wsH{)d;=&3B yu0q#Dl6P>@B%d>K`*V~FaB)1B`XKA{Z=R2B+82mgSxia6O85cEPGsor0000lCtF7V diff --git a/tests/files/INCAR b/tests/files/vasp/inputs/INCAR similarity index 100% rename from tests/files/INCAR rename to tests/files/vasp/inputs/INCAR diff --git a/tests/files/INCAR.lobster b/tests/files/vasp/inputs/INCAR.lobster similarity index 100% rename from tests/files/INCAR.lobster rename to tests/files/vasp/inputs/INCAR.lobster diff --git a/tests/files/INCAR.lobster2 b/tests/files/vasp/inputs/INCAR.lobster2 similarity index 100% rename from tests/files/INCAR.lobster2 rename to tests/files/vasp/inputs/INCAR.lobster2 diff --git a/tests/files/INCAR.lobster3 b/tests/files/vasp/inputs/INCAR.lobster3 similarity index 100% rename from tests/files/INCAR.lobster3 rename to tests/files/vasp/inputs/INCAR.lobster3 diff --git a/tests/files/INCAR.2 b/tests/files/vasp/inputs/INCAR_2 similarity index 100% rename from tests/files/INCAR.2 rename to tests/files/vasp/inputs/INCAR_2 diff --git a/tests/files/INCAR.3 b/tests/files/vasp/inputs/INCAR_3 similarity index 100% rename from tests/files/INCAR.3 rename to tests/files/vasp/inputs/INCAR_3 diff --git a/tests/files/vasp/inputs/INCAR_C2 b/tests/files/vasp/inputs/INCAR_C2 new file mode 100644 index 00000000000..f1d7b2d5837 --- /dev/null +++ b/tests/files/vasp/inputs/INCAR_C2 @@ -0,0 +1,20 @@ +ALGO = Normal +EDIFF = 1e-06 +ENCUT = 520 +IBRION = -1 +ICHARG = 0 +ISIF = 3 +ISMEAR = -5 +ISPIN = 2 +ISYM = 0 +LASPH = True +LORBIT = 11 +LREAL = Auto +LWAVE = True +MAGMOM = 2*0.0 +NBANDS = 8 +NELM = 100 +NPAR = 12 +NSW = 0 +PREC = Accurate +SIGMA = 0.05 diff --git a/tests/files/vasp/inputs/POTCAR2_LiFePO4.gz b/tests/files/vasp/inputs/POTCAR_2_LiFePO4.gz similarity index 100% rename from tests/files/vasp/inputs/POTCAR2_LiFePO4.gz rename to tests/files/vasp/inputs/POTCAR_2_LiFePO4.gz diff --git a/tests/io/lobster/test_inputs.py b/tests/io/lobster/test_inputs.py index d5281a8e21c..a3cc5f67a9d 100644 --- a/tests/io/lobster/test_inputs.py +++ b/tests/io/lobster/test_inputs.py @@ -1549,7 +1549,7 @@ def test_standard_settings(self): ]: lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", - f"{TEST_FILES_DIR}/INCAR.lobster", + f"{VASP_IN_DIR}/INCAR.lobster", f"{VASP_IN_DIR}/POTCAR_Fe3O4", option=option, ) @@ -1626,7 +1626,7 @@ def test_standard_settings(self): # test basis functions by dict lobsterin_new = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", - f"{TEST_FILES_DIR}/INCAR.lobster", + f"{VASP_IN_DIR}/INCAR.lobster", dict_for_basis={"Fe": "3d 4p 4s", "O": "2s 2p"}, option="standard", ) @@ -1635,7 +1635,7 @@ def test_standard_settings(self): # test gaussian smearing lobsterin_new = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", - f"{TEST_FILES_DIR}/INCAR.lobster2", + f"{VASP_IN_DIR}/INCAR.lobster2", dict_for_basis={"Fe": "3d 4p 4s", "O": "2s 2p"}, option="standard", ) @@ -1645,7 +1645,7 @@ def test_standard_settings(self): with pytest.raises(ValueError, match="ISMEAR has to be 0 for a fatband calculation with Lobster"): lobsterin_new = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", - f"{TEST_FILES_DIR}/INCAR.lobster2", + f"{VASP_IN_DIR}/INCAR.lobster2", dict_for_basis={"Fe": "3d 4p 4s", "O": "2s 2p"}, option="standard_with_fatband", ) @@ -1654,7 +1654,7 @@ def test_standard_with_energy_range_from_vasprun(self): # test standard_with_energy_range_from_vasprun lobsterin_comp = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_C2", - f"{TEST_FILES_DIR}/INCAR.C2.gz", + f"{VASP_IN_DIR}/INCAR_C2", f"{VASP_IN_DIR}/POTCAR_C2.gz", f"{VASP_OUT_DIR}/vasprun.C2.xml.gz", option="standard_with_energy_range_from_vasprun", @@ -1754,7 +1754,7 @@ def test_write_lobsterin(self): outfile_path = tempfile.mkstemp()[1] lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", - f"{TEST_FILES_DIR}/INCAR.lobster", + f"{VASP_IN_DIR}/INCAR.lobster", f"{VASP_IN_DIR}/POTCAR_Fe3O4", option="standard", ) @@ -1767,17 +1767,17 @@ def test_write_incar(self): outfile_path = tempfile.mkstemp()[1] lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", - f"{TEST_FILES_DIR}/INCAR.lobster", + f"{VASP_IN_DIR}/INCAR.lobster", f"{VASP_IN_DIR}/POTCAR_Fe3O4", option="standard", ) lobsterin1.write_INCAR( - f"{TEST_FILES_DIR}/INCAR.lobster3", + f"{VASP_IN_DIR}/INCAR.lobster3", outfile_path, f"{VASP_IN_DIR}/POSCAR_Fe3O4", ) - incar1 = Incar.from_file(f"{TEST_FILES_DIR}/INCAR.lobster3") + incar1 = Incar.from_file(f"{VASP_IN_DIR}/INCAR.lobster3") incar2 = Incar.from_file(outfile_path) assert incar1.diff(incar2)["Different"] == { diff --git a/tests/io/vasp/test_inputs.py b/tests/io/vasp/test_inputs.py index c01f4959198..3bc914b556b 100644 --- a/tests/io/vasp/test_inputs.py +++ b/tests/io/vasp/test_inputs.py @@ -536,7 +536,7 @@ def test_vasp_6_4_2_format(self): class TestIncar(PymatgenTest): def setUp(self): - self.incar = Incar.from_file(f"{TEST_FILES_DIR}/INCAR") + self.incar = Incar.from_file(f"{VASP_IN_DIR}/INCAR") def test_init(self): incar = self.incar @@ -555,11 +555,12 @@ def test_copy(self): assert self.incar.get("LDAU") is None def test_diff(self): - filepath1 = f"{TEST_FILES_DIR}/INCAR" + filepath1 = f"{VASP_IN_DIR}/INCAR" incar1 = Incar.from_file(filepath1) - filepath2 = f"{TEST_FILES_DIR}/INCAR.2" + filepath2 = f"{VASP_IN_DIR}/INCAR_2" + filepath3 = f"{VASP_IN_DIR}/INCAR_3" incar2 = Incar.from_file(filepath2) - incar3 = Incar.from_file(filepath2) + incar3 = Incar.from_file(filepath3) assert incar1.diff(incar2) == { "Different": { "NELM": {"INCAR1": None, "INCAR2": 100}, @@ -1336,7 +1337,7 @@ def test_pickle(self): class TestVaspInput(PymatgenTest): def setUp(self): - filepath = f"{TEST_FILES_DIR}/INCAR" + filepath = f"{VASP_IN_DIR}/INCAR" incar = Incar.from_file(filepath) filepath = f"{VASP_IN_DIR}/POSCAR" poscar = Poscar.from_file(filepath, check_for_potcar=False) diff --git a/tests/io/vasp/test_outputs.py b/tests/io/vasp/test_outputs.py index 42000f9ed4c..54611f03fbe 100644 --- a/tests/io/vasp/test_outputs.py +++ b/tests/io/vasp/test_outputs.py @@ -605,7 +605,7 @@ def test_float_overflow(self): def test_update_potcar(self): filepath = f"{VASP_OUT_DIR}/vasprun.xml.gz" potcar_path = f"{VASP_IN_DIR}/POTCAR_LiFePO4.gz" - potcar_path2 = f"{VASP_IN_DIR}/POTCAR2.LiFePO4.gz" + potcar_path2 = f"{VASP_IN_DIR}/POTCAR_2_LiFePO4.gz" vasp_run = Vasprun(filepath, parse_potcar_file=False) potcars = Potcar.from_file(potcar_path) @@ -682,7 +682,7 @@ def test_charged_structure(self): assert vasp_run.final_structure.charge == -1 vpath = f"{VASP_OUT_DIR}/vasprun.split.charged.xml.gz" - potcar_path = f"{VASP_IN_DIR}/POTCAR.split.charged.gz" + potcar_path = f"{VASP_IN_DIR}/POTCAR_split_charged.gz" vasp_run = Vasprun(vpath, parse_potcar_file=False) vasp_run.update_charge_from_potcar(potcar_path) assert vasp_run.parameters.get("NELECT", 0) == 7 diff --git a/tests/io/vasp/test_sets.py b/tests/io/vasp/test_sets.py index edd579ca5e1..bf26f89bc50 100644 --- a/tests/io/vasp/test_sets.py +++ b/tests/io/vasp/test_sets.py @@ -368,7 +368,7 @@ def test_get_incar(self): # because the structure has no site properties, the default MAGMOM is assigned from the # config dictionary. struct = Structure(lattice, ["Fe", "F"], coords) - incar = MPStaticSet(struct, prev_incar=f"{TEST_FILES_DIR}/INCAR").incar + incar = MPStaticSet(struct, prev_incar=f"{VASP_IN_DIR}/INCAR").incar assert incar["MAGMOM"] == [5, 0.6] # Make sure this works with species. @@ -797,7 +797,7 @@ def test_grid_size_from_struct(self): class TestMatPESStaticSet(PymatgenTest): def setUp(self): self.struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR") - self.prev_incar = Incar.from_file(f"{TEST_FILES_DIR}/INCAR") + self.prev_incar = Incar.from_file(f"{VASP_IN_DIR}/INCAR") def test_default(self): input_set = MatPESStaticSet(self.struct) diff --git a/tests/test_cli.py b/tests/test_cli.py index 4c34c489db3..c89bfb7d259 100644 --- a/tests/test_cli.py +++ b/tests/test_cli.py @@ -5,7 +5,7 @@ import pytest -from pymatgen.util.testing import TEST_FILES_DIR +from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR if TYPE_CHECKING: from pathlib import Path @@ -43,5 +43,5 @@ def test_pmg_structure(cd_tmp_path: Path): def test_pmg_diff(cd_tmp_path: Path): - exit_status = os.system(f"pmg diff --incar {TEST_FILES_DIR}/INCAR {TEST_FILES_DIR}/INCAR.2") + exit_status = os.system(f"pmg diff --incar {VASP_IN_DIR}/INCAR {VASP_IN_DIR}/INCAR_2") assert exit_status == 0 From b781b2d8af23697d08ee6720649097b3638b82b7 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Thu, 7 Mar 2024 21:00:30 +0800 Subject: [PATCH 08/21] fix some hidden vasp files --- tests/analysis/test_structure_matcher.py | 6 +- tests/files/LiFePO4.vasp | 31 --------- tests/files/vasp/inputs/POSCAR_LiFePO4 | 65 +++++++++---------- .../inputs/POSCAR_fit_symm_s1} | 0 .../inputs/POSCAR_fit_symm_s2} | 0 tests/test_cli.py | 4 +- 6 files changed, 35 insertions(+), 71 deletions(-) delete mode 100644 tests/files/LiFePO4.vasp rename tests/files/{fit_symm_s1.vasp => vasp/inputs/POSCAR_fit_symm_s1} (100%) rename tests/files/{fit_symm_s2.vasp => vasp/inputs/POSCAR_fit_symm_s2} (100%) diff --git a/tests/analysis/test_structure_matcher.py b/tests/analysis/test_structure_matcher.py index 2d63659c383..dabc490b102 100644 --- a/tests/analysis/test_structure_matcher.py +++ b/tests/analysis/test_structure_matcher.py @@ -283,8 +283,8 @@ def test_fit(self): # test symmetric sm_coarse = sm = StructureMatcher(comparator=ElementComparator(), ltol=0.6, stol=0.6, angle_tol=6) - struct1 = Structure.from_file(f"{TEST_FILES_DIR}/fit_symm_s1.vasp") - struct2 = Structure.from_file(f"{TEST_FILES_DIR}/fit_symm_s2.vasp") + struct1 = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_fit_symm_s1") + struct2 = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_fit_symm_s2") assert sm_coarse.fit(struct1, struct2) assert sm_coarse.fit(struct2, struct1) is False assert sm_coarse.fit(struct1, struct2, symmetric=True) is False @@ -317,7 +317,7 @@ def test_class(self): def test_mix(self): structures = list(map(self.get_structure, ["Li2O", "Li2O2", "LiFePO4"])) - structures += [Structure.from_file(f"{VASP_IN_DIR}/{fname}") for fname in ["POSCAR.Li2O", "POSCAR_LiFePO4"]] + structures += [Structure.from_file(f"{VASP_IN_DIR}/{fname}") for fname in ["POSCAR_Li2O", "POSCAR_LiFePO4"]] sm = StructureMatcher(comparator=ElementComparator()) groups = sm.group_structures(structures) for group in groups: diff --git a/tests/files/LiFePO4.vasp b/tests/files/LiFePO4.vasp deleted file mode 100644 index df7b1bf623f..00000000000 --- a/tests/files/LiFePO4.vasp +++ /dev/null @@ -1,31 +0,0 @@ -LiFePO4 --300.65685512 - 10.4117668700 0.0000000000 0.0000000000 - 0.0000000000 6.0671718800 0.0000000000 - 0.0000000000 0.0000000000 4.7594895400 -4 4 16 -direct - 0.2187282200 0.7500000000 0.4748671100 Fe - 0.2812717800 0.2500000000 0.9748671100 Fe - 0.7187282200 0.7500000000 0.0251328900 Fe - 0.7812717800 0.2500000000 0.5251328900 Fe - 0.0946130900 0.2500000000 0.4182432700 P - 0.4053869100 0.7500000000 0.9182432700 P - 0.5946130900 0.2500000000 0.0817567300 P - 0.9053869100 0.7500000000 0.5817567300 P - 0.0433723100 0.7500000000 0.7071376700 O - 0.0966424400 0.2500000000 0.7413203500 O - 0.1657097400 0.0460723300 0.2853839400 O - 0.1657097400 0.4539276700 0.2853839400 O - 0.3342902600 0.5460723300 0.7853839400 O - 0.3342902600 0.9539276700 0.7853839400 O - 0.4033575600 0.7500000000 0.2413203500 O - 0.4566276900 0.2500000000 0.2071376700 O - 0.5433723100 0.7500000000 0.7928623300 O - 0.5966424400 0.2500000000 0.7586796500 O - 0.6657097400 0.0460723300 0.2146160600 O - 0.6657097400 0.4539276700 0.2146160600 O - 0.8342902600 0.5460723300 0.7146160600 O - 0.8342902600 0.9539276700 0.7146160600 O - 0.9033575600 0.7500000000 0.2586796500 O - 0.9566276900 0.2500000000 0.2928623300 O diff --git a/tests/files/vasp/inputs/POSCAR_LiFePO4 b/tests/files/vasp/inputs/POSCAR_LiFePO4 index ef36b827db0..df7b1bf623f 100644 --- a/tests/files/vasp/inputs/POSCAR_LiFePO4 +++ b/tests/files/vasp/inputs/POSCAR_LiFePO4 @@ -1,36 +1,31 @@ -Li4 Fe4 P4 O16 -1.0 -10.410154 0.000130 -0.000889 -0.000076 6.063274 0.000405 --0.000406 0.000317 4.754894 -Fe Li O P -4 4 16 4 +LiFePO4 +-300.65685512 + 10.4117668700 0.0000000000 0.0000000000 + 0.0000000000 6.0671718800 0.0000000000 + 0.0000000000 0.0000000000 4.7594895400 +4 4 16 direct -0.218694 0.749999 0.475018 Fe -0.281333 0.250019 0.975150 Fe -0.718667 0.749981 0.024850 Fe -0.781306 0.250001 0.524982 Fe -0.000000 0.000000 0.000000 Li -0.000000 0.500000 0.000000 Li -0.500000 0.000000 0.500000 Li -0.500000 0.500000 0.500000 Li -0.043339 0.750012 0.707396 O -0.096672 0.249992 0.741528 O -0.165629 0.046219 0.285196 O -0.165617 0.453735 0.285259 O -0.334380 0.546244 0.785237 O -0.334384 0.953680 0.785213 O -0.403353 0.749992 0.241483 O -0.456612 0.250025 0.207341 O -0.543388 0.749975 0.792659 O -0.596647 0.250008 0.758517 O -0.665616 0.046320 0.214787 O -0.665620 0.453756 0.214763 O -0.834383 0.546265 0.714741 O -0.834371 0.953781 0.714804 O -0.903328 0.750008 0.258472 O -0.956661 0.249988 0.292604 O -0.094714 0.250071 0.418190 P -0.405225 0.750080 0.918200 P -0.594775 0.249920 0.081800 P -0.905286 0.749929 0.581810 P \ No newline at end of file + 0.2187282200 0.7500000000 0.4748671100 Fe + 0.2812717800 0.2500000000 0.9748671100 Fe + 0.7187282200 0.7500000000 0.0251328900 Fe + 0.7812717800 0.2500000000 0.5251328900 Fe + 0.0946130900 0.2500000000 0.4182432700 P + 0.4053869100 0.7500000000 0.9182432700 P + 0.5946130900 0.2500000000 0.0817567300 P + 0.9053869100 0.7500000000 0.5817567300 P + 0.0433723100 0.7500000000 0.7071376700 O + 0.0966424400 0.2500000000 0.7413203500 O + 0.1657097400 0.0460723300 0.2853839400 O + 0.1657097400 0.4539276700 0.2853839400 O + 0.3342902600 0.5460723300 0.7853839400 O + 0.3342902600 0.9539276700 0.7853839400 O + 0.4033575600 0.7500000000 0.2413203500 O + 0.4566276900 0.2500000000 0.2071376700 O + 0.5433723100 0.7500000000 0.7928623300 O + 0.5966424400 0.2500000000 0.7586796500 O + 0.6657097400 0.0460723300 0.2146160600 O + 0.6657097400 0.4539276700 0.2146160600 O + 0.8342902600 0.5460723300 0.7146160600 O + 0.8342902600 0.9539276700 0.7146160600 O + 0.9033575600 0.7500000000 0.2586796500 O + 0.9566276900 0.2500000000 0.2928623300 O diff --git a/tests/files/fit_symm_s1.vasp b/tests/files/vasp/inputs/POSCAR_fit_symm_s1 similarity index 100% rename from tests/files/fit_symm_s1.vasp rename to tests/files/vasp/inputs/POSCAR_fit_symm_s1 diff --git a/tests/files/fit_symm_s2.vasp b/tests/files/vasp/inputs/POSCAR_fit_symm_s2 similarity index 100% rename from tests/files/fit_symm_s2.vasp rename to tests/files/vasp/inputs/POSCAR_fit_symm_s2 diff --git a/tests/test_cli.py b/tests/test_cli.py index c89bfb7d259..8f37be69b69 100644 --- a/tests/test_cli.py +++ b/tests/test_cli.py @@ -26,9 +26,9 @@ def test_pmg_analyze(cd_tmp_path: Path): def test_pmg_structure(cd_tmp_path: Path): - exit_status = os.system(f"pmg structure --convert --filenames {TEST_FILES_DIR}/Li2O.cif POSCAR.Li2O.test") + exit_status = os.system(f"pmg structure --convert --filenames {TEST_FILES_DIR}/Li2O.cif POSCAR_Li2O_test") assert exit_status == 0 - assert os.path.exists("POSCAR.Li2O.test") + assert os.path.exists("POSCAR_Li2O_test") exit_status = os.system(f"pmg structure --symmetry 0.1 --filenames {TEST_FILES_DIR}/Li2O.cif") assert exit_status == 0 From 3263b0e5b70899301b5e10d49fd6727ed6af1725 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 12:03:02 +0800 Subject: [PATCH 09/21] fix POSCAR relocate error --- pymatgen/io/vasp/inputs.py | 6 ++++++ tests/analysis/test_structure_analyzer.py | 2 +- .../outputs/{CONTCAR.Li2O => CONTCAR_Li2O} | 0 tests/io/vasp/test_inputs.py | 18 ++++++++++-------- 4 files changed, 17 insertions(+), 9 deletions(-) rename tests/files/vasp/outputs/{CONTCAR.Li2O => CONTCAR_Li2O} (100%) diff --git a/pymatgen/io/vasp/inputs.py b/pymatgen/io/vasp/inputs.py index f7d2dbe5a05..ca21c023611 100644 --- a/pymatgen/io/vasp/inputs.py +++ b/pymatgen/io/vasp/inputs.py @@ -2610,7 +2610,13 @@ def __str__(self): def as_dict(self): """MSONable dict.""" + for key, val in self.items(): + if val is None: + raise ValueError(key) + val.as_dict() + dct = {key: val.as_dict() for key, val in self.items()} + dct["@module"] = type(self).__module__ dct["@class"] = type(self).__name__ return dct diff --git a/tests/analysis/test_structure_analyzer.py b/tests/analysis/test_structure_analyzer.py index f2ae327d7f2..11a7c65243d 100644 --- a/tests/analysis/test_structure_analyzer.py +++ b/tests/analysis/test_structure_analyzer.py @@ -40,7 +40,7 @@ def test_analyze(self): class TestRelaxationAnalyzer(unittest.TestCase): def setUp(self): s1 = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_Li2O") - s2 = Structure.from_file(f"{VASP_OUT_DIR}/CONTCAR.Li2O") + s2 = Structure.from_file(f"{VASP_OUT_DIR}/CONTCAR_Li2O") self.analyzer = RelaxationAnalyzer(s1, s2) def test_vol_and_para_changes(self): diff --git a/tests/files/vasp/outputs/CONTCAR.Li2O b/tests/files/vasp/outputs/CONTCAR_Li2O similarity index 100% rename from tests/files/vasp/outputs/CONTCAR.Li2O rename to tests/files/vasp/outputs/CONTCAR_Li2O diff --git a/tests/io/vasp/test_inputs.py b/tests/io/vasp/test_inputs.py index 3bc914b556b..6b7db50c14f 100644 --- a/tests/io/vasp/test_inputs.py +++ b/tests/io/vasp/test_inputs.py @@ -525,7 +525,7 @@ def test_vasp_6_4_2_format(self): # be a slash in the element names # Test that Poscar works for these too poscar_str = "" - with open(f"{VASP_IN_DIR}/POSCAR_LiFePO4") as file: + with open(f"{VASP_IN_DIR}/POSCAR_LiFePO4", encoding="utf-8") as file: for idx, line in enumerate(file): if idx == 5: line = " ".join(f"{x}/" for x in line.split()) + "\n" @@ -1391,19 +1391,21 @@ def test_from_directory(self): # that was sorted to the top of a list of POTCARs for the test to work. # That's far too brittle - isolating requisite files here for file in ("INCAR", "KPOINTS", "POSCAR_Li2O"): - copyfile(f"{VASP_IN_DIR}/{file}", f"{self.tmp_path}/{file.split('.')[0]}") + copyfile(f"{VASP_IN_DIR}/{file}", f"{self.tmp_path}/{file.split('_')[0]}") Potcar(symbols=["Li_sv", "O"], functional="PBE").write_file(f"{self.tmp_path}/POTCAR") - copyfile(f"{VASP_OUT_DIR}/CONTCAR.Li2O", f"{self.tmp_path}/CONTCAR.Li2O") + copyfile(f"{VASP_OUT_DIR}/CONTCAR_Li2O", f"{self.tmp_path}/CONTCAR_Li2O") - vi = VaspInput.from_directory(self.tmp_path, optional_files={"CONTCAR.Li2O": Poscar}) + vi = VaspInput.from_directory(self.tmp_path, optional_files={"CONTCAR_Li2O": Poscar}) assert vi["INCAR"]["ALGO"] == "Damped" - assert "CONTCAR.Li2O" in vi - dct = vi.as_dict() - vasp_input = VaspInput.from_dict(dct) - assert "CONTCAR.Li2O" in vasp_input + assert "CONTCAR_Li2O" in vi + + vi.as_dict() + + vasp_input = VaspInput.from_dict(vi.as_dict()) + assert "CONTCAR_Li2O" in vasp_input def test_potcar_summary_stats() -> None: From ad354fca11ef699cab2af2ca13a6f23849067d50 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 12:18:47 +0800 Subject: [PATCH 10/21] reverse POSCAR_LiO2 to POSCAR.LiO2 --- tests/analysis/test_structure_analyzer.py | 2 +- tests/analysis/test_structure_matcher.py | 4 ++-- tests/core/test_structure.py | 2 +- tests/files/vasp/inputs/{POSCAR_Li2O => POSCAR.Li2O} | 0 .../vasp/inputs/{POSCAR_LiFePO4 => POSCAR.LiFePO4} | 0 tests/io/vasp/test_inputs.py | 6 +++--- tests/test_cli.py | 4 ++-- tests/transformations/test_advanced_transformations.py | 10 +++++----- tests/transformations/test_standard_transformations.py | 6 +++--- 9 files changed, 17 insertions(+), 17 deletions(-) rename tests/files/vasp/inputs/{POSCAR_Li2O => POSCAR.Li2O} (100%) rename tests/files/vasp/inputs/{POSCAR_LiFePO4 => POSCAR.LiFePO4} (100%) diff --git a/tests/analysis/test_structure_analyzer.py b/tests/analysis/test_structure_analyzer.py index 11a7c65243d..9dffd3d27a9 100644 --- a/tests/analysis/test_structure_analyzer.py +++ b/tests/analysis/test_structure_analyzer.py @@ -39,7 +39,7 @@ def test_analyze(self): class TestRelaxationAnalyzer(unittest.TestCase): def setUp(self): - s1 = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_Li2O") + s1 = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.Li2O") s2 = Structure.from_file(f"{VASP_OUT_DIR}/CONTCAR_Li2O") self.analyzer = RelaxationAnalyzer(s1, s2) diff --git a/tests/analysis/test_structure_matcher.py b/tests/analysis/test_structure_matcher.py index dabc490b102..69508c02c7d 100644 --- a/tests/analysis/test_structure_matcher.py +++ b/tests/analysis/test_structure_matcher.py @@ -27,7 +27,7 @@ def setUp(self): self.struct_list = [ent.structure for ent in entries] self.oxi_structs = [ self.get_structure("Li2O"), - Structure.from_file(f"{VASP_IN_DIR}/POSCAR_Li2O"), + Structure.from_file(f"{VASP_IN_DIR}/POSCAR.Li2O"), ] def test_ignore_species(self): @@ -317,7 +317,7 @@ def test_class(self): def test_mix(self): structures = list(map(self.get_structure, ["Li2O", "Li2O2", "LiFePO4"])) - structures += [Structure.from_file(f"{VASP_IN_DIR}/{fname}") for fname in ["POSCAR_Li2O", "POSCAR_LiFePO4"]] + structures += [Structure.from_file(f"{VASP_IN_DIR}/{fname}") for fname in ["POSCAR.Li2O", "POSCAR.LiFePO4"]] sm = StructureMatcher(comparator=ElementComparator()) groups = sm.group_structures(structures) for group in groups: diff --git a/tests/core/test_structure.py b/tests/core/test_structure.py index 089e1f6fc1f..a834f4d75dc 100644 --- a/tests/core/test_structure.py +++ b/tests/core/test_structure.py @@ -1807,7 +1807,7 @@ def test_to_ase_atoms(self): assert AseAtomsAdaptor.get_structure(atoms) == self.struct def test_struct_with_isotope(self): - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") struct = struct.replace_species({"Li": "H"}) struct_deuter = struct.copy() diff --git a/tests/files/vasp/inputs/POSCAR_Li2O b/tests/files/vasp/inputs/POSCAR.Li2O similarity index 100% rename from tests/files/vasp/inputs/POSCAR_Li2O rename to tests/files/vasp/inputs/POSCAR.Li2O diff --git a/tests/files/vasp/inputs/POSCAR_LiFePO4 b/tests/files/vasp/inputs/POSCAR.LiFePO4 similarity index 100% rename from tests/files/vasp/inputs/POSCAR_LiFePO4 rename to tests/files/vasp/inputs/POSCAR.LiFePO4 diff --git a/tests/io/vasp/test_inputs.py b/tests/io/vasp/test_inputs.py index 6b7db50c14f..ab98f0a1867 100644 --- a/tests/io/vasp/test_inputs.py +++ b/tests/io/vasp/test_inputs.py @@ -525,7 +525,7 @@ def test_vasp_6_4_2_format(self): # be a slash in the element names # Test that Poscar works for these too poscar_str = "" - with open(f"{VASP_IN_DIR}/POSCAR_LiFePO4", encoding="utf-8") as file: + with open(f"{VASP_IN_DIR}/POSCAR.LiFePO4", encoding="utf-8") as file: for idx, line in enumerate(file): if idx == 5: line = " ".join(f"{x}/" for x in line.split()) + "\n" @@ -1390,8 +1390,8 @@ def test_from_directory(self): # Previously, this test relied on the existence of a file named POTCAR # that was sorted to the top of a list of POTCARs for the test to work. # That's far too brittle - isolating requisite files here - for file in ("INCAR", "KPOINTS", "POSCAR_Li2O"): - copyfile(f"{VASP_IN_DIR}/{file}", f"{self.tmp_path}/{file.split('_')[0]}") + for file in ("INCAR", "KPOINTS", "POSCAR.Li2O"): + copyfile(f"{VASP_IN_DIR}/{file}", f"{self.tmp_path}/{file.split('.')[0]}") Potcar(symbols=["Li_sv", "O"], functional="PBE").write_file(f"{self.tmp_path}/POTCAR") diff --git a/tests/test_cli.py b/tests/test_cli.py index 8f37be69b69..55237b444a9 100644 --- a/tests/test_cli.py +++ b/tests/test_cli.py @@ -26,9 +26,9 @@ def test_pmg_analyze(cd_tmp_path: Path): def test_pmg_structure(cd_tmp_path: Path): - exit_status = os.system(f"pmg structure --convert --filenames {TEST_FILES_DIR}/Li2O.cif POSCAR_Li2O_test") + exit_status = os.system(f"pmg structure --convert --filenames {TEST_FILES_DIR}/Li2O.cif POSCAR.Li2O_test") assert exit_status == 0 - assert os.path.exists("POSCAR_Li2O_test") + assert os.path.exists("POSCAR.Li2O_test") exit_status = os.system(f"pmg structure --symmetry 0.1 --filenames {TEST_FILES_DIR}/Li2O.cif") assert exit_status == 0 diff --git a/tests/transformations/test_advanced_transformations.py b/tests/transformations/test_advanced_transformations.py index 8c20a8c25ab..196b2ddf3bf 100644 --- a/tests/transformations/test_advanced_transformations.py +++ b/tests/transformations/test_advanced_transformations.py @@ -162,7 +162,7 @@ class TestEnumerateStructureTransformation(unittest.TestCase): def test_apply_transformation(self): enum_trans = EnumerateStructureTransformation(refine_structure=True) enum_trans2 = EnumerateStructureTransformation(refine_structure=True, sort_criteria="nsites") - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") expected = [1, 3, 1] for idx, frac in enumerate([0.25, 0.5, 0.75]): trans = SubstitutionTransformation({"Fe": {"Fe": frac}}) @@ -193,7 +193,7 @@ def test_apply_transformation(self): def test_m3gnet(self): pytest.importorskip("matgl") enum_trans = EnumerateStructureTransformation(refine_structure=True, sort_criteria="m3gnet_relax") - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") trans = SubstitutionTransformation({"Fe": {"Fe": 0.5, "Mn": 0.5}}) s = trans.apply_transformation(struct) alls = enum_trans.apply_transformation(s, 100) @@ -220,7 +220,7 @@ def sort_criteria(struct: Structure) -> tuple[Structure, float]: return relax_results["final_structure"], energy enum_trans = EnumerateStructureTransformation(refine_structure=True, sort_criteria=sort_criteria) - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") trans = SubstitutionTransformation({"Fe": {"Fe": 0.5, "Mn": 0.5}}) s = trans.apply_transformation(struct) alls = enum_trans.apply_transformation(s, 100) @@ -301,7 +301,7 @@ def setUp(self): def test_apply_transformation(self): trans = MagOrderingTransformation({"Fe": 5}) - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") alls = trans.apply_transformation(struct, 10) assert len(alls) == 3 spg_analyzer = SpacegroupAnalyzer(alls[0]["structure"], 0.1) @@ -331,7 +331,7 @@ def test_apply_transformation(self): def test_ferrimagnetic(self): trans = MagOrderingTransformation({"Fe": 5}, order_parameter=0.75, max_cell_size=1) - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") spg_analyzer = SpacegroupAnalyzer(struct, 0.1) struct = spg_analyzer.get_refined_structure() alls = trans.apply_transformation(struct, 10) diff --git a/tests/transformations/test_standard_transformations.py b/tests/transformations/test_standard_transformations.py index daee458455a..0bdfece45df 100644 --- a/tests/transformations/test_standard_transformations.py +++ b/tests/transformations/test_standard_transformations.py @@ -189,7 +189,7 @@ def test_apply_transformation(self): class TestAutoOxiStateDecorationTransformation(unittest.TestCase): def test_apply_transformation(self): trafo = AutoOxiStateDecorationTransformation() - struct = trafo.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4")) + struct = trafo.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4")) expected_oxi = {"Li": 1, "P": 5, "O": -2, "Fe": 2} for site in struct: assert site.specie.oxi_state == expected_oxi[site.specie.symbol] @@ -248,13 +248,13 @@ def test_apply_transformation_fast(self): def test_apply_transformations_complete_ranking(self): t1 = OxidationStateDecorationTransformation({"Li": 1, "Fe": 2, "P": 5, "O": -2}) - struct = t1.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4")) + struct = t1.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4")) trafo = PartialRemoveSpecieTransformation("Li+", 0.5, PartialRemoveSpecieTransformation.ALGO_COMPLETE) assert len(trafo.apply_transformation(struct, 10)) == 6 def test_apply_transformations_best_first(self): t1 = OxidationStateDecorationTransformation({"Li": 1, "Fe": 2, "P": 5, "O": -2}) - struct = t1.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4")) + struct = t1.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4")) trafo = PartialRemoveSpecieTransformation("Li+", 0.5, PartialRemoveSpecieTransformation.ALGO_BEST_FIRST) assert len(trafo.apply_transformation(struct)) == 26 From ddbe353183906bd746272323b05355981b520e61 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 12:30:55 +0800 Subject: [PATCH 11/21] Revert "reverse POSCAR_LiO2 to POSCAR.LiO2" This reverts commit ad354fca11ef699cab2af2ca13a6f23849067d50. --- tests/analysis/test_structure_analyzer.py | 2 +- tests/analysis/test_structure_matcher.py | 4 ++-- tests/core/test_structure.py | 2 +- tests/files/vasp/inputs/{POSCAR.Li2O => POSCAR_Li2O} | 0 .../vasp/inputs/{POSCAR.LiFePO4 => POSCAR_LiFePO4} | 0 tests/io/vasp/test_inputs.py | 6 +++--- tests/test_cli.py | 4 ++-- tests/transformations/test_advanced_transformations.py | 10 +++++----- tests/transformations/test_standard_transformations.py | 6 +++--- 9 files changed, 17 insertions(+), 17 deletions(-) rename tests/files/vasp/inputs/{POSCAR.Li2O => POSCAR_Li2O} (100%) rename tests/files/vasp/inputs/{POSCAR.LiFePO4 => POSCAR_LiFePO4} (100%) diff --git a/tests/analysis/test_structure_analyzer.py b/tests/analysis/test_structure_analyzer.py index 9dffd3d27a9..11a7c65243d 100644 --- a/tests/analysis/test_structure_analyzer.py +++ b/tests/analysis/test_structure_analyzer.py @@ -39,7 +39,7 @@ def test_analyze(self): class TestRelaxationAnalyzer(unittest.TestCase): def setUp(self): - s1 = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.Li2O") + s1 = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_Li2O") s2 = Structure.from_file(f"{VASP_OUT_DIR}/CONTCAR_Li2O") self.analyzer = RelaxationAnalyzer(s1, s2) diff --git a/tests/analysis/test_structure_matcher.py b/tests/analysis/test_structure_matcher.py index 69508c02c7d..dabc490b102 100644 --- a/tests/analysis/test_structure_matcher.py +++ b/tests/analysis/test_structure_matcher.py @@ -27,7 +27,7 @@ def setUp(self): self.struct_list = [ent.structure for ent in entries] self.oxi_structs = [ self.get_structure("Li2O"), - Structure.from_file(f"{VASP_IN_DIR}/POSCAR.Li2O"), + Structure.from_file(f"{VASP_IN_DIR}/POSCAR_Li2O"), ] def test_ignore_species(self): @@ -317,7 +317,7 @@ def test_class(self): def test_mix(self): structures = list(map(self.get_structure, ["Li2O", "Li2O2", "LiFePO4"])) - structures += [Structure.from_file(f"{VASP_IN_DIR}/{fname}") for fname in ["POSCAR.Li2O", "POSCAR.LiFePO4"]] + structures += [Structure.from_file(f"{VASP_IN_DIR}/{fname}") for fname in ["POSCAR_Li2O", "POSCAR_LiFePO4"]] sm = StructureMatcher(comparator=ElementComparator()) groups = sm.group_structures(structures) for group in groups: diff --git a/tests/core/test_structure.py b/tests/core/test_structure.py index a834f4d75dc..089e1f6fc1f 100644 --- a/tests/core/test_structure.py +++ b/tests/core/test_structure.py @@ -1807,7 +1807,7 @@ def test_to_ase_atoms(self): assert AseAtomsAdaptor.get_structure(atoms) == self.struct def test_struct_with_isotope(self): - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") struct = struct.replace_species({"Li": "H"}) struct_deuter = struct.copy() diff --git a/tests/files/vasp/inputs/POSCAR.Li2O b/tests/files/vasp/inputs/POSCAR_Li2O similarity index 100% rename from tests/files/vasp/inputs/POSCAR.Li2O rename to tests/files/vasp/inputs/POSCAR_Li2O diff --git a/tests/files/vasp/inputs/POSCAR.LiFePO4 b/tests/files/vasp/inputs/POSCAR_LiFePO4 similarity index 100% rename from tests/files/vasp/inputs/POSCAR.LiFePO4 rename to tests/files/vasp/inputs/POSCAR_LiFePO4 diff --git a/tests/io/vasp/test_inputs.py b/tests/io/vasp/test_inputs.py index ab98f0a1867..6b7db50c14f 100644 --- a/tests/io/vasp/test_inputs.py +++ b/tests/io/vasp/test_inputs.py @@ -525,7 +525,7 @@ def test_vasp_6_4_2_format(self): # be a slash in the element names # Test that Poscar works for these too poscar_str = "" - with open(f"{VASP_IN_DIR}/POSCAR.LiFePO4", encoding="utf-8") as file: + with open(f"{VASP_IN_DIR}/POSCAR_LiFePO4", encoding="utf-8") as file: for idx, line in enumerate(file): if idx == 5: line = " ".join(f"{x}/" for x in line.split()) + "\n" @@ -1390,8 +1390,8 @@ def test_from_directory(self): # Previously, this test relied on the existence of a file named POTCAR # that was sorted to the top of a list of POTCARs for the test to work. # That's far too brittle - isolating requisite files here - for file in ("INCAR", "KPOINTS", "POSCAR.Li2O"): - copyfile(f"{VASP_IN_DIR}/{file}", f"{self.tmp_path}/{file.split('.')[0]}") + for file in ("INCAR", "KPOINTS", "POSCAR_Li2O"): + copyfile(f"{VASP_IN_DIR}/{file}", f"{self.tmp_path}/{file.split('_')[0]}") Potcar(symbols=["Li_sv", "O"], functional="PBE").write_file(f"{self.tmp_path}/POTCAR") diff --git a/tests/test_cli.py b/tests/test_cli.py index 55237b444a9..8f37be69b69 100644 --- a/tests/test_cli.py +++ b/tests/test_cli.py @@ -26,9 +26,9 @@ def test_pmg_analyze(cd_tmp_path: Path): def test_pmg_structure(cd_tmp_path: Path): - exit_status = os.system(f"pmg structure --convert --filenames {TEST_FILES_DIR}/Li2O.cif POSCAR.Li2O_test") + exit_status = os.system(f"pmg structure --convert --filenames {TEST_FILES_DIR}/Li2O.cif POSCAR_Li2O_test") assert exit_status == 0 - assert os.path.exists("POSCAR.Li2O_test") + assert os.path.exists("POSCAR_Li2O_test") exit_status = os.system(f"pmg structure --symmetry 0.1 --filenames {TEST_FILES_DIR}/Li2O.cif") assert exit_status == 0 diff --git a/tests/transformations/test_advanced_transformations.py b/tests/transformations/test_advanced_transformations.py index 196b2ddf3bf..8c20a8c25ab 100644 --- a/tests/transformations/test_advanced_transformations.py +++ b/tests/transformations/test_advanced_transformations.py @@ -162,7 +162,7 @@ class TestEnumerateStructureTransformation(unittest.TestCase): def test_apply_transformation(self): enum_trans = EnumerateStructureTransformation(refine_structure=True) enum_trans2 = EnumerateStructureTransformation(refine_structure=True, sort_criteria="nsites") - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") expected = [1, 3, 1] for idx, frac in enumerate([0.25, 0.5, 0.75]): trans = SubstitutionTransformation({"Fe": {"Fe": frac}}) @@ -193,7 +193,7 @@ def test_apply_transformation(self): def test_m3gnet(self): pytest.importorskip("matgl") enum_trans = EnumerateStructureTransformation(refine_structure=True, sort_criteria="m3gnet_relax") - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") trans = SubstitutionTransformation({"Fe": {"Fe": 0.5, "Mn": 0.5}}) s = trans.apply_transformation(struct) alls = enum_trans.apply_transformation(s, 100) @@ -220,7 +220,7 @@ def sort_criteria(struct: Structure) -> tuple[Structure, float]: return relax_results["final_structure"], energy enum_trans = EnumerateStructureTransformation(refine_structure=True, sort_criteria=sort_criteria) - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") trans = SubstitutionTransformation({"Fe": {"Fe": 0.5, "Mn": 0.5}}) s = trans.apply_transformation(struct) alls = enum_trans.apply_transformation(s, 100) @@ -301,7 +301,7 @@ def setUp(self): def test_apply_transformation(self): trans = MagOrderingTransformation({"Fe": 5}) - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") alls = trans.apply_transformation(struct, 10) assert len(alls) == 3 spg_analyzer = SpacegroupAnalyzer(alls[0]["structure"], 0.1) @@ -331,7 +331,7 @@ def test_apply_transformation(self): def test_ferrimagnetic(self): trans = MagOrderingTransformation({"Fe": 5}, order_parameter=0.75, max_cell_size=1) - struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4") + struct = Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4") spg_analyzer = SpacegroupAnalyzer(struct, 0.1) struct = spg_analyzer.get_refined_structure() alls = trans.apply_transformation(struct, 10) diff --git a/tests/transformations/test_standard_transformations.py b/tests/transformations/test_standard_transformations.py index 0bdfece45df..daee458455a 100644 --- a/tests/transformations/test_standard_transformations.py +++ b/tests/transformations/test_standard_transformations.py @@ -189,7 +189,7 @@ def test_apply_transformation(self): class TestAutoOxiStateDecorationTransformation(unittest.TestCase): def test_apply_transformation(self): trafo = AutoOxiStateDecorationTransformation() - struct = trafo.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4")) + struct = trafo.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4")) expected_oxi = {"Li": 1, "P": 5, "O": -2, "Fe": 2} for site in struct: assert site.specie.oxi_state == expected_oxi[site.specie.symbol] @@ -248,13 +248,13 @@ def test_apply_transformation_fast(self): def test_apply_transformations_complete_ranking(self): t1 = OxidationStateDecorationTransformation({"Li": 1, "Fe": 2, "P": 5, "O": -2}) - struct = t1.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4")) + struct = t1.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4")) trafo = PartialRemoveSpecieTransformation("Li+", 0.5, PartialRemoveSpecieTransformation.ALGO_COMPLETE) assert len(trafo.apply_transformation(struct, 10)) == 6 def test_apply_transformations_best_first(self): t1 = OxidationStateDecorationTransformation({"Li": 1, "Fe": 2, "P": 5, "O": -2}) - struct = t1.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR.LiFePO4")) + struct = t1.apply_transformation(Structure.from_file(f"{VASP_IN_DIR}/POSCAR_LiFePO4")) trafo = PartialRemoveSpecieTransformation("Li+", 0.5, PartialRemoveSpecieTransformation.ALGO_BEST_FIRST) assert len(trafo.apply_transformation(struct)) == 26 From 1bf43c5e4f09ce9fa9f2d262352d13f93f641a40 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 12:34:11 +0800 Subject: [PATCH 12/21] remove accidental DEBUG info --- pymatgen/io/vasp/inputs.py | 5 ----- 1 file changed, 5 deletions(-) diff --git a/pymatgen/io/vasp/inputs.py b/pymatgen/io/vasp/inputs.py index ca21c023611..3de8870f23e 100644 --- a/pymatgen/io/vasp/inputs.py +++ b/pymatgen/io/vasp/inputs.py @@ -2610,11 +2610,6 @@ def __str__(self): def as_dict(self): """MSONable dict.""" - for key, val in self.items(): - if val is None: - raise ValueError(key) - val.as_dict() - dct = {key: val.as_dict() for key, val in self.items()} dct["@module"] = type(self).__module__ From a25828d60595a99864bb6e2cf91bd5d91b1e3cb1 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 12:34:46 +0800 Subject: [PATCH 13/21] remove empty line --- pymatgen/io/vasp/inputs.py | 1 - 1 file changed, 1 deletion(-) diff --git a/pymatgen/io/vasp/inputs.py b/pymatgen/io/vasp/inputs.py index 3de8870f23e..f7d2dbe5a05 100644 --- a/pymatgen/io/vasp/inputs.py +++ b/pymatgen/io/vasp/inputs.py @@ -2611,7 +2611,6 @@ def __str__(self): def as_dict(self): """MSONable dict.""" dct = {key: val.as_dict() for key, val in self.items()} - dct["@module"] = type(self).__module__ dct["@class"] = type(self).__name__ return dct From a16cd7f9fb5d478b18fde7436dab565a3631faea Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 18:36:11 +0800 Subject: [PATCH 14/21] fix troublesome POSCAR.LiFePO4 --- tests/analysis/test_structure_matcher.py | 2 +- tests/files/vasp/inputs/POSCAR_LiFePO4 | 66 +++++++++++++----------- 2 files changed, 37 insertions(+), 31 deletions(-) diff --git a/tests/analysis/test_structure_matcher.py b/tests/analysis/test_structure_matcher.py index dabc490b102..c4f601c548f 100644 --- a/tests/analysis/test_structure_matcher.py +++ b/tests/analysis/test_structure_matcher.py @@ -322,7 +322,7 @@ def test_mix(self): groups = sm.group_structures(structures) for group in groups: formula = group[0].reduced_formula - assert len(group) == (2 if formula in ["Li2O", "LiFePO4"] else 1) + assert len(group) == (2 if formula in {"Li2O", "LiFePO4"} else 1) def test_left_handed_lattice(self): """Ensure Left handed lattices are accepted.""" diff --git a/tests/files/vasp/inputs/POSCAR_LiFePO4 b/tests/files/vasp/inputs/POSCAR_LiFePO4 index df7b1bf623f..0faef068f41 100644 --- a/tests/files/vasp/inputs/POSCAR_LiFePO4 +++ b/tests/files/vasp/inputs/POSCAR_LiFePO4 @@ -1,31 +1,37 @@ -LiFePO4 --300.65685512 - 10.4117668700 0.0000000000 0.0000000000 - 0.0000000000 6.0671718800 0.0000000000 - 0.0000000000 0.0000000000 4.7594895400 -4 4 16 +Li4 Fe4 P4 O16 +1.0 +10.410154 0.000130 -0.000889 +0.000076 6.063274 0.000405 +-0.000406 0.000317 4.754894 +Fe Li O P +4 4 16 4 direct - 0.2187282200 0.7500000000 0.4748671100 Fe - 0.2812717800 0.2500000000 0.9748671100 Fe - 0.7187282200 0.7500000000 0.0251328900 Fe - 0.7812717800 0.2500000000 0.5251328900 Fe - 0.0946130900 0.2500000000 0.4182432700 P - 0.4053869100 0.7500000000 0.9182432700 P - 0.5946130900 0.2500000000 0.0817567300 P - 0.9053869100 0.7500000000 0.5817567300 P - 0.0433723100 0.7500000000 0.7071376700 O - 0.0966424400 0.2500000000 0.7413203500 O - 0.1657097400 0.0460723300 0.2853839400 O - 0.1657097400 0.4539276700 0.2853839400 O - 0.3342902600 0.5460723300 0.7853839400 O - 0.3342902600 0.9539276700 0.7853839400 O - 0.4033575600 0.7500000000 0.2413203500 O - 0.4566276900 0.2500000000 0.2071376700 O - 0.5433723100 0.7500000000 0.7928623300 O - 0.5966424400 0.2500000000 0.7586796500 O - 0.6657097400 0.0460723300 0.2146160600 O - 0.6657097400 0.4539276700 0.2146160600 O - 0.8342902600 0.5460723300 0.7146160600 O - 0.8342902600 0.9539276700 0.7146160600 O - 0.9033575600 0.7500000000 0.2586796500 O - 0.9566276900 0.2500000000 0.2928623300 O +0.218694 0.749999 0.475018 Fe +0.281333 0.250019 0.975150 Fe +0.718667 0.749981 0.024850 Fe +0.781306 0.250001 0.524982 Fe +0.000000 0.000000 0.000000 Li +0.000000 0.500000 0.000000 Li +0.500000 0.000000 0.500000 Li +0.500000 0.500000 0.500000 Li +0.043339 0.750012 0.707396 O +0.096672 0.249992 0.741528 O +0.165629 0.046219 0.285196 O +0.165617 0.453735 0.285259 O +0.334380 0.546244 0.785237 O +0.334384 0.953680 0.785213 O +0.403353 0.749992 0.241483 O +0.456612 0.250025 0.207341 O +0.543388 0.749975 0.792659 O +0.596647 0.250008 0.758517 O +0.665616 0.046320 0.214787 O +0.665620 0.453756 0.214763 O +0.834383 0.546265 0.714741 O +0.834371 0.953781 0.714804 O +0.903328 0.750008 0.258472 O +0.956661 0.249988 0.292604 O +0.094714 0.250071 0.418190 P +0.405225 0.750080 0.918200 P +0.594775 0.249920 0.081800 P +0.905286 0.749929 0.581810 P + From 1b154e0755e5a3071251e80360dffbaaba2f5da1 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 18:48:14 +0800 Subject: [PATCH 15/21] unify POTCAR naming --- tests/command_line/test_bader_caller.py | 4 +- tests/files/vasp/inputs/POTCAR_Fe3O4 | 3664 ----------------- tests/files/vasp/inputs/POTCAR_Fe3O4.gz | Bin 0 -> 120750 bytes .../{POTCAR.Fe.gz => POTCAR_Fe.gz} | Bin .../{POTCAR.P.gz => POTCAR_P.gz} | Bin tests/io/lobster/test_inputs.py | 12 +- 6 files changed, 8 insertions(+), 3672 deletions(-) delete mode 100644 tests/files/vasp/inputs/POTCAR_Fe3O4 create mode 100644 tests/files/vasp/inputs/POTCAR_Fe3O4.gz rename tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/{POTCAR.Fe.gz => POTCAR_Fe.gz} (100%) rename tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/{POTCAR.P.gz => POTCAR_P.gz} (100%) diff --git a/tests/command_line/test_bader_caller.py b/tests/command_line/test_bader_caller.py index 9402d0751b4..09aafd953ef 100644 --- a/tests/command_line/test_bader_caller.py +++ b/tests/command_line/test_bader_caller.py @@ -24,7 +24,7 @@ def test_init(self): # test with reference file analysis = BaderAnalysis( chgcar_filename=f"{VASP_OUT_DIR}/CHGCAR.Fe3O4.gz", - potcar_filename=f"{VASP_IN_DIR}/POTCAR_Fe3O4", + potcar_filename=f"{VASP_IN_DIR}/POTCAR_Fe3O4.gz", chgref_filename=f"{VASP_OUT_DIR}/CHGCAR.Fe3O4_ref.gz", ) assert len(analysis.data) == 14 @@ -119,7 +119,7 @@ def test_atom_parsing(self): # test with reference file analysis = BaderAnalysis( chgcar_filename=f"{VASP_OUT_DIR}/CHGCAR.Fe3O4.gz", - potcar_filename=f"{VASP_IN_DIR}/POTCAR_Fe3O4", + potcar_filename=f"{VASP_IN_DIR}/POTCAR_Fe3O4.gz", chgref_filename=f"{VASP_OUT_DIR}/CHGCAR.Fe3O4_ref.gz", parse_atomic_densities=True, ) diff --git a/tests/files/vasp/inputs/POTCAR_Fe3O4 b/tests/files/vasp/inputs/POTCAR_Fe3O4 deleted file mode 100644 index 70215edc7a5..00000000000 --- a/tests/files/vasp/inputs/POTCAR_Fe3O4 +++ /dev/null @@ -1,3664 +0,0 @@ - PAW_PBE Fe 06Sep2000 - 8.00000000000000000 - parameters from PSCTR are: - VRHFIN =Fe: d7 s1 - LEXCH = PE - EATOM = 594.4687 eV, 43.6922 Ry - - TITEL = PAW_PBE Fe 06Sep2000 - LULTRA = F use ultrasoft PP ? - IUNSCR = 1 unscreen: 0-lin 1-nonlin 2-no - RPACOR = 2.000 partial core radius - POMASS = 55.847; ZVAL = 8.000 mass and valenz - RCORE = 2.300 outmost cutoff radius - RWIGS = 2.460; RWIGS = 1.302 wigner-seitz radius (au A) - ENMAX = 267.883; ENMIN = 200.912 eV - RCLOC = 1.701 cutoff for local pot - LCOR = T correct aug charges - LPAW = T paw PP - EAUG = 511.368 - DEXC = -.022 - RMAX = 2.817 core radius for proj-oper - RAUG = 1.300 factor for augmentation sphere - RDEP = 2.442 radius for radial grids - QCUT = -4.437; QGAM = 8.874 optimization parameters - - Description - l E TYP RCUT TYP RCUT - 2 .000 23 2.300 - 2 .000 23 2.300 - 0 .000 23 2.300 - 0 .000 23 2.300 - 1 -.200 23 2.300 - 1 .000 23 2.300 - 3 .000 7 .000 - Error from kinetic energy argument (eV) - NDATA = 100 - STEP = 20.000 1.050 - 97.7 96.4 95.6 94.1 93.3 91.6 89.9 88.9 - 87.0 85.0 84.0 81.9 79.7 77.4 75.1 72.7 - 70.3 67.9 65.4 61.7 59.2 56.6 52.9 50.4 - 47.9 44.3 40.8 38.4 35.1 31.9 28.8 25.9 - 23.2 20.6 18.2 16.0 13.3 11.5 9.41 8.01 - 6.38 5.01 3.88 2.94 2.20 1.60 1.15 .727 - .490 .288 .162 .101 .573E-01 .367E-01 .282E-01 .268E-01 - .268E-01 .258E-01 .231E-01 .190E-01 .144E-01 .102E-01 .691E-02 .438E-02 - .323E-02 .271E-02 .262E-02 .260E-02 .239E-02 .203E-02 .152E-02 .106E-02 - .729E-03 .564E-03 .513E-03 .508E-03 .481E-03 .409E-03 .300E-03 .215E-03 - .160E-03 .144E-03 .142E-03 .131E-03 .105E-03 .764E-04 .571E-04 .504E-04 - .494E-04 .447E-04 .342E-04 .254E-04 .210E-04 .204E-04 .186E-04 .144E-04 - .107E-04 .960E-05 .924E-05 .776E-05 -END of PSCTR-controll parameters - local part - 81.2582175088937078 - .86360772E+02 .86347328E+02 .86306975E+02 .86239767E+02 .86145770E+02 - .86025081E+02 .85877820E+02 .85704132E+02 .85504188E+02 .85278179E+02 - .85026322E+02 .84748853E+02 .84446029E+02 .84118129E+02 .83765451E+02 - .83388314E+02 .82987056E+02 .82562038E+02 .82113638E+02 .81642258E+02 - .81148318E+02 .80632260E+02 .80094548E+02 .79535665E+02 .78956113E+02 - .78356416E+02 .77737115E+02 .77098769E+02 .76441955E+02 .75767265E+02 - .75075306E+02 .74366700E+02 .73642080E+02 .72902093E+02 .72147396E+02 - .71378656E+02 .70596551E+02 .69801765E+02 .68994992E+02 .68176933E+02 - .67348295E+02 .66509789E+02 .65662132E+02 .64806044E+02 .63942248E+02 - .63071467E+02 .62194427E+02 .61311849E+02 .60424455E+02 .59532964E+02 - .58638089E+02 .57740539E+02 .56841016E+02 .55940216E+02 .55038824E+02 - .54137520E+02 .53236970E+02 .52337833E+02 .51440753E+02 .50546364E+02 - .49655287E+02 .48768128E+02 .47885480E+02 .47007919E+02 .46136006E+02 - .45270286E+02 .44411286E+02 .43559514E+02 .42715462E+02 .41879602E+02 - .41052386E+02 .40234247E+02 .39425598E+02 .38626832E+02 .37838320E+02 - .37060413E+02 .36293442E+02 .35537717E+02 .34793525E+02 .34061133E+02 - .33340788E+02 .32632715E+02 .31937116E+02 .31254175E+02 .30584052E+02 - .29926888E+02 .29282803E+02 .28651896E+02 .28034246E+02 .27429912E+02 - .26838935E+02 .26261333E+02 .25697109E+02 .25146247E+02 .24608711E+02 - .24084450E+02 .23573396E+02 .23075462E+02 .22590548E+02 .22118538E+02 - .21659302E+02 .21212693E+02 .20778554E+02 .20356713E+02 .19946987E+02 - .19549180E+02 .19163085E+02 .18788487E+02 .18425160E+02 .18072869E+02 - .17731371E+02 .17400416E+02 .17079747E+02 .16769102E+02 .16468212E+02 - .16176807E+02 .15894609E+02 .15621339E+02 .15356716E+02 .15100457E+02 - .14852277E+02 .14611891E+02 .14379015E+02 .14153365E+02 .13934658E+02 - .13722615E+02 .13516957E+02 .13317412E+02 .13123708E+02 .12935580E+02 - .12752766E+02 .12575011E+02 .12402066E+02 .12233686E+02 .12069634E+02 - .11909680E+02 .11753602E+02 .11601184E+02 .11452218E+02 .11306506E+02 - .11163856E+02 .11024086E+02 .10887022E+02 .10752498E+02 .10620359E+02 - .10490457E+02 .10362654E+02 .10236820E+02 .10112836E+02 .99905904E+01 - .98699797E+01 .97509103E+01 .96332968E+01 .95170622E+01 .94021374E+01 - .92884613E+01 .91759807E+01 .90646493E+01 .89544284E+01 .88452858E+01 - .87371959E+01 .86301395E+01 .85241028E+01 .84190778E+01 .83150617E+01 - .82120561E+01 .81100673E+01 .80091054E+01 .79091840E+01 .78103201E+01 - .77125332E+01 .76158452E+01 .75202802E+01 .74258636E+01 .73326222E+01 - .72405835E+01 .71497755E+01 .70602264E+01 .69719643E+01 .68850165E+01 - .67994099E+01 .67151701E+01 .66323213E+01 .65508863E+01 .64708857E+01 - .63923385E+01 .63152612E+01 .62396677E+01 .61655696E+01 .60929755E+01 - .60218914E+01 .59523203E+01 .58842619E+01 .58177134E+01 .57526684E+01 - .56891178E+01 .56270493E+01 .55664476E+01 .55072947E+01 .54495693E+01 - .53932478E+01 .53383036E+01 .52847076E+01 .52324285E+01 .51814324E+01 - .51316836E+01 .50831442E+01 .50357746E+01 .49895337E+01 .49443788E+01 - .49002664E+01 .48571516E+01 .48149891E+01 .47737327E+01 .47333363E+01 - .46937533E+01 .46549373E+01 .46168424E+01 .45794229E+01 .45426341E+01 - .45064318E+01 .44707732E+01 .44356164E+01 .44009212E+01 .43666486E+01 - .43327613E+01 .42992241E+01 .42660032E+01 .42330672E+01 .42003866E+01 - .41679341E+01 .41356846E+01 .41036155E+01 .40717063E+01 .40399389E+01 - .40082976E+01 .39767689E+01 .39453418E+01 .39140075E+01 .38827595E+01 - .38515932E+01 .38205065E+01 .37894990E+01 .37585724E+01 .37277302E+01 - .36969775E+01 .36663213E+01 .36357697E+01 .36053327E+01 .35750210E+01 - .35448468E+01 .35148231E+01 .34849638E+01 .34552835E+01 .34257972E+01 - .33965205E+01 .33674692E+01 .33386590E+01 .33101058E+01 .32818254E+01 - .32538330E+01 .32261437E+01 .31987718E+01 .31717313E+01 .31450351E+01 - .31186955E+01 .30927239E+01 .30671306E+01 .30419249E+01 .30171150E+01 - .29927078E+01 .29687093E+01 .29451239E+01 .29219549E+01 .28992042E+01 - .28768725E+01 .28549592E+01 .28334623E+01 .28123787E+01 .27917038E+01 - .27714322E+01 .27515570E+01 .27320703E+01 .27129633E+01 .26942261E+01 - .26758479E+01 .26578173E+01 .26401218E+01 .26227484E+01 .26056838E+01 - .25889137E+01 .25724237E+01 .25561990E+01 .25402246E+01 .25244855E+01 - .25089663E+01 .24936518E+01 .24785272E+01 .24635775E+01 .24487883E+01 - .24341453E+01 .24196350E+01 .24052441E+01 .23909600E+01 .23767709E+01 - .23626655E+01 .23486332E+01 .23346644E+01 .23207502E+01 .23068826E+01 - .22930542E+01 .22792589E+01 .22654913E+01 .22517467E+01 .22380217E+01 - .22243136E+01 .22106204E+01 .21969413E+01 .21832761E+01 .21696257E+01 - .21559915E+01 .21423757E+01 .21287813E+01 .21152120E+01 .21016720E+01 - .20881659E+01 .20746992E+01 .20612774E+01 .20479067E+01 .20345934E+01 - .20213442E+01 .20081659E+01 .19950654E+01 .19820498E+01 .19691262E+01 - .19563016E+01 .19435828E+01 .19309767E+01 .19184898E+01 .19061285E+01 - .18938986E+01 .18818060E+01 .18698558E+01 .18580528E+01 .18464014E+01 - .18349056E+01 .18235685E+01 .18123930E+01 .18013814E+01 .17905353E+01 - .17798557E+01 .17693434E+01 .17589980E+01 .17488192E+01 .17388056E+01 - .17289555E+01 .17192667E+01 .17097363E+01 .17003612E+01 .16911375E+01 - .16820610E+01 .16731272E+01 .16643311E+01 .16556673E+01 .16471302E+01 - .16387139E+01 .16304122E+01 .16222189E+01 .16141275E+01 .16061315E+01 - .15982242E+01 .15903990E+01 .15826494E+01 .15749688E+01 .15673509E+01 - .15597893E+01 .15522780E+01 .15448111E+01 .15373829E+01 .15299880E+01 - .15226215E+01 .15152785E+01 .15079546E+01 .15006459E+01 .14933485E+01 - .14860594E+01 .14787755E+01 .14714947E+01 .14642147E+01 .14569341E+01 - .14496518E+01 .14423671E+01 .14350796E+01 .14277896E+01 .14204975E+01 - .14132042E+01 .14059110E+01 .13986195E+01 .13913317E+01 .13840497E+01 - .13767762E+01 .13695139E+01 .13622658E+01 .13550351E+01 .13478252E+01 - .13406397E+01 .13334823E+01 .13263567E+01 .13192666E+01 .13122161E+01 - .13052089E+01 .12982488E+01 .12913396E+01 .12844850E+01 .12776885E+01 - .12709534E+01 .12642832E+01 .12576808E+01 .12511490E+01 .12446906E+01 - .12383079E+01 .12320031E+01 .12257780E+01 .12196343E+01 .12135733E+01 - .12075961E+01 .12017033E+01 .11958954E+01 .11901726E+01 .11845346E+01 - .11789810E+01 .11735110E+01 .11681236E+01 .11628173E+01 .11575906E+01 - .11524417E+01 .11473683E+01 .11423681E+01 .11374386E+01 .11325771E+01 - .11277806E+01 .11230460E+01 .11183702E+01 .11137498E+01 .11091813E+01 - .11046614E+01 .11001864E+01 .10957528E+01 .10913569E+01 .10869952E+01 - .10826642E+01 .10783602E+01 .10740799E+01 .10698200E+01 .10655771E+01 - .10613483E+01 .10571305E+01 .10529210E+01 .10487171E+01 .10445164E+01 - .10403168E+01 .10361161E+01 .10319126E+01 .10277048E+01 .10234912E+01 - .10192707E+01 .10150425E+01 .10108059E+01 .10065605E+01 .10023062E+01 - .99804289E+00 .99377101E+00 .98949101E+00 .98520365E+00 .98090985E+00 - .97661076E+00 .97230772E+00 .96800223E+00 .96369597E+00 .95939076E+00 - .95508855E+00 .95079142E+00 .94650154E+00 .94222117E+00 .93795265E+00 - .93369835E+00 .92946070E+00 .92524215E+00 .92104514E+00 .91687211E+00 - .91272549E+00 .90860764E+00 .90452089E+00 .90046748E+00 .89644957E+00 - .89246922E+00 .88852838E+00 .88462885E+00 .88077232E+00 .87696030E+00 - .87319416E+00 .86947510E+00 .86580414E+00 .86218211E+00 .85860966E+00 - .85508728E+00 .85161524E+00 .84819363E+00 .84482235E+00 .84150112E+00 - .83822948E+00 .83500675E+00 .83183213E+00 .82870459E+00 .82562296E+00 - .82258591E+00 .81959196E+00 .81663945E+00 .81372664E+00 .81085162E+00 - .80801240E+00 .80520689E+00 .80243289E+00 .79968818E+00 .79697043E+00 - .79427731E+00 .79160645E+00 .78895546E+00 .78632195E+00 .78370357E+00 - .78109797E+00 .77850284E+00 .77591595E+00 .77333510E+00 .77075820E+00 - .76818322E+00 .76560826E+00 .76303151E+00 .76045130E+00 .75786606E+00 - .75527442E+00 .75267509E+00 .75006700E+00 .74744919E+00 .74482090E+00 - .74218152E+00 .73953062E+00 .73686793E+00 .73419337E+00 .73150700E+00 - .72880907E+00 .72609997E+00 .72338027E+00 .72065068E+00 .71791207E+00 - .71516542E+00 .71241189E+00 .70965274E+00 .70688934E+00 .70412319E+00 - .70135589E+00 .69858909E+00 .69582457E+00 .69306412E+00 .69030962E+00 - .68756296E+00 .68482606E+00 .68210086E+00 .67938927E+00 .67669322E+00 - .67401457E+00 .67135517E+00 .66871680E+00 .66610118E+00 .66350995E+00 - .66094469E+00 .65840685E+00 .65589780E+00 .65341878E+00 .65097093E+00 - .64855524E+00 .64617257E+00 .64382366E+00 .64150906E+00 .63922922E+00 - .63698438E+00 .63477467E+00 .63260005E+00 .63046031E+00 .62835510E+00 - .62628392E+00 .62424612E+00 .62224091E+00 .62026736E+00 .61832442E+00 - .61641091E+00 .61452553E+00 .61266690E+00 .61083350E+00 .60902375E+00 - .60723599E+00 .60546848E+00 .60371943E+00 .60198699E+00 .60026928E+00 - .59856441E+00 .59687046E+00 .59518554E+00 .59350774E+00 .59183520E+00 - .59016609E+00 .58849864E+00 .58683113E+00 .58516193E+00 .58348947E+00 - .58181229E+00 .58012902E+00 .57843839E+00 .57673926E+00 .57503059E+00 - .57331149E+00 .57158119E+00 .56983904E+00 .56808454E+00 .56631734E+00 - .56453722E+00 .56274412E+00 .56093809E+00 .55911936E+00 .55728829E+00 - .55544535E+00 .55359119E+00 .55172655E+00 .54985229E+00 .54796940E+00 - .54607898E+00 .54418219E+00 .54228032E+00 .54037472E+00 .53846680E+00 - .53655804E+00 .53464997E+00 .53274415E+00 .53084218E+00 .52894568E+00 - .52705625E+00 .52517553E+00 .52330510E+00 .52144654E+00 .51960140E+00 - .51777115E+00 .51595724E+00 .51416103E+00 .51238379E+00 .51062673E+00 - .50889096E+00 .50717747E+00 .50548717E+00 .50382083E+00 .50217911E+00 - .50056258E+00 .49897164E+00 .49740660E+00 .49586763E+00 .49435477E+00 - .49286793E+00 .49140691E+00 .48997137E+00 .48856084E+00 .48717476E+00 - .48581243E+00 .48447304E+00 .48315568E+00 .48185933E+00 .48058291E+00 - .47932522E+00 .47808501E+00 .47686095E+00 .47565166E+00 .47445572E+00 - .47327166E+00 .47209799E+00 .47093321E+00 .46977581E+00 .46862426E+00 - .46747707E+00 .46633277E+00 .46518989E+00 .46404704E+00 .46290284E+00 - .46175599E+00 .46060524E+00 .45944943E+00 .45828747E+00 .45711836E+00 - .45594118E+00 .45475512E+00 .45355948E+00 .45235367E+00 .45113718E+00 - .44990965E+00 .44867081E+00 .44742052E+00 .44615873E+00 .44488553E+00 - .44360109E+00 .44230572E+00 .44099980E+00 .43968385E+00 .43835846E+00 - .43702432E+00 .43568220E+00 .43433297E+00 .43297757E+00 .43161700E+00 - .43025232E+00 .42888467E+00 .42751519E+00 .42614511E+00 .42477565E+00 - .42340806E+00 .42204360E+00 .42068354E+00 .41932911E+00 .41798157E+00 - .41664212E+00 .41531193E+00 .41399216E+00 .41268389E+00 .41138816E+00 - .41010595E+00 .40883817E+00 .40758567E+00 .40634921E+00 .40512948E+00 - .40392707E+00 .40274249E+00 .40157616E+00 .40042840E+00 .39929943E+00 - .39818938E+00 .39709827E+00 .39602603E+00 .39497249E+00 .39393740E+00 - .39292040E+00 .39192106E+00 .39093883E+00 .38997314E+00 .38902328E+00 - .38808852E+00 .38716804E+00 .38626097E+00 .38536637E+00 .38448329E+00 - .38361069E+00 .38274754E+00 .38189275E+00 .38104523E+00 .38020386E+00 - .37936754E+00 .37853514E+00 .37770555E+00 .37687771E+00 .37605053E+00 - .37522299E+00 .37439410E+00 .37356291E+00 .37272850E+00 .37189005E+00 - .37104677E+00 .37019792E+00 .36934285E+00 .36848098E+00 .36761179E+00 - .36673485E+00 .36584980E+00 .36495635E+00 .36405430E+00 .36314355E+00 - .36222404E+00 .36129583E+00 .36035904E+00 .35941387E+00 .35846062E+00 - .35749963E+00 .35653133E+00 .35555622E+00 .35457485E+00 .35358783E+00 - .35259584E+00 .35159958E+00 .35059981E+00 .34959734E+00 .34859298E+00 - .34758758E+00 .34658201E+00 .34557717E+00 .34457395E+00 .34357324E+00 - .34257595E+00 .34158296E+00 .34059514E+00 .33961335E+00 .33863842E+00 - .33767114E+00 .33671228E+00 .33576255E+00 .33482263E+00 .33389312E+00 - .33297462E+00 .33206761E+00 .33117256E+00 .33028985E+00 .32941980E+00 - .32856268E+00 .32771869E+00 .32688793E+00 .32607049E+00 .32526635E+00 - .32447544E+00 .32369762E+00 .32293270E+00 .32218040E+00 .32144040E+00 - .32071232E+00 .31999572E+00 .31929011E+00 .31859493E+00 .31790960E+00 - .31723350E+00 .31656596E+00 .31590629E+00 .31525376E+00 .31460762E+00 - .31396713E+00 .31333151E+00 .31269997E+00 .31207175E+00 .31144606E+00 - .31082214E+00 .31019922E+00 .30957657E+00 .30895345E+00 .30832919E+00 - .30770310E+00 .30707455E+00 .30644295E+00 .30580774E+00 .30516841E+00 - .30452449E+00 .30387556E+00 .30322128E+00 .30256132E+00 .30189544E+00 - .30122345E+00 .30054520E+00 .29986061E+00 .29916966E+00 .29847237E+00 - .29776885E+00 .29705922E+00 .29634367E+00 .29562246E+00 .29489587E+00 - .29416424E+00 .29342797E+00 .29268747E+00 .29194321E+00 .29119570E+00 - .29044547E+00 .28969309E+00 .28893914E+00 .28818424E+00 .28742901E+00 - .28667409E+00 .28592012E+00 .28516775E+00 .28441762E+00 .28367038E+00 - .28292664E+00 .28218704E+00 .28145217E+00 .28072261E+00 .27999891E+00 - .27928159E+00 .27857117E+00 .27786810E+00 .27717281E+00 .27648568E+00 - .27580708E+00 .27513730E+00 .27447660E+00 .27382519E+00 .27318325E+00 - .27255087E+00 .27192813E+00 .27131503E+00 .27071155E+00 .27011760E+00 - .26953305E+00 .26895771E+00 .26839137E+00 .26783376E+00 .26728458E+00 - .26674347E+00 .26621006E+00 .26568392E+00 .26516462E+00 .26465168E+00 - .26414459E+00 .26364283E+00 .26314585E+00 .26265309E+00 .26216398E+00 - .26167794E+00 .26119439E+00 .26071273E+00 .26023239E+00 .25975280E+00 - .25927339E+00 .25879361E+00 .25831294E+00 .25783087E+00 .25734692E+00 - .25686063E+00 .25637158E+00 .25587938E+00 .25538365E+00 .25488409E+00 - .25438041E+00 .25387235E+00 .25335972E+00 .25284234E+00 .25232011E+00 - .25179294E+00 .25126081E+00 .25072372E+00 .25018173E+00 .24963495E+00 - .24908351E+00 .24852760E+00 .24796745E+00 .24740332E+00 .24683549E+00 - .24626431E+00 .24569012E+00 .24511332E+00 .24453432E+00 .24395355E+00 - .24337145E+00 .24278852E+00 .24220521E+00 .24162204E+00 .24103950E+00 - .24045809E+00 .23987832E+00 .23930070E+00 .23872572E+00 .23815387E+00 - .23758562E+00 .23702143E+00 .23646174E+00 .23590697E+00 .23535749E+00 - .23481368E+00 .23427586E+00 .23374434E+00 .23321937E+00 .23270120E+00 - .23219001E+00 .23168596E+00 .23118918E+00 .23069974E+00 .23021769E+00 - .22974303E+00 .22927572E+00 .22881569E+00 .22836282E+00 .22791697E+00 - .22747794E+00 .22704552E+00 .22661943E+00 .22619940E+00 .22578510E+00 - .22537619E+00 .22497229E+00 .22457302E+00 .22417795E+00 .22378667E+00 - .22339873E+00 .22301368E+00 .22263106E+00 .22225042E+00 .22187129E+00 - .22149321E+00 .22111572E+00 .22073838E+00 .22036074E+00 .21998237E+00 - gradient corrections used for XC - 5 - core charge-density (partial) - .19697028E+01 .19688409E+01 .19662575E+01 .19619590E+01 .19559565E+01 - .19482650E+01 .19389042E+01 .19278975E+01 .19152726E+01 .19010611E+01 - .18852983E+01 .18680233E+01 .18492785E+01 .18291098E+01 .18075661E+01 - .17846992E+01 .17605637E+01 .17352167E+01 .17087173E+01 .16811270E+01 - .16525089E+01 .16229277E+01 .15924494E+01 .15611411E+01 .15290706E+01 - .14963066E+01 .14629179E+01 .14289734E+01 .13945420E+01 .13596924E+01 - .13244924E+01 .12890095E+01 .12533099E+01 .12174589E+01 .11815202E+01 - .11455563E+01 .11096280E+01 .10737942E+01 .10381121E+01 .10026366E+01 - .96742054E+00 .93251465E+00 .89796717E+00 .86382399E+00 .83012851E+00 - .79692162E+00 .76424165E+00 .73212433E+00 .70060280E+00 .66970757E+00 - .63946656E+00 .60990509E+00 .58104588E+00 .55290914E+00 .52551257E+00 - .49887138E+00 .47299842E+00 .44790418E+00 .42359684E+00 .40008242E+00 - .37736477E+00 .35544571E+00 .33432509E+00 .31400087E+00 .29446922E+00 - .27572461E+00 .25775992E+00 .24056650E+00 .22413430E+00 .20845194E+00 - .19350683E+00 .17928525E+00 .16577243E+00 .15295270E+00 .14080950E+00 - .12932557E+00 .11848293E+00 .10826305E+00 .98646913E-01 .89615069E-01 - .81147747E-01 .73224912E-01 .65826347E-01 .58931720E-01 .52520647E-01 - .46572759E-01 .41067761E-01 .35985487E-01 .31305953E-01 .27009405E-01 - .23076368E-01 .19487685E-01 .16224556E-01 .13268575E-01 .10601761E-01 - .82065876E-02 .60660083E-02 .41634782E-02 .24829745E-02 .10090127E-02 - -.27333932E-03 -.13784503E-02 -.23201173E-02 -.31115593E-02 -.37654139E-02 - -.42937354E-02 -.47079959E-02 -.50190877E-02 -.52373275E-02 -.53724635E-02 - -.54336820E-02 -.54296177E-02 -.53683641E-02 -.52574851E-02 -.51040283E-02 - -.49145391E-02 -.46950754E-02 -.44512235E-02 -.41881144E-02 -.39104407E-02 - -.36224742E-02 -.33280835E-02 -.30307525E-02 -.27335980E-02 -.24393888E-02 - -.21505637E-02 -.18692501E-02 -.15972823E-02 -.13362196E-02 -.10873640E-02 - -.85177821E-03 -.63030271E-03 -.42357252E-03 -.23203383E-03 -.55959926E-04 - .10453333E-03 .24947254E-03 .37901234E-03 .49342163E-03 .59307033E-03 - .67841677E-03 .74999570E-03 .80840696E-03 .85430476E-03 .88838761E-03 - .91138885E-03 .92406789E-03 .92720205E-03 .92157895E-03 .90798961E-03 - .88722212E-03 .86005583E-03 .82725619E-03 .78957014E-03 .74772190E-03 - .70240948E-03 .65430150E-03 .60403455E-03 .55221102E-03 .49939733E-03 - .44612251E-03 .39287725E-03 .34011324E-03 .28824280E-03 .23763895E-03 - .18863559E-03 .14152807E-03 .96573895E-04 .53993738E-04 .13972534E-04 - -.23339179E-04 -.57823816E-04 -.89395162E-04 -.11799669E-03 -.14359980E-03 - -.16620195E-03 -.18582483E-03 -.20251238E-03 -.21632887E-03 -.22735698E-03 - -.23569583E-03 -.24145908E-03 -.24477304E-03 -.24577484E-03 -.24461061E-03 - -.24143379E-03 -.23640343E-03 -.22968264E-03 -.22143703E-03 -.21183335E-03 - -.20103807E-03 -.18921623E-03 -.17653021E-03 -.16313871E-03 -.14919580E-03 - -.13485000E-03 -.12024361E-03 -.10551193E-03 -.90782766E-04 -.76175878E-04 - -.61802630E-04 -.47765649E-04 -.34158606E-04 -.21066060E-04 -.85633844E-05 - .32832375E-05 .14416752E-04 .24789109E-04 .34361083E-04 .43102036E-04 - .50989634E-04 .58009526E-04 .64154975E-04 .69426462E-04 .73831262E-04 - .77382988E-04 .80101127E-04 .82010550E-04 .83141016E-04 .83526672E-04 - .83205542E-04 .82219025E-04 .80611391E-04 .78429290E-04 .75721264E-04 - .72537282E-04 .68928279E-04 .64945728E-04 .60641215E-04 .56066049E-04 - .51270894E-04 .46305415E-04 .41217967E-04 .36055294E-04 .30862269E-04 - .25681653E-04 .20553883E-04 .15516895E-04 .10605965E-04 .58535842E-05 - .12893582E-05 -.30600659E-05 -.71710491E-05 -.11022984E-04 -.14598295E-04 - -.17882418E-04 -.20863758E-04 -.23533627E-04 -.25886163E-04 -.27918236E-04 - -.29629334E-04 -.31021440E-04 -.32098893E-04 -.32868241E-04 -.33338086E-04 - -.33518915E-04 -.33422937E-04 -.33063907E-04 -.32456943E-04 -.31618357E-04 - -.30565470E-04 -.29316435E-04 -.27890065E-04 -.26305658E-04 -.24582830E-04 - -.22741357E-04 -.20801014E-04 -.18781431E-04 -.16701949E-04 -.14581494E-04 - -.12438448E-04 -.10290540E-04 -.81547405E-05 -.60471718E-05 -.39830216E-05 - -.19764732E-05 -.40643817E-07 .18124668E-05 .35720162E-05 .52283501E-05 - .67730217E-05 .81988031E-05 .94996853E-05 .10670871E-04 .11708759E-04 - .12610917E-04 .13376052E-04 .14003971E-04 .14495534E-04 .14852607E-04 - .15077999E-04 .15175408E-04 .15149352E-04 .15005101E-04 .14748608E-04 - .14386437E-04 .13925684E-04 .13373908E-04 .12739050E-04 .12029364E-04 - .11253336E-04 .10419616E-04 .95369438E-05 .86140829E-05 .76597516E-05 - .66825604E-05 .56909524E-05 .46931466E-05 .36970852E-05 .27103854E-05 - .17402956E-05 .79365494E-06 -.12314093E-06 -.10041708E-05 -.18440137E-05 - -.26377696E-05 -.33810764E-05 -.40701215E-05 -.47016492E-05 -.52729639E-05 - -.57819286E-05 -.62269599E-05 -.66070187E-05 -.69215975E-05 -.71707042E-05 - -.73548425E-05 -.74749900E-05 -.75325727E-05 -.75294384E-05 -.74678267E-05 - -.73503379E-05 -.71799006E-05 -.69597375E-05 -.66933310E-05 -.63843872E-05 - -.60368003E-05 -.56546171E-05 -.52420009E-05 -.48031960E-05 -.43424939E-05 - -.38641988E-05 -.33725955E-05 -.28719179E-05 -.23663193E-05 -.18598442E-05 - -.13564022E-05 -.85974295E-06 -.37343462E-06 .99157053E-07 .55488651E-06 - .99084428E-06 .14043705E-05 .17930661E-05 .21548018E-05 .24877246E-05 - .27902624E-05 .30611260E-05 .32993088E-05 .35040852E-05 .36750064E-05 - .38118940E-05 .39148329E-05 .39841614E-05 .40204600E-05 .40245396E-05 - .39974274E-05 .39403522E-05 .38547282E-05 .37421391E-05 .36043200E-05 - .34431397E-05 .32605827E-05 .30587301E-05 .28397415E-05 .26058359E-05 - .23592734E-05 .21023371E-05 .18373153E-05 .15664841E-05 .12920911E-05 - .10163392E-05 .74137207E-06 .46925956E-06 .20198490E-06 -.58567417E-07 - -.31062261E-06 -.55252539E-06 -.78274854E-06 -.99990031E-06 -.12027306E-05 - -.13901358E-05 -.15611625E-05 -.17150103E-05 -.18510323E-05 -.19687359E-05 - -.20677816E-05 -.21479805E-05 -.22092915E-05 -.22518170E-05 -.22757977E-05 - -.22816068E-05 -.22697429E-05 -.22408227E-05 -.21955732E-05 -.21348221E-05 - -.20594897E-05 -.19705784E-05 -.18691633E-05 -.17563816E-05 -.16334228E-05 - -.15015180E-05 -.13619294E-05 -.12159403E-05 -.10648445E-05 -.90993684E-06 - -.75250303E-06 -.59381070E-06 -.43510029E-06 -.27757665E-06 -.12240108E-06 - .29316083E-07 .17652226E-06 .31822883E-06 .45351665E-06 .58154098E-06 - .70153558E-06 .81281627E-06 .91478365E-06 .10069252E-05 .10888167E-05 - .11601227E-05 .12205969E-05 .12700812E-05 .13085043E-05 .13358804E-05 - .13523061E-05 .13579575E-05 .13530870E-05 .13380192E-05 .13131463E-05 - .12789235E-05 .12358637E-05 .11845325E-05 .11255419E-05 .10595454E-05 - .98723085E-06 .90931548E-06 .82653907E-06 .73965809E-06 .64943959E-06 - .55665516E-06 .46207510E-06 .36646269E-06 .27056870E-06 .17512613E-06 - .80845196E-07 -.11591321E-07 -.10153247E-06 -.18836312E-06 -.27150761E-06 - -.35043303E-06 -.42465201E-06 -.49372522E-06 -.55726336E-06 -.61492879E-06 - -.66643667E-06 -.71155572E-06 -.75010860E-06 -.78197178E-06 -.80707513E-06 - -.82540104E-06 -.83698322E-06 -.84190514E-06 -.84029810E-06 -.83233911E-06 - -.81824834E-06 -.79828642E-06 -.77275147E-06 -.74197593E-06 -.70632322E-06 - -.66618424E-06 -.62197382E-06 -.57412694E-06 -.52309509E-06 -.46934240E-06 - -.41334195E-06 -.35557195E-06 -.29651210E-06 -.23663997E-06 -.17642747E-06 - -.11633751E-06 -.56820724E-07 .16875313E-08 .58770088E-07 .11403062E-06 - .16709607E-06 .21761890E-06 .26527903E-06 .30978558E-06 .35087831E-06 - .38832884E-06 .42194158E-06 .45155439E-06 .47703901E-06 .49830117E-06 - .51528052E-06 .52795025E-06 .53631649E-06 .54041749E-06 .54032259E-06 - .53613094E-06 .52797007E-06 .51599428E-06 .50038286E-06 .48133816E-06 - .45908353E-06 .43386121E-06 .40593005E-06 .37556320E-06 .34304574E-06 - .30867229E-06 .27274459E-06 .23556910E-06 .19745456E-06 .15870972E-06 - .11964096E-06 .80550091E-07 .41732229E-07 .34737242E-08 -.33949764E-07 - -.70275079E-07 -.10525324E-06 -.13865099E-06 -.17025216E-06 -.19985890E-06 - -.22729276E-06 -.25239555E-06 -.27503010E-06 -.29508078E-06 -.31245390E-06 - -.32707792E-06 -.33890347E-06 -.34790325E-06 -.35407173E-06 -.35742472E-06 - -.35799877E-06 -.35585043E-06 -.35105543E-06 -.34370765E-06 -.33391803E-06 - -.32181342E-06 -.30753520E-06 -.29123798E-06 -.27308814E-06 -.25326233E-06 - -.23194593E-06 -.20933148E-06 -.18561710E-06 -.16100488E-06 -.13569930E-06 - -.10990565E-06 -.83828480E-07 -.57670101E-07 -.31629114E-07 -.58990177E-08 - .19333128E-07 .43887960E-07 .67594983E-07 .90293651E-07 .11183436E-06 - .13207932E-06 .15090334E-06 .16819452E-06 .18385473E-06 .19780016E-06 - .20996155E-06 .22028447E-06 .22872935E-06 .23527155E-06 .23990115E-06 - .24262277E-06 .24345522E-06 .24243107E-06 .23959611E-06 .23500875E-06 - .22873933E-06 .22086933E-06 .21149056E-06 .20070425E-06 .18862009E-06 - .17535527E-06 .16103344E-06 .14578365E-06 .12973929E-06 .11303701E-06 - .95815619E-07 .78215018E-07 .60375141E-07 .42434904E-07 .24531193E-07 - .67978821E-08 -.10635102E-07 -.27642671E-07 -.44105405E-07 -.59910340E-07 - -.74951671E-07 -.89131404E-07 -.10235993E-06 -.11455653E-06 -.12564980E-06 - -.13557799E-06 -.14428928E-06 -.15174199E-06 -.15790467E-06 -.16275612E-06 - -.16628539E-06 -.16849163E-06 -.16938391E-06 -.16898095E-06 -.16731080E-06 - -.16441047E-06 -.16032543E-06 -.15510918E-06 -.14882261E-06 -.14153348E-06 - -.13331575E-06 -.12424890E-06 -.11441724E-06 -.10390921E-06 -.92816624E-07 - -.81233903E-07 -.69257358E-07 -.56984414E-07 -.44512870E-07 -.31940157E-07 - -.19362628E-07 -.68748505E-08 .54310567E-08 .17466069E-07 .29144858E-07 - .40386361E-07 .51114303E-07 .61257676E-07 .70751171E-07 .79535557E-07 - .87558010E-07 .94772385E-07 .10113944E-06 .10662700E-06 .11121007E-06 - .11487086E-06 .11759884E-06 .11939063E-06 .12024992E-06 .12018731E-06 - .11922012E-06 .11737208E-06 .11467312E-06 .11115897E-06 .10687080E-06 - .10185484E-06 .96161927E-07 .89847019E-07 .82968754E-07 .75588918E-07 - .67771935E-07 .59584342E-07 .51094248E-07 .42370807E-07 .33483675E-07 - .24502490E-07 .15496345E-07 .65332908E-08 -.23201588E-08 -.10999493E-07 - -.19442647E-07 -.27590427E-07 -.35386894E-07 -.42779726E-07 -.49720548E-07 - -.56165213E-07 -.62074066E-07 -.67412157E-07 -.72149418E-07 -.76260801E-07 - -.79726378E-07 -.82531401E-07 -.84666320E-07 -.86126762E-07 -.86913475E-07 - -.87032234E-07 -.86493710E-07 -.85313303E-07 -.83510950E-07 -.81110894E-07 - -.78141430E-07 -.74634625E-07 -.70626013E-07 -.66154270E-07 -.61260873E-07 - -.55989744E-07 -.50386876E-07 -.44499959E-07 -.38377995E-07 -.32070907E-07 - -.25629157E-07 -.19103354E-07 -.12543880E-07 -.60005137E-08 .47792619E-09 - .68439321E-08 .13051638E-07 .19057133E-07 .24818759E-07 .30297378E-07 - .35456627E-07 .40263139E-07 .44686742E-07 .48700633E-07 .52281518E-07 - .55409731E-07 .58069316E-07 .60248086E-07 .61937655E-07 .63133429E-07 - .63834588E-07 .64044020E-07 .63768245E-07 .63017302E-07 .61804619E-07 - .60146858E-07 .58063734E-07 .55577819E-07 .52714331E-07 .49500897E-07 - .45967312E-07 .42145277E-07 .38068138E-07 .33770604E-07 .29288471E-07 - .24658335E-07 .19917305E-07 .15102723E-07 .10251877E-07 .54017237E-08 - .58862311E-09 -.41519276E-08 -.87855430E-08 -.13279188E-07 -.17601403E-07 - -.21722514E-07 -.25614821E-07 -.29252779E-07 -.32613151E-07 -.35675145E-07 - -.38420529E-07 -.40833729E-07 -.42901898E-07 -.44614976E-07 -.45965714E-07 - -.46949689E-07 -.47565286E-07 -.47813673E-07 -.47698745E-07 -.47227051E-07 - -.46407704E-07 -.45252278E-07 -.43774673E-07 -.41990986E-07 -.39919349E-07 - -.37579765E-07 -.34993930E-07 -.32185044E-07 -.29177614E-07 -.25997253E-07 - -.22670472E-07 -.19224465E-07 -.15686899E-07 -.12085700E-07 -.84488388E-08 - -.48041239E-08 -.11789957E-08 .23996724E-08 .59057655E-08 .93141108E-08 - .12600650E-07 .15742603E-07 .18718618E-07 .21508906E-07 .24095369E-07 - .26461708E-07 .28593515E-07 .30478355E-07 .32105825E-07 .33467605E-07 - .34557486E-07 .35371387E-07 .35907347E-07 .36165518E-07 .36148122E-07 - .35859410E-07 .35305598E-07 .34494790E-07 .33436890E-07 .32143502E-07 - .30627819E-07 .28904499E-07 .26989532E-07 .24900108E-07 .22654464E-07 - .20271735E-07 .17771798E-07 .15175115E-07 .12502567E-07 .97752953E-08 - .70145411E-08 .42414825E-08 .14770793E-08 -.12580805E-08 -.39439286E-08 - -.65610585E-08 -.90908609E-08 -.11515651E-07 -.13818784E-07 -.15984771E-07 - -.17999370E-07 -.19849678E-07 -.21524207E-07 -.23012951E-07 -.24307434E-07 - -.25400757E-07 -.26287625E-07 -.26964360E-07 -.27428910E-07 -.27680837E-07 - -.27721300E-07 -.27553022E-07 -.27180245E-07 -.26608683E-07 -.25845452E-07 - -.24898999E-07 -.23779022E-07 -.22496376E-07 -.21062979E-07 -.19491707E-07 - -.17796283E-07 -.15991164E-07 -.14091424E-07 -.12112628E-07 -.10070715E-07 - -.79818717E-08 -.58624049E-08 -.37286229E-08 -.15967116E-08 .51738432E-09 - .25980767E-08 .46302454E-08 .65993442E-08 .84915016E-08 .10293615E-07 - .11993436E-07 .13579654E-07 .15041962E-07 .16371124E-07 .17559027E-07 - .18598726E-07 .19484479E-07 .20211777E-07 .20777355E-07 .21179202E-07 - .21416560E-07 .21489910E-07 .21400953E-07 .21152578E-07 .20748829E-07 - .20194853E-07 .19496852E-07 .18662018E-07 .17698469E-07 .16615174E-07 - .15421874E-07 .14129002E-07 .12747591E-07 .11289187E-07 .97657564E-08 - .81895881E-08 .65731994E-08 .49292393E-08 .32703920E-08 .16092824E-08 - -.41618036E-10 -.16700817E-08 -.32642128E-08 -.48125320E-08 -.63040562E-08 - -.77283736E-08 -.90757143E-08 -.10337014E-07 -.11503973E-07 -.12569106E-07 - -.13525791E-07 -.14368301E-07 -.15091843E-07 -.15692572E-07 -.16167616E-07 - -.16515077E-07 -.16734040E-07 -.16824558E-07 -.16787647E-07 -.16625259E-07 - -.16340260E-07 -.15936395E-07 -.15418248E-07 -.14791196E-07 -.14061361E-07 - -.13235551E-07 -.12321206E-07 -.11326326E-07 -.10259412E-07 -.91293908E-08 - -.79455458E-08 -.67174412E-08 -.54548477E-08 -.41676674E-08 -.28658574E-08 - -.15593553E-08 -.25800528E-09 .10285143E-08 .22907609E-08 .35195950E-08 - .47062449E-08 .58423668E-08 .69201018E-08 .79321286E-08 .88717108E-08 - .97327396E-08 .10509772E-07 .11198062E-07 .11793587E-07 .12293071E-07 - .12693995E-07 .12994611E-07 .13193941E-07 .13291779E-07 .13288677E-07 - .13185938E-07 .12985590E-07 .12690367E-07 .12303676E-07 .11829567E-07 - .11272689E-07 .10638254E-07 .99319870E-08 .91600776E-08 .83291288E-08 - .74461018E-08 .65182598E-08 .55531101E-08 .45583451E-08 .35417821E-08 - .25113042E-08 .14747998E-08 .44010444E-09 -.58505751E-09 -.15931289E-08 - -.25767742E-08 -.35289312E-08 -.44428609E-08 -.53121932E-08 -.61309700E-08 - -.68936848E-08 -.75953182E-08 -.82313689E-08 -.87978814E-08 -.92914685E-08 - -.97093298E-08 -.10049265E-07 -.10309684E-07 -.10489609E-07 -.10588678E-07 - -.10607135E-07 -.10545826E-07 -.10406182E-07 -.10190201E-07 -.99004286E-08 - -.95399309E-08 -.91122647E-08 -.86214460E-08 -.80719140E-08 -.74684931E-08 - -.68163520E-08 -.61209611E-08 -.53880479E-08 -.46235514E-08 -.38335749E-08 - -.30243388E-08 -.22021326E-08 -.13732671E-08 -.54402723E-09 .27937486E-09 - atomic pseudo charge-density - .80000000E+01 .79911143E+01 .79645955E+01 .79208546E+01 .78605573E+01 - .77845978E+01 .76940645E+01 .75901999E+01 .74743574E+01 .73479587E+01 - .72124516E+01 .70692729E+01 .69198157E+01 .67654025E+01 .66072656E+01 - .64465323E+01 .62842166E+01 .61212162E+01 .59583124E+01 .57961752E+01 - .56353692E+01 .54763620E+01 .53195335E+01 .51651857E+01 .50135523E+01 - .48648082E+01 .47190779E+01 .45764442E+01 .44369549E+01 .43006295E+01 - .41674648E+01 .40374397E+01 .39105190E+01 .37866574E+01 .36658020E+01 - .35478944E+01 .34328734E+01 .33206757E+01 .32112374E+01 .31044952E+01 - .30003866E+01 .28988510E+01 .27998295E+01 .27032655E+01 .26091048E+01 - .25172955E+01 .24277883E+01 .23405359E+01 .22554937E+01 .21726191E+01 - .20918714E+01 .20132120E+01 .19366039E+01 .18620119E+01 .17894020E+01 - .17187415E+01 .16499991E+01 .15831441E+01 .15181470E+01 .14549789E+01 - .13936117E+01 .13340175E+01 .12761692E+01 .12200399E+01 .11656029E+01 - .11128319E+01 .10617007E+01 .10121830E+01 .96425285E+00 .91788416E+00 - .87305087E+00 .82972686E+00 .78788598E+00 .74750199E+00 .70854855E+00 - .67099922E+00 .63482748E+00 .60000665E+00 .56650999E+00 .53431061E+00 - .50338154E+00 .47369570E+00 .44522591E+00 .41794491E+00 .39182536E+00 - .36683988E+00 .34296101E+00 .32016127E+00 .29841316E+00 .27768916E+00 - .25796177E+00 .23920351E+00 .22138696E+00 .20448474E+00 .18846957E+00 - .17331426E+00 .15899174E+00 .14547508E+00 .13273751E+00 .12075243E+00 - .10949346E+00 .98934411E-01 .89049359E-01 .79812624E-01 .71198810E-01 - .63182820E-01 .55739873E-01 .48845531E-01 .42475709E-01 .36606698E-01 - .31215183E-01 .26278261E-01 .21773455E-01 .17678733E-01 .13972522E-01 - .10633725E-01 .76417324E-02 .49764381E-02 .26182497E-02 .54810090E-03 - -.12525374E-02 -.28016481E-02 -.41166587E-02 -.52144339E-02 -.61112688E-02 - -.68228833E-02 -.73644176E-02 -.77504286E-02 -.79948877E-02 -.81111795E-02 - -.81121012E-02 -.80098641E-02 -.78160950E-02 -.75418394E-02 -.71975658E-02 - -.67931703E-02 -.63379832E-02 -.58407758E-02 -.53097686E-02 -.47526403E-02 - -.41765374E-02 -.35880853E-02 -.29933998E-02 -.23980991E-02 -.18073173E-02 - -.12257177E-02 -.65750788E-03 -.10645377E-03 .42410415E-03 .93123513E-03 - .14124017E-02 .18654427E-02 .22885565E-02 .26802832E-02 .30394875E-02 - .33653403E-02 .36573015E-02 .39151017E-02 .41387243E-02 .43283880E-02 - .44845286E-02 .46077818E-02 .46989657E-02 .47590637E-02 .47892078E-02 - .47906620E-02 .47648064E-02 .47131216E-02 .46371733E-02 .45385978E-02 - .44190881E-02 .42803800E-02 .41242390E-02 .39524484E-02 .37667973E-02 - .35690693E-02 .33610325E-02 .31444295E-02 .29209680E-02 .26923133E-02 - .24600795E-02 .22258235E-02 .19910381E-02 .17571463E-02 .15254970E-02 - .12973601E-02 .10739231E-02 .85628812E-03 .64546977E-03 .44239306E-03 - .24789249E-03 .62711407E-04 -.11249803E-03 -.27717436E-03 -.43084585E-03 - -.57312907E-03 -.70372703E-03 -.82242687E-03 -.92909727E-03 -.10236854E-02 - -.11062137E-02 -.11767763E-02 -.12355350E-02 -.12827155E-02 -.13186030E-02 - -.13435379E-02 -.13579112E-02 -.13621601E-02 -.13567630E-02 -.13422353E-02 - -.13191240E-02 -.12880037E-02 -.12494716E-02 -.12041429E-02 -.11526466E-02 - -.10956206E-02 -.10337080E-02 -.96755283E-03 -.89779596E-03 -.82507155E-03 - -.75000339E-03 -.67320165E-03 -.59525971E-03 -.51675127E-03 -.43822774E-03 - -.36021579E-03 -.28321519E-03 -.20769691E-03 -.13410144E-03 -.62837394E-04 - .57196770E-05 .71228201E-04 .13338126E-03 .19190705E-03 .24656907E-03 - .29716613E-03 .34353215E-03 .38553570E-03 .42307941E-03 .45609915E-03 - .48456310E-03 .50847057E-03 .52785076E-03 .54276135E-03 .55328695E-03 - .55953750E-03 .56164655E-03 .55976941E-03 .55408135E-03 .54477562E-03 - .53206155E-03 .51616255E-03 .49731409E-03 .47576179E-03 .45175936E-03 - .42556669E-03 .39744796E-03 .36766972E-03 .33649911E-03 .30420209E-03 - .27104182E-03 .23727697E-03 .20316032E-03 .16893727E-03 .13484455E-03 - .10110904E-03 .67946610E-04 .35561177E-04 .41438052E-05 -.26128061E-04 - -.55091242E-04 -.82597364E-04 -.10851328E-03 -.13272138E-03 -.15511978E-03 - -.17562244E-03 -.19415912E-03 -.21067530E-03 -.22513192E-03 -.23750513E-03 - -.24778588E-03 -.25597944E-03 -.26210485E-03 -.26619434E-03 -.26829261E-03 - -.26845611E-03 -.26675225E-03 -.26325860E-03 -.25806196E-03 -.25125754E-03 - -.24294799E-03 -.23324245E-03 -.22225567E-03 -.21010701E-03 -.19691949E-03 - -.18281886E-03 -.16793272E-03 -.15238953E-03 -.13631780E-03 -.11984520E-03 - -.10309776E-03 -.86199100E-04 -.69269667E-04 -.52426063E-04 -.35780394E-04 - -.19439681E-04 -.35053192E-05 .11927410E-04 .26769766E-04 .40939919E-04 - .54363271E-04 .66972708E-04 .78708800E-04 .89519948E-04 .99362467E-04 - .10820062E-03 .11600660E-03 .12276045E-03 .12844995E-03 .13307044E-03 - .13662463E-03 .13912231E-03 .14058008E-03 .14102102E-03 .14047434E-03 - .13897497E-03 .13656316E-03 .13328403E-03 .12918713E-03 .12432597E-03 - .11875753E-03 .11254180E-03 .10574121E-03 .98420256E-04 .90644892E-04 - .82482116E-04 .73999465E-04 .65264554E-04 .56344621E-04 .47306091E-04 - .38214158E-04 .29132389E-04 .20122346E-04 .11243245E-04 .25516222E-05 - -.58989542E-05 -.14058155E-04 -.21879126E-04 -.29318697E-04 -.36337559E-04 - -.42900410E-04 -.48976070E-04 -.54537567E-04 -.59562191E-04 -.64031519E-04 - -.67931410E-04 -.71251974E-04 -.73987513E-04 -.76136430E-04 -.77701128E-04 - -.78687870E-04 -.79106625E-04 -.78970899E-04 -.78297533E-04 -.77106502E-04 - -.75420686E-04 -.73265636E-04 -.70669326E-04 -.67661896E-04 -.64275389E-04 - -.60543486E-04 -.56501231E-04 -.52184760E-04 -.47631031E-04 -.42877551E-04 - -.37962115E-04 -.32922543E-04 -.27796430E-04 -.22620899E-04 -.17432372E-04 - -.12266343E-04 -.71571699E-05 -.21378779E-05 .27600237E-05 .75067082E-05 - .12074184E-04 .16436427E-04 .20569505E-04 .24451673E-04 .28063460E-04 - .31387736E-04 .34409762E-04 .37117222E-04 .39500239E-04 .41551373E-04 - .43265607E-04 .44640312E-04 .45675201E-04 .46372268E-04 .46735714E-04 - .46771858E-04 .46489041E-04 .45897514E-04 .45009322E-04 .43838174E-04 - .42399310E-04 .40709360E-04 .38786193E-04 .36648773E-04 .34316997E-04 - .31811547E-04 .29153725E-04 .26365301E-04 .23468355E-04 .20485123E-04 - .17437848E-04 .14348629E-04 .11239281E-04 .81312003E-05 .50452290E-05 - .20015356E-05 -.98050238E-06 -.38824061E-05 -.66866943E-05 -.93769734E-05 - -.11938018E-04 -.14355843E-04 -.16617762E-04 -.18712441E-04 -.20629936E-04 - -.22361729E-04 -.23900744E-04 -.25241357E-04 -.26379404E-04 -.27312163E-04 - -.28038343E-04 -.28558056E-04 -.28872779E-04 -.28985314E-04 -.28899737E-04 - -.28621338E-04 -.28156560E-04 -.27512925E-04 -.26698961E-04 -.25724123E-04 - -.24598705E-04 -.23333755E-04 -.21940984E-04 -.20432673E-04 -.18821579E-04 - -.17120840E-04 -.15343881E-04 -.13504316E-04 -.11615859E-04 -.96922285E-05 - -.77470570E-05 -.57938065E-05 -.38456823E-05 -.19155530E-05 -.15873945E-07 - .18413849E-05 .36448059E-05 .53835862E-05 .70475937E-05 .86274191E-05 - .10114420E-04 .11500761E-04 .12779446E-04 .13944346E-04 .14990217E-04 - .15912720E-04 .16708422E-04 .17374805E-04 .17910257E-04 .18314067E-04 - .18586406E-04 .18728307E-04 .18741643E-04 .18629092E-04 .18394103E-04 - .18040859E-04 .17574233E-04 .16999738E-04 .16323481E-04 .15552110E-04 - .14692758E-04 .13752985E-04 .12740722E-04 .11664210E-04 .10531941E-04 - .93525937E-05 .81349784E-05 .68879722E-05 .56204618E-05 .43412849E-05 - .30591735E-05 .17826992E-05 .52022086E-06 -.72016618E-06 -.19306769E-05 - -.31038815E-05 -.42327462E-05 -.53106712E-05 -.63315254E-05 -.72896762E-05 - -.81800168E-05 -.89979885E-05 -.97396001E-05 -.10401442E-04 -.10980697E-04 - -.11475148E-04 -.11883178E-04 -.12203773E-04 -.12436512E-04 -.12581562E-04 - -.12639664E-04 -.12612115E-04 -.12500755E-04 -.12307936E-04 -.12036504E-04 - -.11689766E-04 -.11271464E-04 -.10785737E-04 -.10237093E-04 -.96303654E-05 - -.89706813E-05 -.82634192E-05 -.75141700E-05 -.67286967E-05 -.59128932E-05 - -.50727434E-05 -.42142807E-05 -.33435471E-05 -.24665543E-05 -.15892441E-05 - -.71745151E-06 .14313199E-06 .98699276E-06 .18088280E-05 .26035765E-05 - .33664477E-05 .40929479E-05 .47789045E-05 .54204877E-05 .60142291E-05 - .65570385E-05 .70462171E-05 .74794684E-05 .78549061E-05 .81710592E-05 - .84268748E-05 .86217170E-05 .87553643E-05 .88280036E-05 .88402221E-05 - .87929963E-05 .86876789E-05 .85259838E-05 .83099679E-05 .80420124E-05 - .77248013E-05 .73612986E-05 .69547241E-05 .65085279E-05 .60263635E-05 - .55120611E-05 .49695984E-05 .44030727E-05 .38166716E-05 .32146440E-05 - .26012709E-05 .19808369E-05 .13576018E-05 .73577272E-06 .11947758E-06 - -.48726111E-06 -.10805509E-05 -.16566532E-05 -.22120051E-05 -.27432404E-05 - -.32472084E-05 -.37209912E-05 -.41619196E-05 -.45675862E-05 -.49358576E-05 - -.52648838E-05 -.55531057E-05 -.57992615E-05 -.60023895E-05 -.61618302E-05 - -.62772255E-05 -.63485168E-05 -.63759399E-05 -.63600194E-05 -.63015606E-05 - -.62016394E-05 -.60615911E-05 -.58829974E-05 -.56676723E-05 -.54176459E-05 - -.51351481E-05 -.48225903E-05 -.44825467E-05 -.41177343E-05 -.37309933E-05 - -.33252656E-05 -.29035741E-05 -.24690012E-05 -.20246670E-05 -.15737087E-05 - -.11192586E-05 -.66442388E-06 -.21226609E-06 .23421865E-06 .67211853E-06 - .10986242E-05 .15110460E-05 .19068301E-05 .22835733E-05 .26390369E-05 - .29711595E-05 .32780674E-05 .35580849E-05 .38097419E-05 .40317813E-05 - .42231638E-05 .43830714E-05 .45109099E-05 .46063095E-05 .46691235E-05 - .46994264E-05 .46975098E-05 .46638772E-05 .45992377E-05 .45044981E-05 - .43807534E-05 .42292774E-05 .40515111E-05 .38490504E-05 .36236336E-05 - .33771271E-05 .31115111E-05 .28288652E-05 .25313519E-05 .22212020E-05 - .19006977E-05 .15721571E-05 .12379179E-05 .90032132E-06 .56169651E-06 - .22434493E-06 -.10947466E-06 -.43756072E-06 -.75778295E-06 -.10680955E-05 - -.13665496E-05 -.16513052E-05 -.19206416E-05 -.21729675E-05 -.24068299E-05 - -.26209213E-05 -.28140872E-05 -.29853310E-05 -.31338187E-05 -.32588819E-05 - -.33600204E-05 -.34369025E-05 -.34893650E-05 -.35174123E-05 -.35212131E-05 - -.35010977E-05 -.34575527E-05 -.33912160E-05 -.33028700E-05 -.31934344E-05 - -.30639577E-05 -.29156088E-05 -.27496668E-05 -.25675110E-05 -.23706102E-05 - -.21605115E-05 -.19388287E-05 -.17072302E-05 -.14674273E-05 -.12211619E-05 - -.97019428E-06 -.71629092E-06 -.46121256E-06 -.20670235E-06 .45525629E-07 - .29379755E-06 .53649050E-06 .77204278E-06 .99896347E-06 .12158415E-05 - .14213542E-05 .16142745E-05 .17934784E-05 .19579506E-05 .21067902E-05 - .22392145E-05 .23545635E-05 .24523017E-05 .25320205E-05 .25934389E-05 - .26364034E-05 .26608877E-05 .26669906E-05 .26549336E-05 .26250579E-05 - .25778200E-05 .25137875E-05 .24336329E-05 .23381285E-05 .22281388E-05 - .21046142E-05 .19685827E-05 .18211422E-05 .16634521E-05 .14967245E-05 - .13222151E-05 .11412146E-05 .95503878E-06 .76501999E-06 .57249746E-06 - .37880830E-06 .18527854E-06 -.67857148E-08 -.19610677E-06 -.38144357E-06 - -.56159956E-06 -.73543011E-06 -.90184949E-06 -.10598374E-05 -.12084447E-05 - -.13467993E-05 -.14741104E-05 -.15896729E-05 -.16928710E-05 -.17831810E-05 - -.18601734E-05 -.19235147E-05 -.19729681E-05 -.20083940E-05 -.20297490E-05 - -.20370854E-05 -.20305492E-05 -.20103780E-05 -.19768976E-05 -.19305193E-05 - -.18717353E-05 -.18011146E-05 -.17192977E-05 -.16269919E-05 -.15249651E-05 - -.14140397E-05 -.12950867E-05 -.11690191E-05 -.10367848E-05 -.89936014E-06 - -.75774265E-06 -.61294429E-06 -.46598430E-06 -.31788232E-06 -.16965150E-06 - -.22291817E-07 .12321647E-06 .26591911E-06 .40489389E-06 .53925638E-06 - .66816533E-06 .79082774E-06 .90650344E-06 .10145094E-05 .11142234E-05 - .12050875E-05 .12866107E-05 .13583715E-05 .14200196E-05 .14712775E-05 - .15119408E-05 .15418794E-05 .15610366E-05 .15694288E-05 .15671443E-05 - .15543420E-05 .15312488E-05 .14981577E-05 .14554248E-05 .14034657E-05 - .13427525E-05 .12738092E-05 .11972082E-05 .11135654E-05 .10235353E-05 - .92780676E-06 .82709727E-06 .72214815E-06 .61371915E-06 .50258316E-06 - .38952087E-06 .27531545E-06 .16074728E-06 .46588813E-07 -.66400494E-07 - -.17747907E-06 -.28592791E-06 -.39105511E-06 -.49220007E-06 -.58873750E-06 - -.68008110E-06 -.76568697E-06 -.84505665E-06 -.91773982E-06 -.98333669E-06 - -.10415000E-05 -.10919364E-05 -.11344083E-05 -.11687340E-05 -.11947885E-05 - -.12125036E-05 -.12218676E-05 -.12229246E-05 -.12157734E-05 -.12005662E-05 - -.11775070E-05 -.11468494E-05 -.11088944E-05 -.10639876E-05 -.10125166E-05 - -.95490775E-06 -.89162269E-06 -.82315509E-06 -.75002682E-06 -.67278414E-06 - -.59199381E-06 -.50823903E-06 -.42211542E-06 -.33422685E-06 -.24518142E-06 - -.15558730E-06 -.66048756E-07 .22837823E-07 .11048777E-06 .19633186E-06 - .27981989E-06 .36042409E-06 .43764231E-06 .51100106E-06 .58005827E-06 - .64440585E-06 .70367192E-06 .75752290E-06 .80566519E-06 .84784666E-06 - .88385781E-06 .91353261E-06 .93674910E-06 .95342969E-06 .96354106E-06 - .96709393E-06 .96414241E-06 .95478315E-06 .93915419E-06 .91743354E-06 - .88983753E-06 .85661893E-06 .81806486E-06 .77449446E-06 .72625643E-06 - .67372634E-06 .61730387E-06 .55740986E-06 .49448330E-06 .42897818E-06 - .36136036E-06 .29210432E-06 .22168994E-06 .15059927E-06 .79313283E-07 - .83087687E-08 -.61944818E-07 -.13098836E-06 -.19837597E-06 -.26367784E-06 - -.32648284E-06 -.38640104E-06 -.44306607E-06 -.49613724E-06 -.54530153E-06 - -.59027533E-06 -.63080597E-06 -.66667307E-06 -.69768963E-06 -.72370289E-06 - -.74459496E-06 -.76028320E-06 -.77072042E-06 -.77589476E-06 -.77582940E-06 - -.77058201E-06 -.76024404E-06 -.74493970E-06 -.72482481E-06 -.70008542E-06 - -.67093627E-06 -.63761906E-06 -.60040056E-06 -.55957057E-06 -.51543981E-06 - -.46833757E-06 -.41860939E-06 -.36661461E-06 -.31272380E-06 -.25731624E-06 - -.20077728E-06 -.14349576E-06 -.85861386E-07 -.28262130E-07 .28918308E-07 - .85303002E-07 .14052423E-06 .19422582E-06 .24606537E-06 .29571642E-06 - .34287042E-06 .38723860E-06 .42855371E-06 .46657154E-06 .50107233E-06 - .53186198E-06 .55877307E-06 .58166572E-06 .60042822E-06 .61497753E-06 - .62525947E-06 .63124889E-06 .63294947E-06 .63039342E-06 .62364103E-06 - .61277993E-06 .59792426E-06 .57921365E-06 .55681206E-06 .53090639E-06 - .50170507E-06 .46943642E-06 .43434697E-06 .39669962E-06 .35677171E-06 - .31485307E-06 .27124396E-06 .22625295E-06 .18019481E-06 .13338832E-06 - .86154159E-07 .38812697E-07 -.83180962E-08 -.54924765E-07 -.10070041E-06 - -.14534666E-06 -.18857558E-06 -.23011153E-06 -.26969281E-06 -.30707333E-06 - -.34202409E-06 -.37433453E-06 -.40381378E-06 -.43029173E-06 -.45361998E-06 - -.47367262E-06 -.49034688E-06 -.50356357E-06 -.51326739E-06 -.51942712E-06 - -.52203553E-06 -.52110929E-06 -.51668857E-06 -.50883658E-06 -.49763894E-06 - -.48320288E-06 -.46565635E-06 -.44514694E-06 -.42184073E-06 -.39592102E-06 - -.36758690E-06 -.33705180E-06 -.30454196E-06 -.27029470E-06 -.23455682E-06 - -.19758281E-06 -.15963309E-06 -.12097217E-06 -.81866896E-07 -.42584578E-07 - -.33912257E-08 .35450244E-07 .73681739E-07 .11105169E-06 .14731666E-06 - 16.2516435017787408 T - Non local Part - 2 2 1.49073566428804694 - 22.6160833033276560 -8.75830154446741460 -8.75830154446741460 3.23304877271115965 - Reciprocal Space Part - .00000000E+00 .17238469E-01 .68672389E-01 .15346234E+00 .27022603E+00 - .41706304E+00 .59158878E+00 .79097698E+00 .10120099E+01 .12511352E+01 - .15045283E+01 .17681597E+01 .20378642E+01 .23094130E+01 .25785856E+01 - .28412407E+01 .30933848E+01 .33312371E+01 .35512898E+01 .37503625E+01 - .39256496E+01 .40747600E+01 .41957493E+01 .42871422E+01 .43479474E+01 - .43776621E+01 .43762684E+01 .43442207E+01 .42824257E+01 .41922134E+01 - .40753024E+01 .39337592E+01 .37699514E+01 .35864981E+01 .33862170E+01 - .31720693E+01 .29471042E+01 .27144042E+01 .24770315E+01 .22379765E+01 - .20001104E+01 .17661421E+01 .15385787E+01 .13196932E+01 .11114969E+01 - .91571815E+00 .73378818E+00 .56683230E+00 .41566801E+00 .28080888E+00 - .16247403E+00 .60602890E-01 -.25125512E-01 -.95269282E-01 -.15059708E+00 - -.19205897E+00 -.22075551E+00 -.23790571E+00 -.24481474E+00 -.24284194E+00 - -.23336996E+00 -.21777549E+00 -.19740219E+00 -.17353630E+00 -.14738519E+00 - -.12005930E+00 -.92557455E-01 -.65755908E-01 -.40400842E-01 -.17104481E-01 - .36554583E-02 .21533164E-01 .36309267E-01 .47882845E-01 .56261290E-01 - .61548409E-01 .63931216E-01 .63665810E-01 .61062778E-01 .56472518E-01 - .50270866E-01 .42845365E-01 .34582492E-01 .25856093E-01 .17017237E-01 - .83856568E-02 .24286421E-03 -.71729929E-02 -.13670537E-01 -.19106874E-01 - -.23387703E-01 -.26465949E-01 -.28339075E-01 -.29045256E-01 -.28658628E-01 - -.27283812E-01 -.25049944E-01 -.22104419E-01 -.18606579E-01 -.14721511E-01 - Real Space Part - .00000000E+00 .12186065E-01 .48510836E-01 .10828145E+00 .19036761E+00 - .29323728E+00 .41500489E+00 .55349013E+00 .70628528E+00 .87082856E+00 - .10444808E+01 .12246027E+01 .14086300E+01 .15941436E+01 .17789324E+01 - .19610469E+01 .21388409E+01 .23110014E+01 .24765646E+01 .26349177E+01 - .27857883E+01 .29292197E+01 .30655353E+01 .31952928E+01 .33192299E+01 - .34382050E+01 .35531341E+01 .36649265E+01 .37744233E+01 .38823391E+01 - .39892104E+01 .40953529E+01 .42008280E+01 .43054211E+01 .44086316E+01 - .45096753E+01 .46074991E+01 .47008064E+01 .47880943E+01 .48676981E+01 - .49378450E+01 .49967111E+01 .50424834E+01 .50734210E+01 .50879164E+01 - .50845521E+01 .50621529E+01 .50198301E+01 .49570173E+01 .48734963E+01 - .47694129E+01 .46452810E+01 .45019766E+01 .43407204E+01 .41630514E+01 - .39707911E+01 .37660011E+01 .35509338E+01 .33279795E+01 .30996114E+01 - .28683288E+01 .26366023E+01 .24068214E+01 .21812463E+01 .19619645E+01 - .17508549E+01 .15495580E+01 .13594545E+01 .11816516E+01 .10169770E+01 - .86598090E+00 .72894425E+00 .60589416E+00 .49662418E+00 .40071921E+00 - .31758371E+00 .24647223E+00 .18652105E+00 .13677994E+00 .96243125E-01 - .63878495E-01 .38654454E-01 .19563717E-01 .56437124E-02 -.40067213E-02 - -.10214447E-01 -.13722925E-01 -.15186746E-01 -.15169523E-01 -.14144809E-01 - -.12499606E-01 -.10540002E-01 -.84984602E-02 -.65422569E-02 -.47826197E-02 - -.32841147E-02 -.20739068E-02 -.11505625E-02 -.49213204E-03 -.63313785E-04 - Reciprocal Space Part - .00000000E+00 .52390048E-01 .20839877E+00 .46455973E+00 .81515486E+00 - .12523029E+01 .17660820E+01 .23446855E+01 .29746098E+01 .36408707E+01 - .43272486E+01 .50165579E+01 .56909373E+01 .63321590E+01 .69219510E+01 - .74423293E+01 .78759333E+01 .82063618E+01 .84185011E+01 .84988409E+01 - .84357722E+01 .82198600E+01 .78440864E+01 .73040565E+01 .65981641E+01 - .57277103E+01 .46969721E+01 .35132177E+01 .21866653E+01 .73038479E+00 - -.83985771E+00 -.25058121E+01 -.42470103E+01 -.60410832E+01 -.78641227E+01 - -.96910839E+01 -.11496219E+02 -.13253538E+02 -.14937280E+02 -.16522395E+02 - -.17985021E+02 -.19302942E+02 -.20456031E+02 -.21426644E+02 -.22199986E+02 - -.22764416E+02 -.23111687E+02 -.23237136E+02 -.23139784E+02 -.22822374E+02 - -.22291331E+02 -.21556639E+02 -.20631653E+02 -.19532836E+02 -.18279428E+02 - -.16893065E+02 -.15397339E+02 -.13817326E+02 -.12179080E+02 -.10509110E+02 - -.88338500E+01 -.71791395E+01 -.55697162E+01 -.40287424E+01 -.25773693E+01 - -.12343528E+01 -.15727314E-01 .10654550E+01 .19993136E+01 .27792550E+01 - .34020112E+01 .38676027E+01 .41792272E+01 .43430788E+01 .43681022E+01 - .42656904E+01 .40493329E+01 .37342261E+01 .33368542E+01 .28745532E+01 - .23650681E+01 .18261164E+01 .12749657E+01 .72803918E+00 .20055565E+00 - -.29378668E+00 -.74307567E+00 -.11373950E+01 -.14689741E+01 -.17322771E+01 - -.19240290E+01 -.20431822E+01 -.20908244E+01 -.20700344E+01 -.19856901E+01 - -.18442359E+01 -.16534182E+01 -.14219956E+01 -.11594360E+01 -.87560505E+00 - Real Space Part - .00000000E+00 .91648928E-01 .35849175E+00 .77655914E+00 .13070309E+01 - .18978837E+01 .24861075E+01 .30004079E+01 .33642871E+01 .34993881E+01 - .33289715E+01 .27813923E+01 .17934416E+01 .31342552E+00 -.16961388E+01 - -.42563136E+01 -.73701054E+01 -.11021468E+02 -.15174985E+02 -.19776251E+02 - -.24752935E+02 -.30016501E+02 -.35464519E+02 -.40983490E+02 -.46452092E+02 - -.51744721E+02 -.56735224E+02 -.61300680E+02 -.65325103E+02 -.68702949E+02 - -.71342305E+02 -.73167653E+02 -.74122124E+02 -.74169177E+02 -.73293637E+02 - -.71502096E+02 -.68822633E+02 -.65303916E+02 -.61013692E+02 -.56036739E+02 - -.50472359E+02 -.44431499E+02 -.38033592E+02 -.31403242E+02 -.24666848E+02 - -.17949274E+02 -.11370682E+02 -.50436029E+01 .92966053E+00 .64592365E+01 - .11469437E+02 .15900027E+02 .19706995E+02 .22862820E+02 .25356256E+02 - .27191660E+02 .28387915E+02 .28977000E+02 .29002274E+02 .28516543E+02 - .27579983E+02 .26257995E+02 .24619071E+02 .22732715E+02 .20667514E+02 - .18489375E+02 .16259996E+02 .14035595E+02 .11865905E+02 .97934690E+01 - .78532056E+01 .60722596E+01 .44701004E+01 .30588497E+01 .18438041E+01 - .82411608E+00 -.64054502E-02 -.65841428E+00 -.11461045E+01 -.14862828E+01 - -.16974691E+01 -.17990526E+01 -.18105291E+01 -.17508356E+01 -.16377955E+01 - -.14876812E+01 -.13148959E+01 -.11317708E+01 -.94847005E+00 -.77299382E+00 - -.61126459E+00 -.46728234E+00 -.34333206E+00 -.24022761E+00 -.15757594E+00 - -.94047426E-01 -.47639409E-01 -.15922249E-01 .37405772E-02 .14004382E-01 - Non local Part - 0 2 1.49073566428804694 - 3.04266922390362282 -0.159856646564827592 -0.159856646564827592 0.212055158100735615E-01 - Reciprocal Space Part - .17640506E+02 .17599950E+02 .17478735E+02 .17278224E+02 .17000662E+02 - .16649139E+02 .16227548E+02 .15740518E+02 .15193343E+02 .14591903E+02 - .13942570E+02 .13252113E+02 .12527596E+02 .11776275E+02 .11005490E+02 - .10222566E+02 .94347040E+01 .86488908E+01 .78718047E+01 .71097333E+01 - .63684993E+01 .56533961E+01 .49691347E+01 .43198021E+01 .37088311E+01 - .31389823E+01 .26123390E+01 .21303118E+01 .16936562E+01 .13024988E+01 - .95637425E+00 .65426915E+00 .39467400E+00 .17564021E+00 -.51582650E-02 - -.15036050E+00 -.26285252E+00 -.34570115E+00 -.40208894E+00 -.43525146E+00 - -.44841807E+00 -.44475711E+00 -.42732632E+00 -.39902924E+00 -.36257802E+00 - -.32046300E+00 -.27492925E+00 -.22795996E+00 -.18126676E+00 -.13628640E+00 - -.94183558E-01 -.55859182E-01 -.21963721E-01 .70854271E-02 .31083009E-01 - .50012322E-01 .64019719E-01 .73388000E-01 .78509401E-01 .79858914E-01 - .77968546E-01 .73403085E-01 .66737857E-01 .58538853E-01 .49345524E-01 - .39656443E-01 .29917934E-01 .20515697E-01 .11769345E-01 .39297158E-02 - -.28212404E-02 -.83682814E-02 -.12658692E-01 -.15696451E-01 -.17535098E-01 - -.18269666E-01 -.18028053E-01 -.16962153E-01 -.15239094E-01 -.13032863E-01 - -.10516562E-01 -.78555205E-02 -.52014091E-02 -.26874820E-02 -.42500530E-03 - .14991058E-02 .30234634E-02 .41122625E-02 .47543106E-02 .49611589E-02 - .47644810E-02 .42128618E-02 .33681698E-02 .23016836E-02 .10901430E-02 - -.18811584E-03 -.14567973E-02 -.26449296E-02 -.36896905E-02 -.45386969E-02 - Real Space Part - .72152404E+01 .72234406E+01 .72478061E+01 .72876381E+01 .73417943E+01 - .74087212E+01 .74864980E+01 .75728910E+01 .76654160E+01 .77614073E+01 - .78580906E+01 .79526587E+01 .80423458E+01 .81245000E+01 .81966507E+01 - .82565689E+01 .83023196E+01 .83323038E+01 .83452902E+01 .83404341E+01 - .83172856E+01 .82757850E+01 .82162473E+01 .81393362E+01 .80460283E+01 - .79375704E+01 .78154288E+01 .76812364E+01 .75367355E+01 .73837209E+01 - .72239839E+01 .70592603E+01 .68911814E+01 .67212331E+01 .65507207E+01 - .63807427E+01 .62121725E+01 .60456497E+01 .58815795E+01 .57201410E+01 - .55613025E+01 .54048443E+01 .52503867E+01 .50974227E+01 .49453533E+01 - .47935249E+01 .46412671E+01 .44879284E+01 .43329111E+01 .41757011E+01 - .40158943E+01 .38532178E+01 .36875449E+01 .35189046E+01 .33474850E+01 - .31736303E+01 .29978330E+01 .28207205E+01 .26430374E+01 .24656245E+01 - .22893947E+01 .21153077E+01 .19443431E+01 .17774746E+01 .16156440E+01 - .14597379E+01 .13105668E+01 .11688463E+01 .10351830E+01 .91006299E+00 - .79384520E+00 .68675786E+00 .58889906E+00 .50024079E+00 .42063603E+00 - .34982868E+00 .28746561E+00 .23311048E+00 .18625873E+00 .14635313E+00 - .11279948E+00 .84981855E-01 .62277128E-01 .44068228E-01 .29755965E-01 - .18769164E-01 .10572963E-01 .46752210E-02 .63104032E-03 -.19545264E-02 - -.34254624E-02 -.40752938E-02 -.41489141E-02 -.38455018E-02 -.33222896E-02 - -.26989487E-02 -.20623534E-02 -.14715122E-02 -.96246929E-03 -.55301152E-03 - Reciprocal Space Part - .40043072E+01 .42359070E+01 .49260363E+01 .60607858E+01 .76173044E+01 - .95642887E+01 .11862651E+02 .14466353E+02 .17323382E+02 .20376850E+02 - .23566190E+02 .26828422E+02 .30099457E+02 .33315415E+02 .36413921E+02 - .39335353E+02 .42024021E+02 .44429240E+02 .46506277E+02 .48217166E+02 - .49531355E+02 .50426183E+02 .50887189E+02 .50908224E+02 .50491398E+02 - .49646838E+02 .48392289E+02 .46752559E+02 .44758822E+02 .42447814E+02 - .39860920E+02 .37043193E+02 .34042331E+02 .30907615E+02 .27688863E+02 - .24435397E+02 .21195067E+02 .18013336E+02 .14932462E+02 .11990769E+02 - .92220488E+01 .66550828E+01 .43132929E+01 .22145330E+01 .37101232E+00 - -.12106500E+01 -.25292465E+01 -.35886896E+01 -.43976166E+01 -.49689087E+01 - -.53191370E+01 -.54679546E+01 -.54374503E+01 -.52514844E+01 -.49350211E+01 - -.45134762E+01 -.40120952E+01 -.34553752E+01 -.28665431E+01 -.22671010E+01 - -.16764450E+01 -.11115646E+01 -.58682399E+00 -.11382769E+00 .29863226E+00 - .64455103E+00 .92061308E+00 .11260292E+01 .12623168E+01 .13330342E+01 - .13434782E+01 .13003563E+01 .12114457E+01 .10852481E+01 .93065122E+00 - .75660736E+00 .57183549E+00 .38455580E+00 .20226132E+00 .31531347E-01 - -.12211070E+00 -.25429372E+00 -.36184992E+00 -.44282201E+00 -.49642939E+00 - -.52299746E+00 -.52385475E+00 -.50120366E+00 -.45797077E+00 -.39764321E+00 - -.32409731E+00 -.24142611E+00 -.15377140E+00 -.65165823E-01 .20610234E-01 - .10015294E+00 .17053745E+00 .22939635E+00 .27497265E+00 .30614731E+00 - Real Space Part - .19722647E+03 .19675754E+03 .19535942E+03 .19305790E+03 .18989519E+03 - .18592885E+03 .18123024E+03 .17588271E+03 .16997940E+03 .16362089E+03 - .15691263E+03 .14996232E+03 .14287723E+03 .13576162E+03 .12871428E+03 - .12182630E+03 .11517904E+03 .10884251E+03 .10287398E+03 .97317132E+02 - .92201476E+02 .87542269E+02 .83340796E+02 .79585046E+02 .76250744E+02 - .73302693E+02 .70696384E+02 .68379815E+02 .66295460E+02 .64382324E+02 - .62578017E+02 .60820795E+02 .59051496E+02 .57215323E+02 .55263422E+02 - .53154228E+02 .50854521E+02 .48340202E+02 .45596756E+02 .42619400E+02 - .39412943E+02 .35991347E+02 .32377038E+02 .28599987E+02 .24696596E+02 - .20708442E+02 .16680911E+02 .12661778E+02 .86997712E+01 .48431723E+01 - .11384818E+01 -.23708019E+01 -.56452656E+01 -.86504990E+01 -.11357828E+02 - -.13744853E+02 -.15795781E+02 -.17501563E+02 -.18859831E+02 -.19874662E+02 - -.20556169E+02 -.20919963E+02 -.20986485E+02 -.20780258E+02 -.20329072E+02 - -.19663137E+02 -.18814231E+02 -.17814858E+02 -.16697460E+02 -.15493683E+02 - -.14233721E+02 -.12945754E+02 -.11655488E+02 -.10385800E+02 -.91564855E+01 - -.79841180E+01 -.68820053E+01 -.58602382E+01 -.49258212E+01 -.40828737E+01 - -.33328874E+01 -.26750281E+01 -.21064663E+01 -.16227243E+01 -.12180278E+01 - -.88564879E+00 -.61823201E+00 -.40809516E+00 -.24749729E+00 -.12887038E+00 - -.45011381E-01 .10766337E-01 .44521817E-01 .61613642E-01 .66662495E-01 - .63545236E-01 .55415984E-01 .44749277E-01 .33400228E-01 .22676669E-01 - Non local Part - 1 2 1.49073566428804694 - 6.52335036003120816 -2.31902812655870605 -2.31902812655870605 0.342422398090344082 - Reciprocal Space Part - .00000000E+00 .62745132E+00 .12479458E+01 .18546361E+01 .24408919E+01 - .30004031E+01 .35272769E+01 .40161272E+01 .44621538E+01 .48612112E+01 - .52098647E+01 .55054333E+01 .57460188E+01 .59305205E+01 .60586359E+01 - .61308467E+01 .61483916E+01 .61132263E+01 .60279715E+01 .58958506E+01 - .57206181E+01 .55064806E+01 .52580124E+01 .49800671E+01 .46776864E+01 - .43560101E+01 .40201864E+01 .36752863E+01 .33262224E+01 .29776746E+01 - .26340228E+01 .22992888E+01 .19770871E+01 .16705862E+01 .13824804E+01 - .11149718E+01 .86976286E+00 .64805919E+00 .45058177E+00 .27758792E+00 - .12890032E+00 .39427546E-02 -.98218287E-01 -.17882759E+00 -.23939188E+00 - -.28162847E+00 -.30741323E+00 -.31872896E+00 -.31761534E+00 -.30612147E+00 - -.28626195E+00 -.25997721E+00 -.22909873E+00 -.19531963E+00 -.16017097E+00 - -.12500381E+00 -.90977148E-01 -.59051525E-01 -.29988029E-01 -.43523012E-02 - .17476944E-01 .35295466E-01 .49057758E-01 .58858697E-01 .64913286E-01 - .67535188E-01 .67114745E-01 .64097112E-01 .58961121E-01 .52199391E-01 - .44300147E-01 .35731115E-01 .26925791E-01 .18272252E-01 .10104643E-01 - .26973316E-02 -.37383139E-02 -.90546765E-02 -.13166365E-01 -.16046675E-01 - -.17722325E-01 -.18266813E-01 -.17792726E-01 -.16443363E-01 -.14384024E-01 - -.11793281E-01 -.88545634E-02 -.57482998E-02 -.26448739E-02 .30143317E-03 - .29573679E-02 .52144102E-02 .69912184E-02 .82348192E-02 .89205940E-02 - .90511506E-02 .86542032E-02 .77796104E-02 .64957431E-02 .48853635E-02 - Real Space Part - .00000000E+00 .15365629E+00 .30804613E+00 .46386581E+00 .62173856E+00 - .78218161E+00 .94557731E+00 .11121495E+01 .12819461E+01 .14548281E+01 - .16304665E+01 .18083454E+01 .19877733E+01 .21679002E+01 .23477410E+01 - .25262037E+01 .27021212E+01 .28742865E+01 .30414875E+01 .32025435E+01 - .33563383E+01 .35018519E+01 .36381870E+01 .37645917E+01 .38804754E+01 - .39854190E+01 .40791784E+01 .41616819E+01 .42330204E+01 .42934333E+01 - .43432882E+01 .43830570E+01 .44132894E+01 .44345839E+01 .44475590E+01 - .44528246E+01 .44509553E+01 .44424667E+01 .44277959E+01 .44072858E+01 - .43811754E+01 .43495952E+01 .43125684E+01 .42700174E+01 .42217752E+01 - .41676022E+01 .41072056E+01 .40402627E+01 .39664457E+01 .38854472E+01 - .37970058E+01 .37009305E+01 .35971224E+01 .34855935E+01 .33664820E+01 - .32400623E+01 .31067511E+01 .29671077E+01 .28218296E+01 .26717429E+01 - .25177888E+01 .23610054E+01 .22025065E+01 .20434578E+01 .18850517E+01 - .17284806E+01 .15749111E+01 .14254585E+01 .12811631E+01 .11429696E+01 - .10117088E+01 .88808304E+00 .77265607E+00 .66584616E+00 .56792386E+00 - .47901357E+00 .39909891E+00 .32803145E+00 .26554245E+00 .21125694E+00 - .16470975E+00 .12536269E+00 .92622346E-01 .65858024E-01 .44419033E-01 - .27651040E-01 .14910964E-01 .55800886E-02 -.92484589E-03 -.51427439E-02 - -.75615129E-02 -.86136631E-02 -.86740538E-02 -.80596253E-02 -.70308973E-02 - -.57949747E-02 -.45097733E-02 -.32891623E-02 -.22087227E-02 -.13118292E-02 - Reciprocal Space Part - .00000000E+00 -.32735132E-01 -.57874129E-01 -.68025562E-01 -.56202218E-01 - -.16010353E-01 .58176087E-01 .17106071E+00 .32629323E+00 .52636470E+00 - .77253190E+00 .10647729E+01 .14017745E+01 .17809525E+01 .21985029E+01 - .26494844E+01 .31279281E+01 .36269730E+01 .41390234E+01 .46559233E+01 - .51691449E+01 .56699848E+01 .61497649E+01 .66000310E+01 .70127450E+01 - .73804676E+01 .76965237E+01 .79551506E+01 .81516221E+01 .82823483E+01 - .83449476E+01 .83382897E+01 .82625100E+01 .81189938E+01 .79103327E+01 - .76402541E+01 .73135258E+01 .69358391E+01 .65136730E+01 .60541436E+01 - .55648427E+01 .50536691E+01 .45286581E+01 .39978121E+01 .34689363E+01 - .29494852E+01 .24464209E+01 .19660874E+01 .15141038E+01 .10952774E+01 - .71353913E+00 .37190143E+00 .72438747E-01 -.18370908E+00 -.39631214E+00 - -.56600562E+00 -.69422685E+00 -.78313655E+00 -.83552683E+00 -.85471902E+00 - -.84445414E+00 -.80877934E+00 -.75193315E+00 -.67823282E+00 -.59196617E+00 - -.49729095E+00 -.39814351E+00 -.29815894E+00 -.20060415E+00 -.10832475E+00 - -.23706635E-01 .51347747E-01 .11542851E+00 .16761353E+00 .20745065E+00 - .23492818E+00 .25043526E+00 .25471379E+00 .24880386E+00 .23398467E+00 - .21171285E+00 .18356033E+00 .15115337E+00 .11611479E+00 .80010558E-01 - .44302487E-01 .10307687E-01 -.20834167E-01 -.48185351E-01 -.71026167E-01 - -.88862608E-01 -.10142594E+00 -.10866476E+00 -.11073022E+00 -.10795546E+00 - -.10083022E+00 -.89971766E-01 -.76093420E-01 -.59971865E-01 -.42414381E-01 - Real Space Part - .00000000E+00 .18022695E+01 .35810219E+01 .53133582E+01 .69775955E+01 - .85538238E+01 .10024405E+02 .11374397E+02 .12591887E+02 .13668231E+02 - .14598183E+02 .15379918E+02 .16014945E+02 .16507924E+02 .16866375E+02 - .17100319E+02 .17221837E+02 .17244583E+02 .17183260E+02 .17053083E+02 - .16869238E+02 .16646371E+02 .16398113E+02 .16136659E+02 .15872418E+02 - .15613742E+02 .15366736E+02 .15135169E+02 .14920466E+02 .14721796E+02 - .14536241E+02 .14359036E+02 .14183879E+02 .14003283E+02 .13808973E+02 - .13592293E+02 .13344625E+02 .13057788E+02 .12724424E+02 .12338328E+02 - .11894740E+02 .11390574E+02 .10824575E+02 .10197410E+02 .95116892E+01 - .87719095E+01 .79843362E+01 .71568230E+01 .62985784E+01 .54198909E+01 - .45318216E+01 .36458770E+01 .27736744E+01 .19266107E+01 .11155464E+01 - .35051563E+00 -.35953011E+00 -.10069364E+01 -.15855132E+01 -.20906511E+01 - -.25193856E+01 -.28704091E+01 -.31440329E+01 -.33421028E+01 -.34678740E+01 - -.35258504E+01 -.35215974E+01 -.34615340E+01 -.33527132E+01 -.32025984E+01 - -.30188433E+01 -.28090822E+01 -.25807368E+01 -.23408439E+01 -.20959100E+01 - -.18517927E+01 -.16136129E+01 -.13856965E+01 -.11715467E+01 -.97384249E+00 - -.79446400E+00 -.63453884E+00 -.49450713E+00 -.37420055E+00 -.27293153E+00 - -.18958821E+00 -.12273128E+00 -.70689083E-01 -.31647771E-01 -.37338476E-02 - .14912971E-01 .26078057E-01 .31422204E-01 .32444272E-01 .30455922E-01 - .26567743E-01 .21685682E-01 .16516420E-01 .11580125E-01 .72289023E-02 - PAW radial sets - 335 1.01033374906442153 -(5E20.12) - augmentation charges (non sperical) - .633193623104E+00 -.181671211978E+00 -.112457030995E+00 .117353632134E-01 -.214355956712E+00 - .121607713578E+00 -.181671211978E+00 .516635728869E-01 .240664015905E-01 -.296640235007E-02 - .519908539409E-01 -.328426013966E-01 -.112457030995E+00 .240664015905E-01 -.477181110884E-01 - -.334105715416E-02 -.300843549084E-01 -.284835049355E-01 .117353632134E-01 -.296640235007E-02 - -.334105715416E-02 -.374436759671E-04 -.436596841354E-02 .147763301072E-02 -.214355956712E+00 - .519908539409E-01 -.300843549084E-01 -.436596841354E-02 .440474686255E-02 -.469900140464E-01 - .121607713578E+00 -.328426013966E-01 -.284835049355E-01 .147763301072E-02 -.469900140464E-01 - .225787458338E-01 - uccopancies in atom - .139999997296E+01 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .999999999276E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 - grid - .444792170761E-04 .458690812442E-04 .473023751876E-04 .487804559781E-04 .503047230926E-04 - .518766197380E-04 .534976342178E-04 .551693013416E-04 .568932038775E-04 .586709740514E-04 - .605042950921E-04 .623949028251E-04 .643445873161E-04 .663551945659E-04 .684286282582E-04 - .705668515620E-04 .727718889904E-04 .750458283175E-04 .773908225552E-04 .798090919916E-04 - .823029262930E-04 .848746866723E-04 .875268081245E-04 .902618017317E-04 .930822570414E-04 - .959908445177E-04 .989903180702E-04 .102083517661E-03 .105273371995E-03 .108562901290E-03 - .111955220139E-03 .115453540459E-03 .119061174529E-03 .122781538132E-03 .126618153782E-03 - .130574654066E-03 .134654785077E-03 .138862409966E-03 .143201512599E-03 .147676201325E-03 - .152290712869E-03 .157049416346E-03 .161956817392E-03 .167017562433E-03 .172236443086E-03 - .177618400693E-03 .183168531000E-03 .188892088982E-03 .194794493821E-03 .200881334033E-03 - .207158372762E-03 .213631553235E-03 .220307004390E-03 .227191046680E-03 .234290198055E-03 - .241611180136E-03 .249160924578E-03 .256946579630E-03 .264975516909E-03 .273255338376E-03 - .281793883533E-03 .290599236847E-03 .299679735406E-03 .309043976810E-03 .318700827311E-03 - .328659430212E-03 .338929214520E-03 .349519903874E-03 .360441525754E-03 .371704420972E-03 - .383319253467E-03 .395297020396E-03 .407649062552E-03 .420387075099E-03 .433523118644E-03 - .447069630661E-03 .461039437262E-03 .475445765341E-03 .490302255103E-03 .505622972973E-03 - .521422424916E-03 .537715570175E-03 .554517835429E-03 .571845129403E-03 .589713857930E-03 - .608140939485E-03 .627143821201E-03 .646740495392E-03 .666949516586E-03 .687790019094E-03 - .709281735125E-03 .731445013472E-03 .754300838775E-03 .777870851394E-03 .802177367893E-03 - .827243402175E-03 .853092687269E-03 .879749697802E-03 .907239673170E-03 .935588641441E-03 - .964823443991E-03 .994971760923E-03 .102606213728E-02 .105812401005E-02 .109118773606E-02 - .112528462074E-02 .116044694769E-02 .119670800931E-02 .123410213833E-02 .127266474025E-02 - .131243232692E-02 .135344255112E-02 .139573424213E-02 .143934744261E-02 .148432344640E-02 - .153070483770E-02 .157853553135E-02 .162786081442E-02 .167872738909E-02 .173118341686E-02 - .178527856416E-02 .184106404937E-02 .189859269132E-02 .195791895929E-02 .201909902459E-02 - .208219081376E-02 .214725406337E-02 .221435037663E-02 .228354328168E-02 .235489829178E-02 - .242848296728E-02 .250436697965E-02 .258262217742E-02 .266332265418E-02 .274654481879E-02 - .283236746767E-02 .292087185944E-02 .301214179187E-02 .310626368117E-02 .320332664385E-02 - .330342258109E-02 .340664626575E-02 .351309543210E-02 .362287086839E-02 .373607651220E-02 - .385281954895E-02 .397321051329E-02 .409736339384E-02 .422539574106E-02 .435742877856E-02 - .449358751791E-02 .463400087695E-02 .477880180190E-02 .492812739321E-02 .508211903537E-02 - .524092253078E-02 .540468823783E-02 .557357121318E-02 .574773135867E-02 .592733357266E-02 - .611254790615E-02 .630354972382E-02 .650051987007E-02 .670364484023E-02 .691311695713E-02 - .712913455321E-02 .735190215831E-02 .758163069331E-02 .781853766985E-02 .806284739624E-02 - .831479118989E-02 .857460759628E-02 .884254261485E-02 .911884993190E-02 .940379116081E-02 - .969763608969E-02 .100006629369E-01 .103131586143E-01 .106354189993E-01 .109677492144E-01 - .113104639167E-01 .116638875953E-01 .120283548790E-01 .124042108528E-01 .127918113847E-01 - .131915234628E-01 .136037255425E-01 .140288079052E-01 .144671730273E-01 .149192359620E-01 - .153854247315E-01 .158661807329E-01 .163619591556E-01 .168732294127E-01 .174004755852E-01 - .179441968805E-01 .185049081050E-01 .190831401513E-01 .196794405013E-01 .202943737442E-01 - .209285221114E-01 .215824860272E-01 .222568846781E-01 .229523565982E-01 .236695602746E-01 - .244091747701E-01 .251719003668E-01 .259584592287E-01 .267695960857E-01 .276060789386E-01 - .284686997862E-01 .293582753756E-01 .302756479748E-01 .312216861709E-01 .321972856919E-01 - .332033702553E-01 .342408924423E-01 .353108345999E-01 .364142097711E-01 .375520626538E-01 - .387254705901E-01 .399355445865E-01 .411834303656E-01 .424703094508E-01 .437974002854E-01 - .451659593859E-01 .465772825317E-01 .480327059922E-01 .495336077918E-01 .510814090147E-01 - .526775751505E-01 .543236174816E-01 .560210945143E-01 .577716134541E-01 .595768317279E-01 - .614384585530E-01 .633582565552E-01 .653380434383E-01 .673796937046E-01 .694851404298E-01 - .716563770937E-01 .738954594671E-01 .762045075584E-01 .785857076214E-01 .810413142243E-01 - .835736523853E-01 .861851197734E-01 .888781889790E-01 .916554098543E-01 .945194119286E-01 - .974729068968E-01 .100518691188E+00 .103659648612E+00 .106898753092E+00 .110239071477E+00 - .113683766447E+00 .117236099511E+00 .120899434089E+00 .124677238700E+00 .128573090247E+00 - .132590677400E+00 .136733804093E+00 .141006393122E+00 .145412489860E+00 .149956266089E+00 - .154642023949E+00 .159474200010E+00 .164457369474E+00 .169596250507E+00 .174895708706E+00 - .180360761705E+00 .185996583927E+00 .191808511483E+00 .197802047223E+00 .203982865949E+00 - .210356819784E+00 .216929943718E+00 .223708461317E+00 .230698790620E+00 .237907550211E+00 - .245341565490E+00 .253007875134E+00 .260913737759E+00 .269066638797E+00 .277474297579E+00 - .286144674648E+00 .295085979291E+00 .304306677318E+00 .313815499071E+00 .323621447696E+00 - .333733807664E+00 .344162153563E+00 .354916359160E+00 .366006606756E+00 .377443396822E+00 - .389237557943E+00 .401400257069E+00 .413943010089E+00 .426877692738E+00 .440216551834E+00 - .453972216880E+00 .468157712017E+00 .482786468360E+00 .497872336712E+00 .513429600678E+00 - .529472990191E+00 .546017695458E+00 .563079381341E+00 .580674202188E+00 .598818817134E+00 - .617530405867E+00 .636826684899E+00 .656725924337E+00 .677246965184E+00 .698409237178E+00 - .720232777186E+00 .742738248179E+00 .765946958792E+00 .789880883502E+00 .814562683434E+00 - .840015727817E+00 .866264116108E+00 .893332700813E+00 .921247111018E+00 .950033776649E+00 - .979719953507E+00 .101033374906E+01 .104190414908E+01 .107446104506E+01 .110803526252E+01 - .114265859021E+01 .117836381020E+01 .121518472892E+01 .125315620916E+01 .129231420309E+01 - aepotential - .145158941887E+05 .146337097551E+05 .147290196034E+05 .148011036334E+05 .148494164918E+05 - .148735666839E+05 .148733275872E+05 .148486391018E+05 .147996103253E+05 .147265226513E+05 - .146298226265E+05 .145101175206E+05 .143681710033E+05 .142048902814E+05 .140213115394E+05 - .138185961707E+05 .135980057604E+05 .133608900963E+05 .131086715161E+05 .128428265731E+05 - .125648688294E+05 .122763300341E+05 .119787472750E+05 .116736437910E+05 .113625161656E+05 - .110468201929E+05 .107279590504E+05 .104072731713E+05 .100860305378E+05 .976542047480E+04 - .944654732186E+04 .913042680628E+04 .881798353340E+04 .851004969379E+04 .820736554171E+04 - .791058066349E+04 .762025640861E+04 .733686902522E+04 .706081391223E+04 .679240984021E+04 - .653190414835E+04 .627947792460E+04 .603525147514E+04 .579928984579E+04 .557160832166E+04 - .535217782468E+04 .514093014104E+04 .493776292471E+04 .474254443514E+04 .455511797684E+04 - .437530602186E+04 .420291400291E+04 .403773377604E+04 .387954673112E+04 .372812662005E+04 - .358324202238E+04 .344465855209E+04 .331214076837E+04 .318545382871E+04 .306436489198E+04 - .294864433946E+04 .283806672159E+04 .273241162816E+04 .263146429557E+04 .253501614661E+04 - .244286515757E+04 .235481615719E+04 .227068100126E+04 .219027865872E+04 .211343527825E+04 - .203998413015E+04 .196976555757E+04 .190262684063E+04 .183842209146E+04 .177701200218E+04 - .171826378712E+04 .166205081089E+04 .160825251263E+04 .155675411409E+04 .150744637660E+04 - .146022543604E+04 .141499252440E+04 .137165374279E+04 .133011985889E+04 .129030606963E+04 - .125213182673E+04 .121552058603E+04 .118039962700E+04 .114669986130E+04 .111435567188E+04 - .108330468496E+04 .105348764045E+04 .102484823679E+04 .997332948664E+03 .970890895727E+03 - .945473705615E+03 .921035385516E+03 .897532177270E+03 .874922461191E+03 .853166632225E+03 - .832226993726E+03 .812067654931E+03 .792654443184E+03 .773954800835E+03 .755937712083E+03 - .738573611250E+03 .721834314810E+03 .705692941694E+03 .690123847258E+03 .675102562942E+03 - .660605724605E+03 .646611024805E+03 .633097151934E+03 .620043740317E+03 .607431319836E+03 - .595241269991E+03 .583455779095E+03 .572057794540E+03 .561030991594E+03 .550359730417E+03 - .540029026689E+03 .530024512134E+03 .520332402802E+03 .510939476578E+03 .501833033634E+03 - .493000878469E+03 .484431289412E+03 .476112994945E+03 .468035152240E+03 .460187322172E+03 - .452559452046E+03 .445141853199E+03 .437925181905E+03 .430900423195E+03 .424058872884E+03 - .417392120431E+03 .410892035653E+03 .404550751192E+03 .398360651167E+03 .392314355848E+03 - .386404710253E+03 .380624771002E+03 .374967795632E+03 .369427230889E+03 .363996702948E+03 - .358670006812E+03 .353441097476E+03 .348304080138E+03 .343253202440E+03 .338282845767E+03 - .333387517884E+03 .328561845377E+03 .323800567093E+03 .319098527353E+03 .314450670069E+03 - .309852033040E+03 .305297742463E+03 .300783008459E+03 .296303120019E+03 .291853441425E+03 - .287429408460E+03 .283026524537E+03 .278640359044E+03 .274266544092E+03 .269900772665E+03 - .265538797905E+03 .261176431186E+03 .256809542884E+03 .252434061624E+03 .248045975634E+03 - .243641334021E+03 .239216248857E+03 .234766898040E+03 .230289528866E+03 .225780462156E+03 - .221236098009E+03 .216652921176E+03 .212027509018E+03 .207356538933E+03 .202636798013E+03 - .197865193476E+03 .193038764338E+03 .188154694464E+03 .183210327528E+03 .178203182736E+03 - .173130973017E+03 .167991624693E+03 .162783298973E+03 .157504415706E+03 .152153679271E+03 - .146730106494E+03 .141233057287E+03 .135662267295E+03 .130017883210E+03 .124300500191E+03 - .118511201540E+03 .112651600004E+03 .106723880448E+03 .100730842906E+03 .946759449766E+02 - .885633420487E+02 .823979232618E+02 .761853406096E+02 .699320278463E+02 .636452051139E+02 - .573328645190E+02 .510037311406E+02 .446671936334E+02 .383331986745E+02 .320121042852E+02 - .257144895392E+02 .194509218734E+02 .132316902848E+02 .706652244788E+01 .964318051397E+00 - -.506705116806E+01 -.110208026267E+02 -.168910714323E+02 -.226723965425E+02 -.283587564396E+02 - -.339420808650E+02 -.394102531425E+02 -.447447665562E+02 -.499184534736E+02 -.548938092510E+02 - -.596228597348E+02 -.640491564441E+02 -.681124008957E+02 -.717554232875E+02 -.749325074287E+02 - -.776174636759E+02 -.798097224375E+02 -.815370893203E+02 -.828544648974E+02 -.838385510205E+02 - -.845792971979E+02 -.851696413050E+02 -.856957621930E+02 -.862300628078E+02 -.868281294869E+02 - -.875294019191E+02 -.883601247812E+02 -.893369060914E+02 -.904697289370E+02 -.917640051829E+02 - -.932217926572E+02 -.948424975131E+02 -.966233425585E+02 -.985597632713E+02 -.100645779177E+03 - -.102874331036E+03 -.105237557451E+03 -.107726989836E+03 -.110333659649E+03 -.113048122234E+03 - -.115860407032E+03 -.118759906575E+03 -.121735215757E+03 -.124773932807E+03 -.127862436514E+03 - -.130985659319E+03 -.134126888470E+03 -.137267644268E+03 -.140387707690E+03 -.143465393656E+03 - -.146478184855E+03 -.149403835171E+03 -.152221998585E+03 -.154916297788E+03 -.157476466438E+03 - -.159899729640E+03 -.162189934761E+03 -.164352326122E+03 -.166381973447E+03 -.168246105609E+03 - -.169866121404E+03 -.171112286974E+03 -.171826960555E+03 -.171882307833E+03 -.171255164352E+03 - -.170072703776E+03 -.168575978199E+03 -.167006450409E+03 -.165505683161E+03 -.164103374116E+03 - -.162768787043E+03 -.161461557707E+03 -.160155027590E+03 -.158838999786E+03 -.157514345039E+03 - -.156186595455E+03 -.154861253501E+03 -.153541354527E+03 -.152226857176E+03 -.150915115535E+03 - -.149601764901E+03 -.148281594933E+03 -.146949220965E+03 -.145599520237E+03 -.144227869607E+03 - -.142830248030E+03 -.141403251834E+03 -.139944064254E+03 -.138450402406E+03 -.136920457017E+03 - -.135352833962E+03 -.133746499848E+03 -.132100739348E+03 -.130415116063E+03 -.128689452835E+03 - -.126923818992E+03 -.125118532600E+03 -.123274169870E+03 -.121391614496E+03 -.119472039647E+03 - -.117516768915E+03 -.115525133972E+03 -.113502712566E+03 -.111452200452E+03 -.109376654204E+03 - -.107279406109E+03 -.105163989889E+03 -.103034051281E+03 -.100893262794E+03 -.987452587816E+02 - -.965936022381E+02 -.944417887290E+02 -.922932815496E+02 -.901515616066E+02 -.880201699344E+02 - -.859027206663E+02 -.838028715495E+02 -.817242539057E+02 -.796703750575E+02 -.776445156708E+02 - core charge-density - .706305794989E-03 .750192055528E-03 .796801743525E-03 .846303532822E-03 .898876512554E-03 - .954710827320E-03 .101400835644E-02 .107698343462E-02 .114386361657E-02 .121489048818E-02 - .129032052707E-02 .137042601550E-02 .145549600872E-02 .154583736219E-02 .164177582107E-02 - .174365717582E-02 .185184848774E-02 .196673938872E-02 .208874345957E-02 .221829969159E-02 - .235587403636E-02 .250196104893E-02 .265708562997E-02 .282180487268E-02 .299671002072E-02 - .318242854357E-02 .337962633628E-02 .358901005097E-02 .381132956758E-02 .404738061224E-02 - .429800753165E-02 .456410623264E-02 .484662729646E-02 .514657927787E-02 .546503219974E-02 - .580312125426E-02 .616205072285E-02 .654309812696E-02 .694761862323E-02 .737704965657E-02 - .783291588609E-02 .831683439901E-02 .883052022885E-02 .937579219497E-02 .995457908131E-02 - .105689261733E-01 .112210021724E-01 .119131065100E-01 .126476770811E-01 .134272984221E-01 - .142547103560E-01 .151328171306E-01 .160646970761E-01 .170536128096E-01 .181030220159E-01 - .192165888351E-01 .203981958885E-01 .216519569755E-01 .229822304779E-01 .243936335060E-01 - .258910568252E-01 .274796806024E-01 .291649910133E-01 .309527977525E-01 .328492524920E-01 - .348608683329E-01 .369945402984E-01 .392575669181E-01 .416576729536E-01 .442030333194E-01 - .469022982525E-01 .497646197875E-01 .527996795949E-01 .560177182407E-01 .594295659301E-01 - .630466747951E-01 .668811527902E-01 .709457992605E-01 .752541422474E-01 .798204775971E-01 - .846599099395E-01 .897883956023E-01 .952227875288E-01 .100980882263E+00 .107081469072E+00 - .113544381256E+00 .120390549737E+00 .127642058942E+00 .135322205085E+00 .143455556863E+00 - .152068018639E+00 .161186896134E+00 .170840964696E+00 .181060540131E+00 .191877552167E+00 - .203325620520E+00 .215440133588E+00 .228258329751E+00 .241819381245E+00 .256164480587E+00 - .271336929459E+00 .287382229997E+00 .304348178368E+00 .322284960507E+00 .341245249853E+00 - .361284306912E+00 .382460080402E+00 .404833309746E+00 .428467628587E+00 .453429669015E+00 - .479789166073E+00 .507619062136E+00 .536995610633E+00 .567998478563E+00 .600710847167E+00 - .635219510051E+00 .671614967989E+00 .709991519527E+00 .750447346443E+00 .793084593019E+00 - .838009437960E+00 .885332157716E+00 .935167179826E+00 .987633124805E+00 .104285283494E+01 - .110095338825E+01 .116206609575E+01 .122632647993E+01 .129387423232E+01 .136485314779E+01 - .143941103311E+01 .151769958710E+01 .159987424955E+01 .168609401602E+01 .177652121529E+01 - .187132124627E+01 .197066227083E+01 .207471485911E+01 .218365158350E+01 .229764655746E+01 - .241687491536E+01 .254151222919E+01 .267173385825E+01 .280771422753E+01 .294962603095E+01 - .309763935524E+01 .325192072071E+01 .341263203507E+01 .357992945679E+01 .375396216487E+01 - .393487103198E+01 .412278719876E+01 .431783054741E+01 .452010807321E+01 .472971215398E+01 - .494671871760E+01 .517118530942E+01 .540314906233E+01 .564262457346E+01 .588960169339E+01 - .614404323493E+01 .640588261099E+01 .667502141248E+01 .695132694003E+01 .723462970522E+01 - .752472091994E+01 .782134999530E+01 .812422207415E+01 .843299562474E+01 .874728012612E+01 - .906663387917E+01 .939056198066E+01 .971851450112E+01 .100498849108E+02 .103840088013E+02 - .107201629535E+02 .110575648052E+02 .113953723764E+02 .117326847084E+02 .120685428791E+02 - .124019316552E+02 .127317818432E+02 .130569734000E+02 .133763393640E+02 .136886706616E+02 - .139927218437E+02 .142872177976E+02 .145708614754E+02 .148423426683E+02 .151003478473E+02 - .153435710767E+02 .155707259921E+02 .157805588160E+02 .159718623677E+02 .161434909993E+02 - .162943763669E+02 .164235439225E+02 .165301299813E+02 .166133991942E+02 .166727622213E+02 - .167077933770E+02 .167182479828E+02 .167040791356E+02 .166654535735E+02 .166027662922E+02 - .165166535444E+02 .164080038362E+02 .162779665221E+02 .161279575931E+02 .159596622549E+02 - .157750339030E+02 .155762891206E+02 .153658983581E+02 .151465719915E+02 .149212415162E+02 - .146930356932E+02 .144652515479E+02 .142413202080E+02 .140247676707E+02 .138191706949E+02 - .136281081338E+02 .134551081424E+02 .133035918178E+02 .131768139429E+02 .130778016765E+02 - .130092920333E+02 .129736692609E+02 .129729032275E+02 .130084900818E+02 .130813965416E+02 - .131920092477E+02 .133400906767E+02 .135247431257E+02 .137443822518E+02 .139967215725E+02 - .142787691834E+02 .145868377447E+02 .149165685144E+02 .152629699025E+02 .156204707108E+02 - .159829879273E+02 .163440086559E+02 .166966854644E+02 .170339441045E+02 .173486021947E+02 - .176334970840E+02 .178816207392E+02 .180862591603E+02 .182411335286E+02 .183405400472E+02 - .183794852544E+02 .183538134712E+02 .182603230077E+02 .180968677873E+02 .178624411732E+02 - .175572389954E+02 .171826990854E+02 .167415150269E+02 .162376223354E+02 .156761558690E+02 - .150633779576E+02 .144065774940E+02 .137139410645E+02 .129943980676E+02 .122574426801E+02 - .115129364311E+02 .107708960081E+02 .100412717017E+02 .933372253494E+01 .865739456684E+01 - .802070904006E+01 .743116689255E+01 .689517566388E+01 .641790387627E+01 .600316659959E+01 - .565334469216E+01 .536933875904E+01 .515055814455E+01 .499494655095E+01 .489904681601E+01 - .485810904867E+01 .486624485581E+01 .491662350365E+01 .500169619166E+01 .511343092062E+01 - .524354596698E+01 .538373727277E+01 .552589752960E+01 .566232342108E+01 .578590577581E+01 - .589029671916E+01 .597004823104E+01 .602071755022E+01 .603893637334E+01 .602244258804E+01 - .597007510608E+01 .588173404275E+01 .575830989418E+01 .560158644017E+01 .541412283534E+01 - .519912074026E+01 .496028244281E+01 .470166571995E+01 .442754077346E+01 .414225396202E+01 - .385010230850E+01 .355522192829E+01 .326149270455E+01 .297246066177E+01 .269127855910E+01 - .242066479402E+01 .216287978193E+01 .191971857673E+01 .169251795640E+01 .148217644548E+01 - .128918420715E+01 .111366110021E+01 .955400420103E+00 .813917218492E+00 .688497536946E+00 - .578247171941E+00 .482138563817E+00 .399054535022E+00 .327827907121E+00 .267276327642E+00 - .216231921260E+00 .173565633631E+00 .138206353031E+00 .109155071127E+00 .854944798507E-01 - .663944986470E-01 .511142889112E-01 .390013435812E-01 .294882431238E-01 .220876479080E-01 - pspotential - -.184084954645E+03 -.184086951970E+03 -.184088888772E+03 -.184090766885E+03 -.184092588086E+03 - -.184094354101E+03 -.184096066600E+03 -.184097727206E+03 -.184099337490E+03 -.184100898978E+03 - -.184102413147E+03 -.184103881431E+03 -.184105305220E+03 -.184106685861E+03 -.184108024663E+03 - -.184109322892E+03 -.184110581777E+03 -.184111802510E+03 -.184112986247E+03 -.184114134108E+03 - -.184115247180E+03 -.184116326516E+03 -.184117373138E+03 -.184118388037E+03 -.184119372173E+03 - -.184120326478E+03 -.184121251855E+03 -.184122149180E+03 -.184123019301E+03 -.184123863043E+03 - -.184124681204E+03 -.184125474557E+03 -.184126243854E+03 -.184126989823E+03 -.184127713168E+03 - -.184128414575E+03 -.184129094706E+03 -.184129754206E+03 -.184130393697E+03 -.184131013785E+03 - -.184131615055E+03 -.184132198076E+03 -.184132763399E+03 -.184133311558E+03 -.184133843072E+03 - -.184134358441E+03 -.184134858154E+03 -.184135342681E+03 -.184135812481E+03 -.184136267996E+03 - -.184136709656E+03 -.184137137878E+03 -.184137553065E+03 -.184137955609E+03 -.184138345888E+03 - -.184138724270E+03 -.184139091111E+03 -.184139446756E+03 -.184139791539E+03 -.184140125783E+03 - -.184140449803E+03 -.184140763901E+03 -.184141068372E+03 -.184141363501E+03 -.184141649563E+03 - -.184141926826E+03 -.184142195546E+03 -.184142455975E+03 -.184142708354E+03 -.184142952917E+03 - -.184143189891E+03 -.184143419492E+03 -.184143641934E+03 -.184143857419E+03 -.184144066146E+03 - -.184144268304E+03 -.184144464076E+03 -.184144653641E+03 -.184144837167E+03 -.184145014820E+03 - -.184145186758E+03 -.184145353133E+03 -.184145514091E+03 -.184145669773E+03 -.184145820312E+03 - -.184145965838E+03 -.184146106473E+03 -.184146242337E+03 -.184146373540E+03 -.184146500189E+03 - -.184146622387E+03 -.184146740228E+03 -.184146853803E+03 -.184146963197E+03 -.184147068491E+03 - -.184147169758E+03 -.184147267067E+03 -.184147360482E+03 -.184147450061E+03 -.184147535856E+03 - -.184147617913E+03 -.184147696275E+03 -.184147770977E+03 -.184147842046E+03 -.184147909508E+03 - -.184147973378E+03 -.184148033667E+03 -.184148090380E+03 -.184148143514E+03 -.184148193059E+03 - -.184148238997E+03 -.184148281306E+03 -.184148319953E+03 -.184148354897E+03 -.184148386090E+03 - -.184148413476E+03 -.184148436987E+03 -.184148456548E+03 -.184148472073E+03 -.184148483466E+03 - -.184148490620E+03 -.184148493415E+03 -.184148491721E+03 -.184148485395E+03 -.184148474280E+03 - -.184148458204E+03 -.184148436982E+03 -.184148410412E+03 -.184148378276E+03 -.184148340338E+03 - -.184148296344E+03 -.184148246020E+03 -.184148189072E+03 -.184148125182E+03 -.184148054012E+03 - -.184147975197E+03 -.184147888346E+03 -.184147793042E+03 -.184147688836E+03 -.184147575251E+03 - -.184147451775E+03 -.184147317861E+03 -.184147172926E+03 -.184147016347E+03 -.184146847458E+03 - -.184146665551E+03 -.184146469869E+03 -.184146259604E+03 -.184146033898E+03 -.184145791834E+03 - -.184145532434E+03 -.184145254659E+03 -.184144957401E+03 -.184144639479E+03 -.184144299636E+03 - -.184143936533E+03 -.184143548747E+03 -.184143134759E+03 -.184142692957E+03 -.184142221620E+03 - -.184141718920E+03 -.184141182911E+03 -.184140611522E+03 -.184140002548E+03 -.184139353645E+03 - -.184138662318E+03 -.184137925913E+03 -.184137141605E+03 -.184136306391E+03 -.184135417075E+03 - -.184134470257E+03 -.184133462321E+03 -.184132389420E+03 -.184131247464E+03 -.184130032101E+03 - -.184128738702E+03 -.184127362344E+03 -.184125897790E+03 -.184124339474E+03 -.184122681471E+03 - -.184120917483E+03 -.184119040812E+03 -.184117044332E+03 -.184114920468E+03 -.184112661163E+03 - -.184110257848E+03 -.184107701411E+03 -.184104982163E+03 -.184102089799E+03 -.184099013363E+03 - -.184095741201E+03 -.184092260924E+03 -.184088559357E+03 -.184084622490E+03 -.184080435426E+03 - -.184075982325E+03 -.184071246346E+03 -.184066209579E+03 -.184060852983E+03 -.184055156313E+03 - -.184049098044E+03 -.184042655288E+03 -.184035803715E+03 -.184028517454E+03 -.184020769003E+03 - -.184012529122E+03 -.184003766728E+03 -.183994448775E+03 -.183984540136E+03 -.183974003468E+03 - -.183962799078E+03 -.183950884772E+03 -.183938215702E+03 -.183924744200E+03 -.183910419600E+03 - -.183895188055E+03 -.183878992340E+03 -.183861771637E+03 -.183843461319E+03 -.183823992711E+03 - -.183803292841E+03 -.183781284176E+03 -.183757884341E+03 -.183733005822E+03 -.183706555653E+03 - -.183678435080E+03 -.183648539213E+03 -.183616756649E+03 -.183582969080E+03 -.183547050878E+03 - -.183508868649E+03 -.183468280775E+03 -.183425136917E+03 -.183379277499E+03 -.183330533162E+03 - -.183278724186E+03 -.183223659882E+03 -.183165137958E+03 -.183102943838E+03 -.183036849963E+03 - -.182966615042E+03 -.182891983277E+03 -.182812683543E+03 -.182728428535E+03 -.182638913869E+03 - -.182543817151E+03 -.182442796996E+03 -.182335492015E+03 -.182221519759E+03 -.182100475614E+03 - -.181971931669E+03 -.181835435541E+03 -.181690509154E+03 -.181536647498E+03 -.181373317347E+03 - -.181199955947E+03 -.181015969690E+03 -.180820732758E+03 -.180613585763E+03 -.180393834380E+03 - -.180160747988E+03 -.179913558324E+03 -.179651458166E+03 -.179373600066E+03 -.179079095131E+03 - -.178767011896E+03 -.178436375293E+03 -.178086165742E+03 -.177715318407E+03 -.177322722628E+03 - -.176907221577E+03 -.176467612179E+03 -.176002645330E+03 -.175511026474E+03 -.174991416584E+03 - -.174442433603E+03 -.173862654420E+03 -.173250617441E+03 -.172604825830E+03 -.171923751508E+03 - -.171205839989E+03 -.170449516148E+03 -.169653191020E+03 -.168815269726E+03 -.167934160648E+03 - -.167008285939E+03 -.166036093506E+03 -.165016070573E+03 -.163946758937E+03 -.162826772047E+03 - -.161654814015E+03 -.160429700686E+03 -.159150382880E+03 -.157815971929E+03 -.156425767619E+03 - -.154979288665E+03 -.153476305842E+03 -.151916877890E+03 -.150301390340E+03 -.148630597385E+03 - -.146905666921E+03 -.145128228849E+03 -.143300426622E+03 -.141424971811E+03 -.139505201078E+03 - -.137545134133E+03 -.135549529879E+03 -.133523935505E+03 -.131474719056E+03 -.129409069111E+03 - -.127334934105E+03 -.125260857304E+03 -.123195641235E+03 -.121147752177E+03 -.119124367259E+03 - -.117128112092E+03 -.115160617163E+03 -.113217051112E+03 -.111285801760E+03 -.109351271688E+03 - -.107399145939E+03 -.105422884054E+03 -.103424038164E+03 -.101392361663E+03 -.992585164579E+02 - -.968659781977E+02 -.941224590562E+02 -.920360185655E+02 -.899716952945E+02 -.879101612134E+02 - -.858576880173E+02 -.838025896243E+02 -.817286845599E+02 -.796704075173E+02 -.776445156708E+02 - core charge-density (pseudized) - .154387131421E-07 .164186298502E-07 .174607432413E-07 .185690010260E-07 .197476014811E-07 - .210010093543E-07 .223339727767E-07 .237515412504E-07 .252590847758E-07 .268623141953E-07 - .285673028261E-07 .303805094673E-07 .323088028672E-07 .343594877429E-07 .365403324521E-07 - .388595984210E-07 .413260714402E-07 .439490949463E-07 .467386054171E-07 .497051700124E-07 - .528600266041E-07 .562151263477E-07 .597831789551E-07 .635777008411E-07 .676130663263E-07 - .719045620891E-07 .764684450748E-07 .813220040795E-07 .864836252428E-07 .919728616985E-07 - .978105076444E-07 .104018677115E-06 .110620887753E-06 .117642149898E-06 .125109061331E-06 - .133049908031E-06 .141494771325E-06 .150475641845E-06 .160026540712E-06 .170183648413E-06 - .180985441862E-06 .192472840153E-06 .204689359573E-06 .217681278445E-06 .231497812442E-06 - .246191301020E-06 .261817405694E-06 .278435320888E-06 .296107998177E-06 .314902384758E-06 - .334889677055E-06 .356145590425E-06 .378750645980E-06 .402790475614E-06 .428356146389E-06 - .455544505517E-06 .484458547227E-06 .515207802929E-06 .547908756133E-06 .582685283709E-06 - .619669125154E-06 .659000381637E-06 .700828046731E-06 .745310570819E-06 .792616461328E-06 - .842924921067E-06 .896426527068E-06 .953323952523E-06 .101383273454E-05 .107818209063E-05 - .114661578702E-05 .121939306206E-05 .129678960827E-05 .137909861669E-05 .146663188754E-05 - .155972101135E-05 .165871862507E-05 .176399974790E-05 .187596320193E-05 .199503312290E-05 - .212166056687E-05 .225632521892E-05 .239953721019E-05 .255183905035E-05 .271380768266E-05 - .288605666949E-05 .306923851657E-05 .326404714470E-05 .347122051840E-05 .369154344138E-05 - .392585052939E-05 .417502937185E-05 .444002389402E-05 .472183793269E-05 .502153903869E-05 - .534026252085E-05 .567921574654E-05 .603968271517E-05 .642302892202E-05 .683070653064E-05 - .726425987368E-05 .772533130270E-05 .821566740931E-05 .873712564116E-05 .929168133776E-05 - .988143521287E-05 .105086213118E-04 .111756154734E-04 .118849443298E-04 .126392948764E-04 - .134415246500E-04 .142946725522E-04 .152019703599E-04 .161668549670E-04 .171929814014E-04 - .182842366697E-04 .194447544791E-04 .206789308948E-04 .219914409896E-04 .233872565516E-04 - .248716649140E-04 .264502889805E-04 .281291085220E-04 .299144828230E-04 .318131747666E-04 - .338323764465E-04 .359797364049E-04 .382633885980E-04 .406919831992E-04 .432747193570E-04 - .460213800309E-04 .489423690374E-04 .520487504454E-04 .553522904722E-04 .588655020356E-04 - .626016921327E-04 .665750122240E-04 .708005118129E-04 .752941954234E-04 .800730831915E-04 - .851552752987E-04 .905600204925E-04 .963077889500E-04 .102420349764E-03 .108920853337E-03 - .115833919009E-03 .123185728224E-03 .131004123621E-03 .139318714388E-03 .148160988306E-03 - .157564430887E-03 .167564652064E-03 .178199520901E-03 .189509308848E-03 .201536842064E-03 - .214327663380E-03 .227930204537E-03 .242395969307E-03 .257779728228E-03 .274139725648E-03 - .291537899881E-03 .310040117292E-03 .329716421185E-03 .350641296440E-03 .372893950877E-03 - .396558614411E-03 .421724857113E-03 .448487927365E-03 .476949111378E-03 .507216115412E-03 - .539403472119E-03 .573632972533E-03 .610034125309E-03 .648744644916E-03 .689910970600E-03 - .733688818048E-03 .780243765781E-03 .829751878458E-03 .882400369391E-03 .938388304704E-03 - .997927351734E-03 .106124257443E-02 .112857327865E-02 .120017391045E-02 .127631501067E-02 - .135728422927E-02 .144338740303E-02 .153494970072E-02 .163231683963E-02 .173585637796E-02 - .184595908777E-02 .196304041322E-02 .208754201948E-02 .221993343764E-02 .236071381153E-02 - .251041375259E-02 .266959730914E-02 .283886405712E-02 .301885131926E-02 .321023652053E-02 - .341373968779E-02 .363012610208E-02 .386020911260E-02 .410485312154E-02 .436497674987E-02 - .464155619420E-02 .493562878575E-02 .524829676275E-02 .558073126823E-02 .593417658551E-02 - .630995462474E-02 .670946967375E-02 .713421342749E-02 .758577031082E-02 .806582310974E-02 - .857615892701E-02 .911867547826E-02 .969538774551E-02 .103084350053E-01 .109600882487E-01 - .116527580118E-01 .123890026340E-01 .131715369631E-01 .140032415250E-01 .148871721761E-01 - .158265702573E-01 .168248732661E-01 .178857260626E-01 .190129926278E-01 .202107683857E-01 - .214833931033E-01 .228354643791E-01 .242718517268E-01 .257977112603E-01 .274185009802E-01 - .291399966577E-01 .309683083066E-01 .329098972289E-01 .349715936086E-01 .371606146238E-01 - .394845830324E-01 .419515461794E-01 .445699953560E-01 .473488854273E-01 .502976546272E-01 - .534262443974E-01 .567451191234E-01 .602652855970E-01 .639983119995E-01 .679563461674E-01 - .721521328668E-01 .765990297512E-01 .813110216359E-01 .863027326622E-01 .915894358636E-01 - .971870595777E-01 .103112190071E+00 .109382069655E+00 .116014589486E+00 .123028276123E+00 - .130442270819E+00 .138276300384E+00 .146550638326E+00 .155286054826E+00 .164503753950E+00 - .174225296313E+00 .184472505235E+00 .195267354250E+00 .206631833588E+00 .218587793067E+00 - .231156758618E+00 .244359719414E+00 .258216882392E+00 .272747390740E+00 .287969002713E+00 - .303897727008E+00 .320547410780E+00 .337929276311E+00 .356051402365E+00 .374918146316E+00 - .394529503391E+00 .414880399690E+00 .435959916230E+00 .457750441996E+00 .480226755074E+00 - .503355032280E+00 .527091789515E+00 .551382757274E+00 .576161698553E+00 .601349179754E+00 - .626851309319E+00 .652558463694E+00 .678344026001E+00 .704063169511E+00 .729551725749E+00 - .754625185840E+00 .779077893540E+00 .802682499232E+00 .825189755858E+00 .846328750084E+00 - .865807674616E+00 .883315259945E+00 .898522995161E+00 .911088276906E+00 .920658631612E+00 - .926877157393E+00 .929389326058E+00 .927851270302E+00 .921939653028E+00 .911363171524E+00 - .895875684696E+00 .875290862464E+00 .849498138087E+00 .818479592102E+00 .782327206852E+00 - .741259700509E+00 .695637878591E+00 .645977131991E+00 .592955371339E+00 .537414332653E+00 - .480351842561E+00 .422902328207E+00 .366302647242E+00 .311840263585E+00 .260780990444E+00 - .214274068056E+00 .173233362132E+00 .138195094592E+00 .109155071127E+00 .854944798507E-01 - .663944986470E-01 .511142889112E-01 .390013435812E-01 .294882431238E-01 .220876479080E-01 - pseudo wavefunction - .443169753415E-12 .486025250956E-12 .533024970099E-12 .584569666257E-12 .641098848781E-12 - .703094528547E-12 .771085327954E-12 .845650988353E-12 .927427313374E-12 .101711159026E-11 - .111546853548E-11 .122333681528E-11 .134163619679E-11 .147137539064E-11 .161366065204E-11 - .176970521352E-11 .194083962985E-11 .212852312345E-11 .233435602673E-11 .256009342780E-11 - .280766013569E-11 .307916709269E-11 .337692937393E-11 .370348592737E-11 .406162122290E-11 - .445438899477E-11 .488513828012E-11 .535754197536E-11 .587562815412E-11 .644381441364E-11 - .706694554258E-11 .775033483137E-11 .849980937737E-11 .932175977110E-11 .102231945873E-10 - .112118001454E-10 .122960060488E-10 .134850570623E-10 .147890919395E-10 .162192298743E-10 - .177876653108E-10 .195077719229E-10 .213942166480E-10 .234630847489E-10 .257320169685E-10 - .282203599485E-10 .309493311932E-10 .339421999862E-10 .372244858022E-10 .408241759046E-10 - .447719639869E-10 .491015118899E-10 .538497366282E-10 .590571251724E-10 .647680796715E-10 - .710312960596E-10 .779001792736E-10 .854332986243E-10 .936948872024E-10 .102755389578E-09 - .112692062465E-09 .123589633467E-09 .135541023532E-09 .148648139266E-09 .163022741860E-09 - .178787400057E-09 .196076535259E-09 .215037567707E-09 .235832173494E-09 .258637663139E-09 - .283648493466E-09 .311077925686E-09 .341159843823E-09 .374150748982E-09 .410331946466E-09 - .450011944390E-09 .493529084254E-09 .541254425885E-09 .593594911369E-09 .650996834934E-09 - .713949648381E-09 .782990134504E-09 .858706984090E-09 .941745815522E-09 .103281467978E-08 - .113269009781E-08 .124222368165E-08 .136234939595E-08 .149409152154E-08 .163857338922E-08 - .179702695804E-08 .197080331986E-08 .216138421968E-08 .237039468999E-08 .259961690696E-08 - .285100538646E-08 .312670364954E-08 .342906249957E-08 .376066006672E-08 .412432379076E-08 - .452315452967E-08 .496055299955E-08 .544024877123E-08 .596633207094E-08 .654328865610E-08 - .717603806358E-08 .786997555662E-08 .863101812800E-08 .946565495167E-08 .103810027132E-07 - .113848662903E-07 .124858053018E-07 .136932070909E-07 .150173667669E-07 .164695749860E-07 - .180622142209E-07 .198088643393E-07 .217244183919E-07 .238252095964E-07 .261291506012E-07 - .286558862151E-07 .314269609057E-07 .344660024942E-07 .377989236132E-07 .414541426442E-07 - .454628260194E-07 .498591539524E-07 .546806118641E-07 .599683099878E-07 .657673338781E-07 - .721271288117E-07 .791019213571E-07 .867511817069E-07 .951401307138E-07 .104340295952E-06 - .114430121545E-06 .125495636958E-06 .137631190451E-06 .150940253455E-06 .165536302714E-06 - .181543787723E-06 .199099191698E-06 .218352195128E-06 .239466951823E-06 .262623488329E-06 - .288019238641E-06 .315870727290E-06 .346415415144E-06 .379913723659E-06 .416651254815E-06 - .456941225662E-06 .501127138216E-06 .549585707443E-06 .602730072292E-06 .661013317103E-06 - .724932333411E-06 .795032055026E-06 .871910102452E-06 .956221876215E-06 .104868614245E-05 - .115009115832E-05 .126130138943E-05 .138326487637E-05 .151702131320E-05 .166371090644E-05 - .182458409026E-05 .200101218017E-05 .219449905619E-05 .240669397468E-05 .263940561786E-05 - .289461750055E-05 .317450486500E-05 .348145320767E-05 .381807859516E-05 .418724994215E-05 - .459211344053E-05 .503611934721E-05 .552305135821E-05 .605705881831E-05 .664269203964E-05 - .728494102902E-05 .798927795245E-05 .876170369683E-05 .960879892372E-05 .105377800476E-04 - .115565606130E-04 .126738185897E-04 .138990701565E-04 .152427505960E-04 .167163029865E-04 - .183322754380E-04 .201044276964E-04 .220478480119E-04 .241790812614E-04 .265162694011E-04 - .290793054349E-04 .318900021926E-04 .349722773380E-04 .383523561608E-04 .420589938537E-04 - .461237191400E-04 .505811012896E-04 .554690427596E-04 .608290999032E-04 .667068344223E-04 - .731521984946E-04 .802199567768E-04 .879701487915E-04 .964685955308E-04 .105787454471E-03 - .116005827585E-03 .127210427360E-03 .139496306310E-03 .152967655960E-03 .167738681847E-03 - .183934561686E-03 .201692494499E-03 .221162849225E-03 .242510422094E-03 .265915812925E-03 - .291576931382E-03 .319710645249E-03 .350554583858E-03 .384369110960E-03 .421439482631E-03 - .462078207131E-03 .506627625150E-03 .555462730468E-03 .608994252763E-03 .667672026187E-03 - .731988669288E-03 .802483604044E-03 .879747444027E-03 .964426784192E-03 .105722942741E-02 - .115893008561E-02 .127037659645E-02 .139249669939E-02 .152630541859E-02 .167291310322E-02 - .183353417970E-02 .200949667393E-02 .220225256555E-02 .241338904026E-02 .264464071034E-02 - .289790287751E-02 .317524591637E-02 .347893086068E-02 .381142627848E-02 .417542652555E-02 - .457387146982E-02 .500996778193E-02 .548721188886E-02 .600941468850E-02 .658072812263E-02 - .720567370383E-02 .788917308835E-02 .863658078071E-02 .945371904707E-02 .103469151025E-01 - .113230406209E-01 .123895535956E-01 .135545425526E-01 .148267730843E-01 .162157366326E-01 - .177317013987E-01 .193857651981E-01 .211899100066E-01 .231570578576E-01 .253011276491E-01 - .276370922984E-01 .301810355454E-01 .329502075386E-01 .359630781550E-01 .392393867838E-01 - .428001870607E-01 .466678847561E-01 .508662667049E-01 .554205183062E-01 .603572267287E-01 - .657043665123E-01 .714912637804E-01 .777485347506E-01 .845079936729E-01 .918025247303E-01 - .996659118186E-01 .108132619496E+00 .117237517770E+00 .127015542792E+00 .137501285014E+00 - .148728495915E+00 .160729504138E+00 .173534531820E+00 .187170902117E+00 .201662129543E+00 - .217026885865E+00 .233277835985E+00 .250420340784E+00 .268451027289E+00 .287356231083E+00 - .307110321700E+00 .327673929084E+00 .348992098219E+00 .370992409851E+00 .393583118098E+00 - .416651370493E+00 .440061592813E+00 .463654139398E+00 .487244329335E+00 .510622008938E+00 - .533551800330E+00 .555774212943E+00 .577007807299E+00 .596952605557E+00 .615294937499E+00 - .631713889554E+00 .645889482979E+00 .657512639899E+00 .666296896425E+00 .671991684953E+00 - .674396827918E+00 .673377660158E+00 .668879927124E+00 .660943297839E+00 .649711998469E+00 - .635440739369E+00 .618493813187E+00 .599335038189E+00 .578506181280E+00 .556591709476E+00 - .534168292339E+00 .511738525204E+00 .489649972539E+00 .468018344882E+00 .446844854639E+00 - ae wavefunction - .290743485819E-09 .317143897068E-09 .345696513897E-09 .376596061706E-09 .410053503810E-09 - .446297517345E-09 .485576095754E-09 .528158289436E-09 .574336097020E-09 .624426521812E-09 - .678773807256E-09 .737751869207E-09 .801766941832E-09 .871260457267E-09 .946712179993E-09 - .102864361949E-08 .111762174616E-08 .121426303817E-08 .131923788978E-08 .143327541376E-08 - .155716867362E-08 .169178038538E-08 .183804913156E-08 .199699613382E-08 .216973263581E-08 - .235746795173E-08 .256151824163E-08 .278331608008E-08 .302442089063E-08 .328653032604E-08 - .357149268056E-08 .388132042945E-08 .421820499937E-08 .458453288277E-08 .498290322035E-08 - .541614698692E-08 .588734792837E-08 .639986541203E-08 .695735936673E-08 .756381750643E-08 - .822358504830E-08 .894139715713E-08 .972241436815E-08 .105722612654E-07 .114970687172E-07 - .125035200004E-07 .135989011741E-07 .147911560987E-07 .160889465331E-07 .175017177831E-07 - .190397704183E-07 .207143386243E-07 .225376758091E-07 .245231481412E-07 .266853367605E-07 - .290401494739E-07 .316049428207E-07 .343986554795E-07 .374419540785E-07 .407573925695E-07 - .443695864372E-07 .483054031335E-07 .525941702583E-07 .572679031501E-07 .623615537075E-07 - .679132824331E-07 .739647558784E-07 .805614718751E-07 .877531151595E-07 .955939462441E-07 - .104143226658E-06 .113465683974E-06 .123632020348E-06 .134719468679E-06 .146812400837E-06 - .160002992860E-06 .174391952486E-06 .190089314837E-06 .207215312697E-06 .225901328354E-06 - .246290934683E-06 .268541033841E-06 .292823102738E-06 .319324555301E-06 .348250232482E-06 - .379824032003E-06 .414290690940E-06 .451917735459E-06 .492997613377E-06 .537850026679E-06 - .586824482702E-06 .640303084465E-06 .698703582493E-06 .762482712633E-06 .832139846545E-06 - .908220984106E-06 .991323119623E-06 .108209901678E-05 .118126243036E-05 .128959381644E-05 - .140794657652E-05 .153725388526E-05 .167853615607E-05 .183290920390E-05 .200159316982E-05 - .218592227816E-05 .238735550324E-05 .260748823000E-05 .284806500036E-05 .311099344562E-05 - .339835951445E-05 .371244411562E-05 .405574130608E-05 .443097816617E-05 .484113651706E-05 - .528947664929E-05 .577956324666E-05 .631529370613E-05 .690092907261E-05 .754112782698E-05 - .824098278699E-05 .900606140408E-05 .984244976391E-05 .107568006262E-04 .117563858685E-04 - .128491537319E-04 .140437913000E-04 .153497926816E-04 .167775334086E-04 .183383516044E-04 - .200446365268E-04 .219099251426E-04 .239490074451E-04 .261780412903E-04 .286146775910E-04 - .312781967811E-04 .341896575397E-04 .373720588469E-04 .408505165352E-04 .446524555957E-04 - .488078196053E-04 .533492987520E-04 .583125780574E-04 .637366075292E-04 .696638961115E-04 - .761408314579E-04 .832180277112E-04 .909507036473E-04 .993990937307E-04 .108628894825E-03 - .118711751517E-03 .129725783243E-03 .141756156651E-03 .154895706876E-03 .169245611725E-03 - .184916122999E-03 .202027359557E-03 .220710167019E-03 .241107049363E-03 .263373178060E-03 - .287677484765E-03 .314203844005E-03 .343152352743E-03 .374740714148E-03 .409205733387E-03 - .446804933753E-03 .487818301955E-03 .532550171967E-03 .581331257351E-03 .634520842600E-03 - .692509144588E-03 .755719855875E-03 .824612882200E-03 .899687287136E-03 .981484457526E-03 - .107059150392E-02 .116764491093E-02 .127333445284E-02 .138840739083E-02 .151367296803E-02 - .165000722004E-02 .179835811811E-02 .195975106338E-02 .213529475035E-02 .232618741831E-02 - .253372350955E-02 .275930075293E-02 .300442769177E-02 .327073167412E-02 .355996732338E-02 - .387402550635E-02 .421494281475E-02 .458491157517E-02 .498629040056E-02 .542161529468E-02 - .589361131832E-02 .640520482362E-02 .695953625921E-02 .755997354550E-02 .821012601470E-02 - .891385890548E-02 .967530839642E-02 .104988971560E-01 .113893503798E-01 .123517122780E-01 - .133913629666E-01 .145140357074E-01 .157258344298E-01 .170332514579E-01 .184431853516E-01 - .199629587596E-01 .216003361669E-01 .233635414050E-01 .252612747781E-01 .273027296432E-01 - .294976082666E-01 .318561367616E-01 .343890788983E-01 .371077485559E-01 .400240205661E-01 - .431503396707E-01 .464997272749E-01 .500857856277E-01 .539226989877E-01 .580252312402E-01 - .624087193290E-01 .670890617600E-01 .720827013619E-01 .774066014717E-01 .830782147809E-01 - .891154442440E-01 .955365956824E-01 .102360321993E+00 .109605559121E+00 .117291454119E+00 - .125437285657E+00 .134062377145E+00 .143186002351E+00 .152827282935E+00 .163005077066E+00 - .173737858217E+00 .185043583407E+00 .196939550508E+00 .209442244520E+00 .222567172946E+00 - .236328690508E+00 .250739813497E+00 .265812024137E+00 .281555065455E+00 .297976727368E+00 - .315082624926E+00 .332875969998E+00 .351357338011E+00 .370524431759E+00 .390371844702E+00 - .410890826577E+00 .432069054598E+00 .453890413872E+00 .476334791012E+00 .499377885186E+00 - .522991040910E+00 .547141106879E+00 .571790324880E+00 .596896252515E+00 .622411723141E+00 - .648284846420E+00 .674459053632E+00 .700873193916E+00 .727461691493E+00 .754154779677E+00 - .780878833872E+00 .807556828724E+00 .834108935642E+00 .860453241997E+00 .886506498342E+00 - .912184686644E+00 .937403096565E+00 .962075607669E+00 .986113129009E+00 .100942167305E+01 - .103190111914E+01 .105344583503E+01 .107394748658E+01 .109329897818E+01 .111139787717E+01 - .112814845292E+01 .114346256216E+01 .115726003097E+01 .116946900803E+01 .118002646526E+01 - .118887883071E+01 .119598265524E+01 .120130520305E+01 .120482487873E+01 .120653144211E+01 - .120642599701E+01 .120452076569E+01 .120083867497E+01 .119541278593E+01 .118828559996E+01 - .117950827172E+01 .116913975771E+01 .115724592526E+01 .114389864413E+01 .112917487960E+01 - .111315580232E+01 .109592592756E+01 .107757229220E+01 .105818367577E+01 .103784986853E+01 - .101666098759E+01 .994706840706E+00 .972076336857E+00 .948856942356E+00 .925134183565E+00 - .900991194335E+00 .876508243864E+00 .851762198539E+00 .826826466725E+00 .801770802990E+00 - .776661134097E+00 .751559437481E+00 .726523663051E+00 .701607692403E+00 .676861325222E+00 - .652330285754E+00 .628056245620E+00 .604076865344E+00 .580425862344E+00 .557133116999E+00 - .534224828349E+00 .511723727271E+00 .489649347251E+00 .468018344882E+00 .446844854639E+00 - pseudo wavefunction - -.118249215019E-12 -.129684176221E-12 -.142224923513E-12 -.155978388862E-12 -.171061844791E-12 - -.187603904334E-12 -.205745617694E-12 -.225641674938E-12 -.247461725006E-12 -.271391822266E-12 - -.297636012956E-12 -.326418075036E-12 -.357983426290E-12 -.392601216946E-12 -.430566624652E-12 - -.472203371392E-12 -.517866483779E-12 -.567945320284E-12 -.622866891207E-12 -.683099499685E-12 - -.749156734806E-12 -.821601850857E-12 -.901052570060E-12 -.988186349741E-12 -.108374615885E-11 - -.118854681306E-11 -.130348192255E-11 -.142953151154E-11 -.156777037479E-11 -.171937724205E-11 - -.188564482887E-11 -.206799085923E-11 -.226797015415E-11 -.248728788925E-11 -.272781413441E-11 - -.299159979939E-11 -.328089412143E-11 -.359816384395E-11 -.394611424990E-11 -.432771222904E-11 - -.474621157586E-11 -.520518073397E-11 -.570853322328E-11 -.626056100964E-11 -.686597110144E-11 - -.752992568507E-11 -.825808614165E-11 -.905666132023E-11 -.993246047912E-11 -.108929513468E-10 - -.119463237973E-10 -.131015596833E-10 -.143685094224E-10 -.157579759888E-10 -.172818070276E-10 - -.189529958771E-10 -.207857923596E-10 -.227958242856E-10 -.250002307090E-10 -.274178080669E-10 - -.300691704524E-10 -.329769253854E-10 -.361658665817E-10 -.396631853619E-10 -.434987025057E-10 - -.477051225252E-10 -.523183125283E-10 -.573776080479E-10 -.629261484460E-10 -.690112447511E-10 - -.756847830673E-10 -.830036669931E-10 -.910303028230E-10 -.998331316691E-10 -.109487213040E-09 - -.120074864851E-09 -.131686365330E-09 -.144420722790E-09 -.158386519848E-09 -.173702839277E-09 - -.190500279390E-09 -.208922067614E-09 -.229125281748E-09 -.251282189321E-09 -.275581716459E-09 - -.302231058807E-09 -.331457448214E-09 -.363510090277E-09 -.398662289227E-09 -.437213778313E-09 - -.479493275522E-09 -.525861286451E-09 -.576713178212E-09 -.632482550587E-09 -.693644933181E-09 - -.760721840087E-09 -.834285216644E-09 -.914962316193E-09 -.100344104842E-08 -.110047584490E-08 - -.120689409180E-08 -.132360318467E-08 -.145159826539E-08 -.159197070735E-08 -.174591742101E-08 - -.191475105946E-08 -.209991121074E-08 -.230297667247E-08 -.252567891345E-08 -.276991683695E-08 - -.303777297162E-08 -.333153122795E-08 -.365369637188E-08 -.400701538129E-08 -.439450086776E-08 - -.481945676306E-08 -.528550648942E-08 -.579662385385E-08 -.635716692974E-08 -.697191521464E-08 - -.764611038111E-08 -.838550096788E-08 -.919639139240E-08 -.100856957026E-07 -.110609965261E-07 - -.121306097192E-07 -.133036552673E-07 -.145901350404E-07 -.160010180668E-07 -.175483340522E-07 - -.192452759409E-07 -.211063123932E-07 -.231473111388E-07 -.253856742556E-07 -.278404865286E-07 - -.305326781533E-07 -.334852031686E-07 -.367232351419E-07 -.402743817727E-07 -.441689202440E-07 - -.484400553269E-07 -.531242024385E-07 -.582612980627E-07 -.638951401819E-07 -.700737616182E-07 - -.768498394639E-07 -.842811440923E-07 -.924310315706E-07 -.101368983671E-06 -.111171200079E-06 - -.121921247843E-06 -.133710773596E-06 -.146640284615E-06 -.160820005365E-06 -.176370816827E-06 - -.193425286603E-06 -.212128798564E-06 -.232640791663E-06 -.255136118447E-06 -.279806534841E-06 - -.306862333867E-06 -.336534137200E-06 -.369074859812E-06 -.404761864392E-06 -.443899323882E-06 - -.486820812200E-06 -.533892145182E-06 -.585514495885E-06 -.642127810714E-06 -.704214555406E-06 - -.772303822679E-06 -.846975836412E-06 -.928866890618E-06 -.101867476509E-05 -.111716466371E-05 - -.122517572567E-05 -.134362816504E-05 -.147353109885E-05 -.161599113038E-05 -.177222175995E-05 - -.194355370328E-05 -.213144620432E-05 -.233749943847E-05 -.256346811094E-05 -.281127636512E-05 - -.308303412674E-05 -.338105502179E-05 -.370787601926E-05 -.406627896411E-05 -.445931418171E-05 - -.489032635243E-05 -.536298287364E-05 -.588130494731E-05 -.644970165396E-05 -.707300729841E-05 - -.775652233986E-05 -.850605824847E-05 -.932798666277E-05 -.102292932579E-04 -.112176367727E-04 - -.123014136871E-04 -.134898290851E-04 -.147929742915E-04 -.162219119240E-04 -.177887690613E-04 - -.195068392961E-04 -.213906945096E-04 -.234563072836E-04 -.257211849522E-04 -.282045163828E-04 - -.309273326811E-04 -.339126831215E-04 -.371858277211E-04 -.407744480089E-04 -.447088776755E-04 - -.490223549453E-04 -.537512986750E-04 -.589356103594E-04 -.646190044205E-04 -.708493693612E-04 - -.776791625915E-04 -.851658419772E-04 -.933723374194E-04 -.102367566058E-03 -.112226994989E-03 - -.123033255711E-03 -.134876814864E-03 -.147856706178E-03 -.162081328967E-03 -.177669318891E-03 - -.194750497176E-03 -.213466904915E-03 -.233973929608E-03 -.256441531551E-03 -.281055578266E-03 - -.308019295692E-03 -.337554845402E-03 -.369905037723E-03 -.405335191183E-03 -.444135149274E-03 - -.486621466120E-03 -.533139773114E-03 -.584067339108E-03 -.639815837184E-03 -.700834331326E-03 - -.767612496621E-03 -.840684086646E-03 -.920630661677E-03 -.100808559099E-02 -.110373834199E-02 - -.120833906793E-02 -.132270350470E-02 -.144771818520E-02 -.158434597755E-02 -.173363194995E-02 - -.189670956128E-02 -.207480717112E-02 -.226925485702E-02 -.248149151870E-02 -.271307224007E-02 - -.296567586825E-02 -.324111275566E-02 -.354133259498E-02 -.386843225790E-02 -.422466352620E-02 - -.461244057711E-02 -.503434705477E-02 -.549314252306E-02 -.599176805455E-02 -.653335066192E-02 - -.712120622373E-02 -.775884049381E-02 -.844994771238E-02 -.919840625607E-02 -.100082706738E-01 - -.108837593537E-01 -.118292369525E-01 -.128491905965E-01 -.139481987222E-01 -.151308912808E-01 - -.164018998671E-01 -.177657961669E-01 -.192270169356E-01 -.207897735420E-01 -.224579439266E-01 - -.242349446442E-01 -.261235804989E-01 -.281258691348E-01 -.302428378391E-01 -.324742897577E-01 - -.348185367377E-01 -.372720961143E-01 -.398293489877E-01 -.424821579082E-01 -.452194424554E-01 - -.480267119824E-01 -.508855558632E-01 -.537730929580E-01 -.566613837581E-01 -.595168108278E-01 - -.622994357621E-01 -.649623439622E-01 -.674509920846E-01 -.697025770444E-01 -.716454498570E-01 - -.731986022911E-01 -.742712590597E-01 -.747626128232E-01 -.745617432045E-01 -.735477637888E-01 - -.715902420064E-01 -.685499350210E-01 -.642798792621E-01 -.586268608977E-01 -.514332781125E-01 - -.425393823508E-01 -.317858536629E-01 -.190166243963E-01 -.408181586486E-02 .131594042692E-01 - .328362971349E-01 .550646728583E-01 .799460170012E-01 .107568009190E+00 .138006802894E+00 - .171331353357E+00 .207609905629E+00 .246918454593E+00 .289350531127E+00 .335027024725E+00 - .384103906891E+00 .436774680003E+00 .493263191226E+00 .553814781470E+00 .618772045579E+00 - ae wavefunction - -.972588500027E-10 -.106090263074E-09 -.115641627351E-09 -.125978082004E-09 -.137170198083E-09 - -.149294472228E-09 -.162433862733E-09 -.176678371826E-09 -.192125678333E-09 -.208881825598E-09 - -.227061969286E-09 -.246791191019E-09 -.268205383486E-09 -.291452213734E-09 -.316692171675E-09 - -.344099711688E-09 -.373864495654E-09 -.406192746702E-09 -.441308723887E-09 -.479456328663E-09 - -.520900855188E-09 -.565930897648E-09 -.614860428963E-09 -.668031066356E-09 -.725814541052E-09 - -.788615390678E-09 -.856873894742E-09 -.931069275554E-09 -.101172318873E-08 -.109940353010E-08 - -.119472858783E-08 -.129837157165E-08 -.141106555384E-08 -.153360885974E-08 -.166687094948E-08 - -.181179883594E-08 -.196942408862E-08 -.214087047742E-08 -.232736231566E-08 -.253023356679E-08 - -.275093778571E-08 -.299105897198E-08 -.325232341947E-08 -.353661265490E-08 -.384597756652E-08 - -.418265383340E-08 -.454907877645E-08 -.494790976330E-08 -.538204431193E-08 -.585464205128E-08 - -.636914871192E-08 -.692932233629E-08 -.753926191559E-08 -.820343868008E-08 -.892673029063E-08 - -.971445820274E-08 -.105724284999E-07 -.115069765205E-07 -.125250156344E-07 -.136340905561E-07 - -.148424356214E-07 -.161590384909E-07 -.175937097905E-07 -.191571592449E-07 -.208610789125E-07 - -.227182341898E-07 -.247425633117E-07 -.269492861477E-07 -.293550231651E-07 -.319779255134E-07 - -.348378172752E-07 -.379563510262E-07 -.413571779526E-07 -.450661338943E-07 -.491114428104E-07 - -.535239393000E-07 -.583373119736E-07 -.635883696258E-07 -.693173323583E-07 -.755681499892E-07 - -.823888503147E-07 -.898319200230E-07 -.979547213277E-07 -.106819947670E-06 -.116496122153E-06 - -.127058142725E-06 -.138587878481E-06 -.151174821889E-06 -.164916802169E-06 -.179920765564E-06 - -.196303628756E-06 -.214193212281E-06 -.233729261425E-06 -.255064562776E-06 -.278366165386E-06 - -.303816716297E-06 -.331615921120E-06 -.361982141341E-06 -.395154141078E-06 -.431392997243E-06 - -.470984188317E-06 -.514239878341E-06 -.561501414297E-06 -.613142056696E-06 -.669569965010E-06 - -.731231461597E-06 -.798614599917E-06 -.872253065204E-06 -.952730438342E-06 -.104068485650E-05 - -.113681410710E-05 -.124188119519E-05 -.135672042754E-05 -.148224406131E-05 -.161944956883E-05 - -.176942757523E-05 -.193337053035E-05 -.211258218222E-05 -.230848792520E-05 -.252264610262E-05 - -.275676035068E-05 -.301269307832E-05 -.329248018606E-05 -.359834713600E-05 -.393272649505E-05 - -.429827708434E-05 -.469790487930E-05 -.513478581773E-05 -.561239068675E-05 -.613451227472E-05 - -.670529498993E-05 -.732926716580E-05 -.801137629088E-05 -.875702742275E-05 -.957212506673E-05 - -.104631188245E-04 -.114370531437E-04 -.125016215269E-04 -.136652255895E-04 -.149370393873E-04 - -.163270794717E-04 -.178462811650E-04 -.195065815922E-04 -.213210100478E-04 -.233037863236E-04 - -.254704276727E-04 -.278378651425E-04 -.304245700635E-04 -.332506915469E-04 -.363382059075E-04 - -.397110790028E-04 -.433954425539E-04 -.474197855946E-04 -.518151622856E-04 -.566154174174E-04 - -.618574310316E-04 -.675813836869E-04 -.738310440144E-04 -.806540803186E-04 -.881023981098E-04 - -.962325055814E-04 -.105105909185E-03 -.114789541604E-03 -.125356224575E-03 -.136885169173E-03 - -.149462516333E-03 -.163181920573E-03 -.178145180036E-03 -.194462916188E-03 -.212255306688E-03 - -.231652875126E-03 -.252797341574E-03 -.275842538047E-03 -.300955393235E-03 -.328316991029E-03 - -.358123707616E-03 -.390588432089E-03 -.425941875757E-03 -.464433975513E-03 -.506335396802E-03 - -.551939141939E-03 -.601562269633E-03 -.655547731757E-03 -.714266333478E-03 -.778118822975E-03 - -.847538116967E-03 -.922991668335E-03 -.100498398201E-02 -.109405928524E-02 -.119080435811E-02 - -.129585153005E-02 -.140988184754E-02 -.153362841808E-02 -.166787993448E-02 -.181348438355E-02 - -.197135294163E-02 -.214246405929E-02 -.232786773575E-02 -.252868998273E-02 -.274613747566E-02 - -.298150238881E-02 -.323616740855E-02 -.351161091730E-02 -.380941233789E-02 -.413125762563E-02 - -.447894489216E-02 -.485439014229E-02 -.525963310092E-02 -.569684310370E-02 -.616832502055E-02 - -.667652517702E-02 -.722403723329E-02 -.781360797607E-02 -.844814297314E-02 -.913071203529E-02 - -.986455442473E-02 -.106530837437E-01 -.114998924317E-01 -.124087557915E-01 -.133836354607E-01 - -.144286822307E-01 -.155482381066E-01 -.167468374803E-01 -.180292072679E-01 -.194002658277E-01 - -.208651204429E-01 -.224290631174E-01 -.240975644063E-01 -.258762649997E-01 -.277709647977E-01 - -.297876092715E-01 -.319322729820E-01 -.342111402189E-01 -.366304828047E-01 -.391966351669E-01 - -.419159667859E-01 -.447948520716E-01 -.478396376093E-01 -.510566065795E-01 -.544519400566E-01 - -.580316748726E-01 -.618016577906E-01 -.657674958449E-01 -.699345028025E-01 -.743076417762E-01 - -.788914640521E-01 -.836900442159E-01 -.887069116882E-01 -.939449788174E-01 -.994064657489E-01 - -.105092822372E+00 -.111004647753E+00 -.117141607581E+00 -.123502350278E+00 -.130084422572E+00 - -.136884185461E+00 -.143896731637E+00 -.151115805577E+00 -.158533727621E+00 -.166141323420E+00 - -.173927860202E+00 -.181880991257E+00 -.189986709992E+00 -.198229314786E+00 -.206591385766E+00 - -.215053774625E+00 -.223595608862E+00 -.232194312468E+00 -.240825646377E+00 -.249463773888E+00 - -.258081358340E+00 -.266649701251E+00 -.275138926112E+00 -.283518201441E+00 -.291755971824E+00 - -.299820129041E+00 -.307678020159E+00 -.315296194889E+00 -.322639878249E+00 -.329672327412E+00 - -.336354419477E+00 -.342644850230E+00 -.348501046153E+00 -.353880438591E+00 -.358741561140E+00 - -.363044689514E+00 -.366752102564E+00 -.369828177557E+00 -.372239473189E+00 -.373954856132E+00 - -.374945664369E+00 -.375185874222E+00 -.374652234605E+00 -.373324339995E+00 -.371184626286E+00 - -.368218285165E+00 -.364413100839E+00 -.359759217437E+00 -.354248847119E+00 -.347875929137E+00 - -.340635749071E+00 -.332524526809E+00 -.323538980309E+00 -.313675871165E+00 -.302931536658E+00 - -.291301411666E+00 -.278779542588E+00 -.265358094003E+00 -.251026847769E+00 -.235772693145E+00 - -.219579105657E+00 -.202425611878E+00 -.184287236920E+00 -.165133931093E+00 -.144929972430E+00 - -.123633340739E+00 -.101195050828E+00 -.775584395587E-01 -.526584682413E-01 -.264209409367E-01 - .123834498996E-02 .304145210360E-01 .612146573244E-01 .937588737684E-01 .128181567965E+00 - .164632775588E+00 .203279680473E+00 .244308295091E+00 .287925338759E+00 .334360351516E+00 - .383868095674E+00 .436731313639E+00 .493263927403E+00 .553814781470E+00 .618772045579E+00 - pseudo wavefunction - .275057498578E-04 .283652356752E-04 .292515782726E-04 .301656168572E-04 .311082168594E-04 - .320802707518E-04 .330826988949E-04 .341164504080E-04 .351825040680E-04 .362818692361E-04 - .374155868136E-04 .385847302274E-04 .397904064461E-04 .410337570286E-04 .423159592044E-04 - .436382269885E-04 .450018123311E-04 .464080063024E-04 .478581403154E-04 .493535873867E-04 - .508957634358E-04 .524861286265E-04 .541261887489E-04 .558174966453E-04 .575616536805E-04 - .593603112580E-04 .612151723833E-04 .631279932769E-04 .651005850366E-04 .671348153525E-04 - .692326102755E-04 .713959560406E-04 .736269009479E-04 .759275573016E-04 .783001034103E-04 - .807467856492E-04 .832699205872E-04 .858718971803E-04 .885551790333E-04 .913223067325E-04 - .941759002515E-04 .971186614313E-04 .100153376539E-03 .103282918905E-03 .106510251645E-03 - .109838430464E-03 .113270606551E-03 .116810029562E-03 .120460050695E-03 .124224125866E-03 - .128105818981E-03 .132108805307E-03 .136236874956E-03 .140493936469E-03 .144884020523E-03 - .149411283741E-03 .154080012632E-03 .158894627647E-03 .163859687364E-03 .168979892809E-03 - .174260091901E-03 .179705284045E-03 .185320624866E-03 .191111431090E-03 .197083185576E-03 - .203241542512E-03 .209592332765E-03 .216141569400E-03 .222895453380E-03 .229860379432E-03 - .237042942100E-03 .244449941997E-03 .252088392237E-03 .259965525076E-03 .268088798763E-03 - .276465904600E-03 .285104774223E-03 .294013587116E-03 .303200778352E-03 .312675046580E-03 - .322445362263E-03 .332520976173E-03 .342911428144E-03 .353626556113E-03 .364676505430E-03 - .376071738463E-03 .387823044511E-03 .399941550013E-03 .412438729087E-03 .425326414394E-03 - .438616808340E-03 .452322494635E-03 .466456450203E-03 .481032057473E-03 .496063117050E-03 - .511563860782E-03 .527548965236E-03 .544033565596E-03 .561033269998E-03 .578564174301E-03 - .596642877338E-03 .615286496628E-03 .634512684588E-03 .654339645247E-03 .674786151487E-03 - .695871562816E-03 .717615843705E-03 .740039582493E-03 .763164010882E-03 .787011024047E-03 - .811603201366E-03 .836963827809E-03 .863116915985E-03 .890087228885E-03 .917900303336E-03 - .946582474183E-03 .976160899235E-03 .100666358498E-02 .103811941312E-02 .107055816792E-02 - .110401056443E-02 .113850827754E-02 .117408397204E-02 .121077133352E-02 .124860510032E-02 - .128762109637E-02 .132785626519E-02 .136934870488E-02 .141213770418E-02 .145626377972E-02 - .150176871443E-02 .154869559707E-02 .159708886312E-02 .164699433685E-02 .169845927476E-02 - .175153241037E-02 .180626400040E-02 .186270587240E-02 .192091147391E-02 .198093592308E-02 - .204283606095E-02 .210667050535E-02 .217249970647E-02 .224038600417E-02 .231039368713E-02 - .238258905381E-02 .245704047536E-02 .253381846045E-02 .261299572219E-02 .269464724714E-02 - .277885036648E-02 .286568482936E-02 .295523287871E-02 .304757932924E-02 .314281164804E-02 - .324102003767E-02 .334229752183E-02 .344674003377E-02 .355444650750E-02 .366551897183E-02 - .378006264740E-02 .389818604678E-02 .402000107774E-02 .414562314973E-02 .427517128382E-02 - .440876822604E-02 .454654056433E-02 .468861884925E-02 .483513771844E-02 .498623602513E-02 - .514205697063E-02 .530274824111E-02 .546846214876E-02 .563935577737E-02 .581559113266E-02 - .599733529734E-02 .618476059119E-02 .637804473629E-02 .657737102750E-02 .678292850851E-02 - .699491215350E-02 .721352305473E-02 .743896861622E-02 .767146275362E-02 .791122610074E-02 - .815848622266E-02 .841347783597E-02 .867644303612E-02 .894763153229E-02 .922730089004E-02 - .951571678198E-02 .981315324674E-02 .101198929566E-01 .104362274943E-01 .107624576384E-01 - .110988936596E-01 .114458556257E-01 .118036737178E-01 .121726885573E-01 .125532515437E-01 - .129457252046E-01 .133504835576E-01 .137679124847E-01 .141984101205E-01 .146423872538E-01 - .151002677434E-01 .155724889489E-01 .160595021778E-01 .165617731480E-01 .170797824676E-01 - .176140261335E-01 .181650160469E-01 .187332805501E-01 .193193649828E-01 .199238322600E-01 - .205472634729E-01 .211902585128E-01 .218534367205E-01 .225374375618E-01 .232429213299E-01 - .239705698781E-01 .247210873813E-01 .254952011317E-01 .262936623674E-01 .271172471370E-01 - .279667572031E-01 .288430209852E-01 .297468945461E-01 .306792626230E-01 .316410397066E-01 - .326331711719E-01 .336566344624E-01 .347124403322E-01 .358016341494E-01 .369252972650E-01 - .380845484508E-01 .392805454117E-01 .405144863773E-01 .417876117776E-01 .431012060087E-01 - .444565992954E-01 .458551696562E-01 .472983449781E-01 .487876052101E-01 .503244846819E-01 - .519105745572E-01 .535475254323E-01 .552370500880E-01 .569809264076E-01 .587810004718E-01 - .606391898426E-01 .625574870507E-01 .645379632989E-01 .665827723982E-01 .686941549513E-01 - .708744428012E-01 .731260637618E-01 .754515466508E-01 .778535266428E-01 .803347509642E-01 - .828980849511E-01 .855465184923E-01 .882831728792E-01 .911113080868E-01 .940343305086E-01 - .970558011677E-01 .100179444428E+00 .103409157226E+00 .106749018846E+00 .110203301252E+00 - .113776479997E+00 .117473245717E+00 .121298516220E+00 .125257449168E+00 .129355455337E+00 - .133598212456E+00 .137991679570E+00 .142542111902E+00 .147256076145E+00 .152140466087E+00 - .157202518484E+00 .162449829014E+00 .167890368153E+00 .173532496747E+00 .179384981004E+00 - .185457006597E+00 .191758191465E+00 .198298596851E+00 .205088736006E+00 .212139579909E+00 - .219462559204E+00 .227069561447E+00 .234972922604E+00 .243185411543E+00 .251720206111E+00 - .260590859159E+00 .269811252625E+00 .279395537570E+00 .289358057742E+00 .299713253975E+00 - .310475546402E+00 .321659191108E+00 .333278107553E+00 .345345672704E+00 .357874477525E+00 - .370876041123E+00 .384360477641E+00 .398336110741E+00 .412809030463E+00 .427782587276E+00 - .443256818359E+00 .459227801637E+00 .475686933831E+00 .492620129977E+00 .510006943430E+00 - .527819607613E+00 .546022003565E+00 .564568561012E+00 .583403105229E+00 .602457667484E+00 - .621651283554E+00 .640888812661E+00 .660059818230E+00 .679037562193E+00 .697678175868E+00 - .715820082625E+00 .733283760118E+00 .749871942190E+00 .765370371755E+00 .779549224844E+00 - .792165330885E+00 .802965313264E+00 .811689764792E+00 .818092101328E+00 .822100752186E+00 - ae wavefunction - -.899198353841E-03 -.926712521187E-03 -.955066450255E-03 -.984285638958E-03 -.101439635132E-02 - -.104542563998E-02 -.107740136938E-02 -.111035223955E-02 -.114430781055E-02 -.117929852763E-02 - -.121535574704E-02 -.125251176256E-02 -.129079983278E-02 -.133025420905E-02 -.137091016429E-02 - -.141280402248E-02 -.145597318897E-02 -.150045618161E-02 -.154629266272E-02 -.159352347183E-02 - -.164219065935E-02 -.169233752109E-02 -.174400863366E-02 -.179724989080E-02 -.185210854063E-02 - -.190863322383E-02 -.196687401281E-02 -.202688245183E-02 -.208871159815E-02 -.215241606412E-02 - -.221805206039E-02 -.228567744012E-02 -.235535174418E-02 -.242713624757E-02 -.250109400678E-02 - -.257728990833E-02 -.265579071839E-02 -.273666513352E-02 -.281998383256E-02 -.290581952963E-02 - -.299424702829E-02 -.308534327685E-02 -.317918742486E-02 -.327586088067E-02 -.337544737027E-02 - -.347803299720E-02 -.358370630361E-02 -.369255833253E-02 -.380468269119E-02 -.392017561554E-02 - -.403913603582E-02 -.416166564322E-02 -.428786895766E-02 -.441785339653E-02 -.455172934446E-02 - -.468961022412E-02 -.483161256783E-02 -.497785609014E-02 -.512846376124E-02 -.528356188103E-02 - -.544328015406E-02 -.560775176491E-02 -.577711345430E-02 -.595150559549E-02 -.613107227119E-02 - -.631596135059E-02 -.650632456660E-02 -.670231759308E-02 -.690410012192E-02 -.711183593981E-02 - -.732569300460E-02 -.754584352100E-02 -.777246401539E-02 -.800573540968E-02 -.824584309382E-02 - -.849297699682E-02 -.874733165594E-02 -.900910628387E-02 -.927850483344E-02 -.955573605970E-02 - -.984101357881E-02 -.101345559236E-01 -.104365865952E-01 -.107473341103E-01 -.110670320437E-01 - -.113959190656E-01 -.117342389731E-01 -.120822407151E-01 -.124401784105E-01 -.128083113584E-01 - -.131869040403E-01 -.135762261130E-01 -.139765523913E-01 -.143881628210E-01 -.148113424389E-01 - -.152463813215E-01 -.156935745191E-01 -.161532219760E-01 -.166256284347E-01 -.171111033226E-01 - -.176099606218E-01 -.181225187176E-01 -.186491002274E-01 -.191900318064E-01 -.197456439295E-01 - -.203162706469E-01 -.209022493132E-01 -.215039202859E-01 -.221216265937E-01 -.227557135704E-01 - -.234065284540E-01 -.240744199475E-01 -.247597377397E-01 -.254628319830E-01 -.261840527262E-01 - -.269237492988E-01 -.276822696445E-01 -.284599596010E-01 -.292571621217E-01 -.300742164383E-01 - -.309114571583E-01 -.317692132962E-01 -.326478072329E-01 -.335475536006E-01 -.344687580886E-01 - -.354117161665E-01 -.363767117199E-01 -.373640155947E-01 -.383738840454E-01 -.394065570825E-01 - -.404622567149E-01 -.415411850820E-01 -.426435224698E-01 -.437694252084E-01 -.449190234428E-01 - -.460924187738E-01 -.472896817634E-01 -.485108492991E-01 -.497559218126E-01 -.510248603468E-01 - -.523175834670E-01 -.536339640107E-01 -.549738256715E-01 -.563369394121E-01 -.577230197024E-01 - -.591317205784E-01 -.605626315184E-01 -.620152731321E-01 -.634890926619E-01 -.649834592915E-01 - -.664976592625E-01 -.680308907969E-01 -.695822588252E-01 -.711507695225E-01 -.727353246532E-01 - -.743347157283E-01 -.759476179799E-01 -.775725841588E-01 -.792080381632E-01 -.808522685079E-01 - -.825034216460E-01 -.841594951571E-01 -.858183308173E-01 -.874776075715E-01 -.891348344283E-01 - -.907873433036E-01 -.924322818408E-01 -.940666062386E-01 -.956870741239E-01 -.972902375081E-01 - -.988724358728E-01 -.100429789432E+00 -.101958192628E+00 -.103453307915E+00 -.104910559905E+00 - -.106325129937E+00 -.107691951151E+00 -.109005704157E+00 -.110260813372E+00 -.111451444148E+00 - -.112571500771E+00 -.113614625463E+00 -.114574198488E+00 -.115443339510E+00 -.116214910326E+00 - -.116881519111E+00 -.117435526347E+00 -.117869052568E+00 -.118173988109E+00 -.118342005016E+00 - -.118364571301E+00 -.118232967726E+00 -.117938307303E+00 -.117471557703E+00 -.116823566767E+00 - -.115985091322E+00 -.114946829481E+00 -.113699456641E+00 -.112233665352E+00 -.110540209243E+00 - -.108609951173E+00 -.106433915777E+00 -.104003346530E+00 -.101309767468E+00 -.983450496627E-01 - -.951014825035E-01 -.915718498506E-01 -.877495110385E-01 -.836284866986E-01 -.792035493055E-01 - -.744703183056E-01 -.694253596226E-01 -.640662892686E-01 -.583918807179E-01 -.524021756178E-01 - -.460985973220E-01 -.394840666358E-01 -.325631190565E-01 -.253420226800E-01 -.178288958309E-01 - -.100338233555E-01 -.196897041846E-02 .635130744433E-02 .149103593094E-01 .236891401895E-01 - .326661199705E-01 .418172011875E-01 .511156468463E-01 .605320195557E-01 .700341334354E-01 - .795870206160E-01 .891529146265E-01 .986912534872E-01 .108158705783E+00 .117509223245E+00 - .126694123353E+00 .135662205068E+00 .144359900124E+00 .152731461502E+00 .160719189968E+00 - .168263699159E+00 .175304219540E+00 .181778941558E+00 .187625398180E+00 .192780886798E+00 - .197182929987E+00 .200769774111E+00 .203480924170E+00 .205257712737E+00 .206043900277E+00 - .205786303570E+00 .204435448392E+00 .201946241992E+00 .198278660211E+00 .193398443402E+00 - .187277794549E+00 .179896072185E+00 .171240469898E+00 .161306673423E+00 .150099485504E+00 - .137633408003E+00 .123933170145E+00 .109034191331E+00 .929829668192E-01 .758373646553E-01 - .576668227067E-01 .385524353540E-01 .185869202081E-01 -.212554413693E-02 -.234696182120E-01 - -.453192492185E-01 -.675382767194E-01 -.899812070739E-01 -.112494161913E+00 -.134915989271E+00 - -.157079492842E+00 -.178812690457E+00 -.199939984140E+00 -.220283157880E+00 -.239662251068E+00 - -.257896552174E+00 -.274806070475E+00 -.290213681412E+00 -.303947738052E+00 -.315844675777E+00 - -.325751270780E+00 -.333526519703E+00 -.339043268157E+00 -.342189698293E+00 -.342870710681E+00 - -.341009178987E+00 -.336547029506E+00 -.329446094635E+00 -.319688700478E+00 -.307277966505E+00 - -.292237812734E+00 -.274612683925E+00 -.254467009937E+00 -.231884427155E+00 -.206966789220E+00 - -.179832996494E+00 -.150617674278E+00 -.119469728937E+00 -.865508100911E-01 -.520337052407E-01 - -.161006912205E-01 .210581352729E-01 .592465279993E-01 .982637441706E-01 .137906163704E+00 - .177968859678E+00 .218247106128E+00 .258537810450E+00 .298640858779E+00 .338360364663E+00 - .377505812321E+00 .415893058901E+00 .453345157081E+00 .489693249528E+00 .524777291749E+00 - .558446658714E+00 .590560659113E+00 .620988954824E+00 .649611890536E+00 .676320732406E+00 - .701017815151E+00 .723616599449E+00 .744041647225E+00 .762228534470E+00 .778123726362E+00 - .791684451361E+00 .802878609667E+00 .811684745620E+00 .818092101328E+00 .822100752186E+00 - pseudo wavefunction - .306523907627E-05 .316102012315E-05 .325979408796E-05 .336165449191E-05 .346669777849E-05 - .357502340482E-05 .368673393581E-05 .380193514125E-05 .392073609600E-05 .404324928319E-05 - .416959070082E-05 .429987997151E-05 .443424045579E-05 .457279936889E-05 .471568790123E-05 - .486304134256E-05 .501499921013E-05 .517170538074E-05 .533330822700E-05 .549996075776E-05 - .567182076304E-05 .584905096341E-05 .603181916403E-05 .622029841357E-05 .641466716803E-05 - .661510945973E-05 .682181507152E-05 .703497971651E-05 .725480522335E-05 .748149972734E-05 - .771527786748E-05 .795636098972E-05 .820497735650E-05 .846136236292E-05 .872575875957E-05 - .899841688241E-05 .927959488978E-05 .956955900682E-05 .986858377754E-05 .101769523248E-04 - .104949566183E-04 .108228977511E-04 .111610862248E-04 .115098422431E-04 .118694960156E-04 - .122403880699E-04 .126228695745E-04 .130173026709E-04 .134240608165E-04 .138435291386E-04 - .142761047986E-04 .147221973684E-04 .151822292178E-04 .156566359148E-04 .161458666378E-04 - .166503846009E-04 .171706674926E-04 .177072079280E-04 .182605139151E-04 .188311093362E-04 - .194195344434E-04 .200263463705E-04 .206521196605E-04 .212974468093E-04 .219629388272E-04 - .226492258169E-04 .233569575704E-04 .240868041842E-04 .248394566937E-04 .256156277277E-04 - .264160521830E-04 .272414879201E-04 .280927164811E-04 .289705438295E-04 .298758011132E-04 - .308093454518E-04 .317720607481E-04 .327648585247E-04 .337886787875E-04 .348444909155E-04 - .359332945788E-04 .370561206851E-04 .382140323557E-04 .394081259326E-04 .406395320161E-04 - .419094165355E-04 .432189818533E-04 .445694679034E-04 .459621533655E-04 .473983568755E-04 - .488794382747E-04 .504067998967E-04 .519818878960E-04 .536061936169E-04 .552812550059E-04 - .570086580682E-04 .587900383693E-04 .606270825837E-04 .625215300925E-04 .644751746304E-04 - .664898659840E-04 .685675117439E-04 .707100791113E-04 .729195967606E-04 .751981567605E-04 - .775479165558E-04 .799711010103E-04 .824700045137E-04 .850469931551E-04 .877045069632E-04 - .904450622179E-04 .932712538332E-04 .961857578153E-04 .991913337968E-04 .102290827651E-03 - .105487174187E-03 .108783399931E-03 .112182625991E-03 .115688071016E-03 .119303054243E-03 - .123030998643E-03 .126875434164E-03 .130840001072E-03 .134928453405E-03 .139144662527E-03 - .143492620799E-03 .147976445357E-03 .152600382018E-03 .157368809304E-03 .162286242590E-03 - .167357338383E-03 .172586898739E-03 .177979875810E-03 .183541376546E-03 .189276667531E-03 - .195191179977E-03 .201290514879E-03 .207580448322E-03 .214066936959E-03 .220756123668E-03 - .227654343370E-03 .234768129048E-03 .242104217940E-03 .249669557937E-03 .257471314176E-03 - .265516875844E-03 .273813863190E-03 .282370134766E-03 .291193794891E-03 .300293201348E-03 - .309676973326E-03 .319353999616E-03 .329333447057E-03 .339624769257E-03 .350237715582E-03 - .361182340435E-03 .372469012823E-03 .384108426232E-03 .396111608809E-03 .408489933870E-03 - .421255130743E-03 .434419295950E-03 .447994904745E-03 .461994823027E-03 .476432319619E-03 - .491321078949E-03 .506675214131E-03 .522509280465E-03 .538838289368E-03 .555677722753E-03 - .573043547869E-03 .590952232612E-03 .609420761343E-03 .628466651202E-03 .648107968953E-03 - .668363348383E-03 .689252008250E-03 .710793770833E-03 .733009081069E-03 .755919026329E-03 - .779545356835E-03 .803910506750E-03 .829037615964E-03 .854950552599E-03 .881673936260E-03 - .909233162066E-03 .937654425472E-03 .966964747939E-03 .997192003454E-03 .102836494596E-02 - .106051323769E-02 .109366747854E-02 .112785923633E-02 .116312107823E-02 .119948660322E-02 - .123699047564E-02 .127566846000E-02 .131555745699E-02 .135669554069E-02 .139912199727E-02 - .144287736490E-02 .148800347526E-02 .153454349645E-02 .158254197758E-02 .163204489492E-02 - .168309969982E-02 .173575536846E-02 .179006245344E-02 .184607313738E-02 .190384128859E-02 - .196342251891E-02 .202487424381E-02 .208825574495E-02 .215362823513E-02 .222105492604E-02 - .229060109864E-02 .236233417650E-02 .243632380228E-02 .251264191728E-02 .259136284455E-02 - .267256337542E-02 .275632285991E-02 .284272330104E-02 .293184945327E-02 .302378892544E-02 - .311863228818E-02 .321647318631E-02 .331740845625E-02 .342153824889E-02 .352896615803E-02 - .363979935482E-02 .375414872833E-02 .387212903270E-02 .399385904105E-02 .411946170652E-02 - .424906433072E-02 .438279873976E-02 .452080146837E-02 .466321395207E-02 .481018272788E-02 - .496185964350E-02 .511840207525E-02 .527997315474E-02 .544674200418E-02 .561888398034E-02 - .579658092658E-02 .598002143275E-02 .616940110202E-02 .636492282388E-02 .656679705189E-02 - .677524208453E-02 .699048434710E-02 .721275867191E-02 .744230857346E-02 .767938651443E-02 - .792425415746E-02 .817718259656E-02 .843845256058E-02 .870835457983E-02 .898718910490E-02 - .927526656469E-02 .957290734822E-02 .988044169165E-02 .101982094487E-01 .105265597181E-01 - .108658502986E-01 .112164469335E-01 .115787223033E-01 .119530547176E-01 .123398264441E-01 - .127394216104E-01 .131522235951E-01 .135786118163E-01 .140189578077E-01 .144736204563E-01 - .149429402540E-01 .154272323921E-01 .159267785022E-01 .164418168150E-01 .169725304727E-01 - .175190336939E-01 .180813554412E-01 .186594201933E-01 .192530253631E-01 .198618148409E-01 - .204852480685E-01 .211225639656E-01 .217727389463E-01 .224344381568E-01 .231059589617E-01 - .237851655846E-01 .244694136790E-01 .251554634716E-01 .258393799684E-01 .265164185683E-01 - .271808942660E-01 .278260324772E-01 .284437993635E-01 .290247093987E-01 .295576077993E-01 - .300294253598E-01 .304249031939E-01 .307262849110E-01 .309129738779E-01 .309611534444E-01 - .308433683966E-01 .305280664757E-01 .299790996080E-01 .291551855962E-01 .280093324807E-01 - .264882296649E-01 .245316122941E-01 .220716083625E-01 .190320816938E-01 .153279883881E-01 - .108647696326E-01 .553781001900E-02 -.768002259323E-03 -.817856872412E-02 -.168306736421E-01 - -.268718129311E-01 -.384596844546E-01 -.517612543158E-01 -.669513031666E-01 -.842103470203E-01 - -.103721819653E+00 -.125668399754E+00 -.150227367278E+00 -.177564882007E+00 -.207829095748E+00 - -.241142040539E+00 -.277590281903E+00 -.317214391603E+00 -.359999728194E+00 -.405955816909E+00 - ae wavefunction - .332790960878E-04 .342973891243E-04 .353467616646E-04 .364281573898E-04 .375425483355E-04 - .386909357250E-04 .398743508265E-04 .410938558337E-04 .423505447718E-04 .436455444268E-04 - .449800153019E-04 .463551525997E-04 .477721872305E-04 .492323868490E-04 .507370569184E-04 - .522875418030E-04 .538852258903E-04 .555315347432E-04 .572279362820E-04 .589759419982E-04 - .607771081995E-04 .626330372878E-04 .645453790697E-04 .665158321010E-04 .685461450655E-04 - .706381181886E-04 .727936046866E-04 .750145122523E-04 .773028045772E-04 .796605029117E-04 - .820896876622E-04 .845925000281E-04 .871711436767E-04 .898278864591E-04 .925650621651E-04 - .953850723191E-04 .982903880173E-04 .101283551807E-03 .104367179604E-03 .107543962661E-03 - .110816669565E-03 .114188148293E-03 .117661328294E-03 .121239222630E-03 .124924930146E-03 - .128721637693E-03 .132632622387E-03 .136661253915E-03 .140810996881E-03 .145085413189E-03 - .149488164480E-03 .154023014592E-03 .158693832076E-03 .163504592736E-03 .168459382219E-03 - .173562398631E-03 .178817955195E-03 .184230482932E-03 .189804533388E-03 .195544781371E-03 - .201456027730E-03 .207543202150E-03 .213811365965E-03 .220265714995E-03 .226911582392E-03 - .233754441499E-03 .240799908705E-03 .248053746316E-03 .255521865407E-03 .263210328669E-03 - .271125353243E-03 .279273313522E-03 .287660743935E-03 .296294341677E-03 .305180969408E-03 - .314327657884E-03 .323741608530E-03 .333430195935E-03 .343400970255E-03 .353661659522E-03 - .364220171839E-03 .375084597443E-03 .386263210634E-03 .397764471538E-03 .409597027698E-03 - .421769715473E-03 .434291561219E-03 .447171782235E-03 .460419787454E-03 .474045177856E-03 - .488057746560E-03 .502467478599E-03 .517284550319E-03 .532519328391E-03 .548182368387E-03 - .564284412907E-03 .580836389195E-03 .597849406222E-03 .615334751190E-03 .633303885412E-03 - .651768439519E-03 .670740207948E-03 .690231142663E-03 .710253346041E-03 .730819062878E-03 - .751940671450E-03 .773630673557E-03 .795901683491E-03 .818766415856E-03 .842237672153E-03 - .866328326067E-03 .891051307359E-03 .916419584286E-03 .942446144444E-03 .969143973959E-03 - .996526034898E-03 .102460524082E-02 .105339443033E-02 .108290633859E-02 .111315356651E-02 - .114414854773E-02 .117590351302E-02 .120843045214E-02 .124174107296E-02 .127584675766E-02 - .131075851590E-02 .134648693481E-02 .138304212565E-02 .142043366692E-02 .145867054379E-02 - .149776108375E-02 .153771288810E-02 .157853275937E-02 .162022662427E-02 .166279945211E-02 - .170625516841E-02 .175059656361E-02 .179582519668E-02 .184194129329E-02 .188894363864E-02 - .193682946447E-02 .198559433026E-02 .203523199844E-02 .208573430332E-02 .213709101372E-02 - .218928968911E-02 .224231552908E-02 .229615121609E-02 .235077675141E-02 .240616928408E-02 - .246230293300E-02 .251914860193E-02 .257667378757E-02 .263484238075E-02 .269361446065E-02 - .275294608244E-02 .281278905829E-02 .287309073212E-02 .293379374832E-02 .299483581488E-02 - .305614946122E-02 .311766179143E-02 .317929423340E-02 .324096228450E-02 .330257525477E-02 - .336403600844E-02 .342524070473E-02 .348607853935E-02 .354643148768E-02 .360617405136E-02 - .366517300977E-02 .372328717817E-02 .378036717454E-02 .383625519715E-02 .389078481534E-02 - .394378077594E-02 .399505882818E-02 .404442557003E-02 .409167831923E-02 .413660501247E-02 - .417898413637E-02 .421858469439E-02 .425516621365E-02 .428847879633E-02 .431826322029E-02 - .434425109391E-02 .436616507031E-02 .438371912648E-02 .439661891303E-02 .440456218025E-02 - .440723928675E-02 .440433379675E-02 .439552317242E-02 .438047956758E-02 .435887072926E-02 - .433036101354E-02 .429461252182E-02 .425128636393E-02 .420004405367E-02 .414054904262E-02 - .407246839717E-02 .399547462342E-02 .390924764384E-02 .381347692889E-02 .370786378564E-02 - .359212380462E-02 .346598946468E-02 .332921289438E-02 .318156878670E-02 .302285746238E-02 - .285290807484E-02 .267158194802E-02 .247877603567E-02 .227442648848E-02 .205851231241E-02 - .183105909864E-02 .159214280255E-02 .134189354526E-02 .108049940813E-02 .808210186481E-03 - .525341065597E-03 .232276178824E-03 -.705279946183E-04 -.382539435301E-03 -.703147635202E-03 - -.103166093530E-02 -.136730418594E-02 -.170921676394E-02 -.205645098062E-02 -.240797091910E-02 - -.276265174972E-02 -.311927958652E-02 -.347655196436E-02 -.383307902990E-02 -.418738554689E-02 - -.453791381288E-02 -.488302756802E-02 -.522101694937E-02 -.555010451091E-02 -.586845230047E-02 - -.617416996523E-02 -.646532384904E-02 -.673994704057E-02 -.699605032578E-02 -.723163398664E-02 - -.744470037129E-02 -.763326714044E-02 -.779538107543E-02 -.792913231358E-02 -.803266886015E-02 - -.810421121041E-02 -.814206690063E-02 -.814464479366E-02 -.811046889123E-02 -.803819145368E-02 - -.792660519675E-02 -.777465432632E-02 -.758144416528E-02 -.734624912276E-02 -.706851875618E-02 - -.674788168143E-02 -.638414709813E-02 -.597730371694E-02 -.552751590675E-02 -.503511692328E-02 - -.450059913894E-02 -.392460126542E-02 -.330789264233E-02 -.265135474644E-02 -.195596014275E-02 - -.122274913172E-02 -.452804338425E-03 .352776537653E-03 .119290953971E-02 .206655422288E-02 - .297274285809E-02 .391060599851E-02 .487938968735E-02 .587845933246E-02 .690728824659E-02 - .796543532533E-02 .905252255370E-02 .101682216390E-01 .113122475404E-01 .124843452935E-01 - .136842570044E-01 .149116648488E-01 .161661126581E-01 .174469097787E-01 .187530192230E-01 - .200829303119E-01 .214345148198E-01 .228048651244E-01 .241901128938E-01 .255852272632E-01 - .269837920448E-01 .283777621052E-01 .297571995570E-01 .311099908284E-01 .324215460325E-01 - .336744823488E-01 .348482934608E-01 .359190073753E-01 .368588352845E-01 .376358144700E-01 - .382134485993E-01 .385503491673E-01 .385998822349E-01 .383098250953E-01 .376220380322E-01 - .364721569400E-01 .347893133376E-01 .324958891930E-01 .295073150279E-01 .257319210772E-01 - .210708525602E-01 .154180604806E-01 .866038301277E-02 .677745150000E-03 -.865652160873E-02 - -.194752170795E-01 -.319166427280E-01 -.461237834441E-01 -.622432755064E-01 -.804241301524E-01 - -.100816185309E+00 -.123568250014E+00 -.148825906723E+00 -.176728940141E+00 -.207408358873E+00 - -.240982988976E+00 -.277555624700E+00 -.317208733985E+00 -.359999728194E+00 -.405955816909E+00 - pseudo wavefunction - .204714845008E-08 .217708382521E-08 .231526638033E-08 .246221957548E-08 .261850009546E-08 - .278469995861E-08 .296144875953E-08 .314941605404E-08 .334931389564E-08 .356189953282E-08 - .378797827772E-08 .402840655677E-08 .428409515497E-08 .455601266612E-08 .484518916203E-08 - .515272009461E-08 .547977044563E-08 .582757913987E-08 .619746373844E-08 .659082542985E-08 - .700915433804E-08 .745403516719E-08 .792715320487E-08 .843030070621E-08 .896538368330E-08 - .953442912545E-08 .101395926778E-07 .107831668075E-07 .114675894875E-07 .121954534325E-07 - .129695159203E-07 .137927092373E-07 .146681517857E-07 .155991598976E-07 .165892603970E-07 - .176422039604E-07 .187619793251E-07 .199528283991E-07 .212192623302E-07 .225660785952E-07 - .239983791734E-07 .255215898738E-07 .271414808892E-07 .288641886547E-07 .306962390934E-07 - .326445723379E-07 .347165690210E-07 .369200782343E-07 .392634472624E-07 .417555532040E-07 - .444058365993E-07 .472243371931E-07 .502217319671E-07 .534093755857E-07 .567993434099E-07 - .604044772412E-07 .642384339678E-07 .683157373002E-07 .726518327893E-07 .772631463366E-07 - .821671464190E-07 .873824102622E-07 .929286942148E-07 .988270085884E-07 .105099697249E-06 - .111770522260E-06 .118864753896E-06 .126409266371E-06 .134432639645E-06 .142965267688E-06 - .152039473618E-06 .161689632148E-06 .171952299803E-06 .182866353403E-06 .194473137334E-06 - .206816620170E-06 .219943561235E-06 .233903687731E-06 .248749883120E-06 .264538387452E-06 - .281329010415E-06 .299185357902E-06 .318175072967E-06 .338370092065E-06 .359846917562E-06 - .382686907543E-06 .406976584006E-06 .432807960630E-06 .460278891336E-06 .489493440978E-06 - .520562279559E-06 .553603101472E-06 .588741071349E-06 .626109298207E-06 .665849339692E-06 - .708111738330E-06 .753056591804E-06 .800854159444E-06 .851685507199E-06 .905743193553E-06 - .963231998972E-06 .102436970166E-05 .108938790254E-05 .115853290261E-05 .123206663600E-05 - .131026766219E-05 .139343222131E-05 .148187535629E-05 .157593210640E-05 .167595877637E-05 - .178233428621E-05 .189546160661E-05 .201576928550E-05 .214371307149E-05 .227977764034E-05 - .242447843106E-05 .257836359847E-05 .274201608978E-05 .291605585297E-05 .310114218522E-05 - .329797623060E-05 .350730363614E-05 .372991737654E-05 .396666075821E-05 .421843061394E-05 - .448618070037E-05 .477092531107E-05 .507374311908E-05 .539578126318E-05 .573825969366E-05 - .610247579392E-05 .648980929537E-05 .690172750435E-05 .733979086084E-05 .780565885000E-05 - .830109628893E-05 .882798001251E-05 .938830598366E-05 .998419685490E-05 .106179100099E-04 - .112918461156E-04 .120085582169E-04 .127707614092E-04 .135813431241E-04 .144433740694E-04 - .153601198617E-04 .163350533995E-04 .173718680197E-04 .184744914914E-04 .196471008962E-04 - .208941384543E-04 .222203283549E-04 .236306946551E-04 .251305803155E-04 .267256674434E-04 - .284219988221E-04 .302260008069E-04 .321445076741E-04 .341847875172E-04 .363545697857E-04 - .386620745740E-04 .411160437690E-04 .437257741755E-04 .465011527459E-04 .494526940458E-04 - .525915800995E-04 .559297027654E-04 .594797088031E-04 .632550478016E-04 .672700231525E-04 - .715398462598E-04 .760806941935E-04 .809097710045E-04 .860453729350E-04 .915069577709E-04 - .973152186000E-04 .103492162256E-03 .110061192749E-03 .117047199988E-03 .124476654156E-03 - .132377706070E-03 .140780293921E-03 .149716256806E-03 .159219455465E-03 .169325900702E-03 - .180073889967E-03 .191504152619E-03 .203660004434E-03 .216587511931E-03 .230335667150E-03 - .244956573558E-03 .260505643766E-03 .277041809844E-03 .294627747006E-03 .313330111541E-03 - .333219793888E-03 .354372187827E-03 .376867476810E-03 .400790938536E-03 .426233268928E-03 - .453290926760E-03 .482066500245E-03 .512669097011E-03 .545214758936E-03 .579826903457E-03 - .616636793043E-03 .655784034635E-03 .697417110994E-03 .741693945984E-03 .788782505994E-03 - .838861439812E-03 .892120759441E-03 .948762564480E-03 .100900181290E-02 .107306714119E-02 - .114120173712E-02 .121366426844E-02 .129072987122E-02 .137269120167E-02 .145985955555E-02 - .155256605967E-02 .165116293997E-02 .175602487141E-02 .186755041490E-02 .198616354696E-02 - .211231528829E-02 .224648543758E-02 .238918441779E-02 .254095524190E-02 .270237560653E-02 - .287406012142E-02 .305666268425E-02 .325087901007E-02 .345744932603E-02 .367716124227E-02 - .391085281078E-02 .415941578513E-02 .442379909433E-02 .470501254559E-02 .500413077139E-02 - .532229743761E-02 .566072973056E-02 .602072314206E-02 .640365657313E-02 .681099777835E-02 - .724430917448E-02 .770525403885E-02 .819560312462E-02 .871724172236E-02 .927217719926E-02 - .986254704982E-02 .104906274944E-01 .111588426645E-01 .118697744170E-01 .126261728219E-01 - .134309673729E-01 .142872789722E-01 .151984327460E-01 .161679717503E-01 .171996716327E-01 - .182975563186E-01 .194659147971E-01 .207093190860E-01 .220326434625E-01 .234410850504E-01 - .249401858626E-01 .265358564037E-01 .282344009450E-01 .300425445893E-01 .319674622547E-01 - .340168097087E-01 .361987567951E-01 .385220230021E-01 .409959155277E-01 .436303700024E-01 - .464359940388E-01 .494241137786E-01 .526068236105E-01 .559970392356E-01 .596085542501E-01 - .634561004136E-01 .675554117571E-01 .719232926694E-01 .765776900776E-01 .815377698053E-01 - .868239971461E-01 .924582216380E-01 .984637659492E-01 .104865518698E+00 .111690030916E+00 - .118965615721E+00 .126722450608E+00 .134992681546E+00 .143810527830E+00 .153212386342E+00 - .163236933519E+00 .173925222912E+00 .185320775743E+00 .197469661294E+00 .210420563307E+00 - .224224827846E+00 .238936487211E+00 .254612253532E+00 .271311474626E+00 .289096043527E+00 - .308030251807E+00 .328180575472E+00 .349615380797E+00 .372404535982E+00 .396618913138E+00 - .422329763733E+00 .449607949509E+00 .478523010031E+00 .509142047638E+00 .541528410817E+00 - .575740158139E+00 .611828287114E+00 .649834715988E+00 .689790011883E+00 .731710866203E+00 - .775597328148E+00 .821429819931E+00 .869165973034E+00 .918737343792E+00 .970046088628E+00 - .102296170406E+01 .107731796340E+01 .113291020945E+01 .118949318879E+01 .124677963493E+01 - .130443982202E+01 .136210231147E+01 .141935609671E+01 .147578635931E+01 .153123491448E+01 - ae wavefunction - .171002677285E-05 .180772889244E-05 .191065209457E-05 .201909658782E-05 .213337903472E-05 - .225383351779E-05 .238081256098E-05 .251468820979E-05 .265585317318E-05 .280472203258E-05 - .296173251954E-05 .312734686899E-05 .330205325070E-05 .348636728477E-05 .368083364568E-05 - .388602776113E-05 .410255761048E-05 .433106562921E-05 .457223072649E-05 .482677042192E-05 - .509544310882E-05 .537905045214E-05 .567843992924E-05 .599450752155E-05 .632820056701E-05 - .668052078282E-05 .705252746873E-05 .744534090229E-05 .786014593705E-05 .829819581697E-05 - .876081621949E-05 .924940954158E-05 .976545944360E-05 .103105356664E-04 .108862991391E-04 - .114945073941E-04 .121370203093E-04 .128158061971E-04 .135329482612E-04 .142906514437E-04 - .150912496868E-04 .159372136339E-04 .168311587976E-04 .177758542227E-04 .187742316745E-04 - .198293953846E-04 .209446323882E-04 .221234234896E-04 .233694548932E-04 .246866305413E-04 - .260790852017E-04 .275511983508E-04 .291076089008E-04 .307532308213E-04 .324932697118E-04 - .343332403805E-04 .362789854924E-04 .383366953497E-04 .405129288752E-04 .428146358695E-04 - .452491806200E-04 .478243669434E-04 .505484647472E-04 .534302382030E-04 .564789756267E-04 - .597045211703E-04 .631173084312E-04 .667283960967E-04 .705495057429E-04 .745930619169E-04 - .788722346404E-04 .834009844753E-04 .881941103059E-04 .932672999966E-04 .986371840980E-04 - .104321392775E-03 .110338616158E-03 .116708668300E-03 .123452554970E-03 .130592545498E-03 - .138152248901E-03 .146156694552E-03 .154632417646E-03 .163607549745E-03 .173111914689E-03 - .183177130191E-03 .193836715428E-03 .205126204980E-03 .217083269481E-03 .229747843346E-03 - .243162259992E-03 .257371394960E-03 .272422817395E-03 .288366950330E-03 .305257240282E-03 - .323150336662E-03 .342106281547E-03 .362188710369E-03 .383465064127E-03 .406006813741E-03 - .429889697196E-03 .455193970165E-03 .482004670828E-03 .510411899628E-03 .540511114759E-03 - .572403444184E-03 .606196015064E-03 .642002301458E-03 .679942491241E-03 .720143873202E-03 - .762741245319E-03 .807877345265E-03 .855703304217E-03 .906379125101E-03 .960074186430E-03 - .101696777294E-02 .107724963426E-02 .114112057292E-02 .120879306296E-02 .128049190058E-02 - .135645488815E-02 .143693355301E-02 .152219390253E-02 .161251721697E-02 .170820088148E-02 - .180955925894E-02 .191692460505E-02 .203064802731E-02 .215110048933E-02 .227867386210E-02 - .241378202374E-02 .255686200911E-02 .270837521093E-02 .286880863370E-02 .303867620173E-02 - .321852012275E-02 .340891230805E-02 .361045585036E-02 .382378656037E-02 .404957456261E-02 - .428852595134E-02 .454138450673E-02 .480893347155E-02 .509199738814E-02 .539144399521E-02 - .570818618359E-02 .604318400977E-02 .639744676544E-02 .677203510086E-02 .716806319935E-02 - .758670099941E-02 .802917646045E-02 .849677786729E-02 .899085616766E-02 .951282733621E-02 - .100641747573E-01 .106464516180E-01 .112612833010E-01 .119103697667E-01 .125954879115E-01 - .133184938879E-01 .140813253712E-01 .148860037539E-01 .157346362500E-01 .166294178855E-01 - .175726333524E-01 .185666586999E-01 .196139628330E-01 .207171087881E-01 .218787547498E-01 - .231016547733E-01 .243886591695E-01 .257427145102E-01 .271668632053E-01 .286642426012E-01 - .302380835435E-01 .318917083476E-01 .336285281111E-01 .354520393024E-01 .373658195529E-01 - .393735225759E-01 .414788721330E-01 .436856549617E-01 .459977125745E-01 .484189318367E-01 - .509532342241E-01 .536045636586E-01 .563768728172E-01 .592741078033E-01 .623001910712E-01 - .654590024876E-01 .687543584156E-01 .721899887043E-01 .757695114678E-01 .794964055384E-01 - .833739804803E-01 .874053440567E-01 .915933670448E-01 .959406453025E-01 .100449459000E+00 - .105121728940E+00 .109958969901E+00 .114962240963E+00 .120132092782E+00 .125468511808E+00 - .130970861470E+00 .136637820379E+00 .142467317613E+00 .148456465230E+00 .154601488138E+00 - .160897651560E+00 .167339186325E+00 .173919212317E+00 .180629660463E+00 .187461193703E+00 - .194403127471E+00 .201443350296E+00 .208568245187E+00 .215762612570E+00 .223009595563E+00 - .230290608423E+00 .237585268980E+00 .244871335803E+00 .252124650760E+00 .259319087473E+00 - .266426506110E+00 .273416714909E+00 .280257439077E+00 .286914298077E+00 .293350793065E+00 - .299528307012E+00 .305406120928E+00 .310941450156E+00 .316089504985E+00 .320803579543E+00 - .325035172186E+00 .328734139342E+00 .331848883404E+00 .334326574058E+00 .336113401825E+00 - .337154862739E+00 .337396073611E+00 .336782117939E+00 .335258422757E+00 .332771166605E+00 - .329267718369E+00 .324697106217E+00 .319010515341E+00 .312161812761E+00 .304108097020E+00 - .294810270200E+00 .284233629179E+00 .272348472603E+00 .259130719349E+00 .244562533682E+00 - .228632951491E+00 .211338501254E+00 .192683812534E+00 .172682203958E+00 .151356241844E+00 - .128738259869E+00 .104870829579E+00 .798071711247E-01 .536114934595E-01 .263592533923E-01 - -.186267668070E-02 -.309559419861E-01 -.608107487278E-01 -.913060269592E-01 -.122309723532E+00 - -.153679238023E+00 -.185262017047E+00 -.216896321869E+00 -.248412173996E+00 -.279632454104E+00 - -.310374075226E+00 -.340449084080E+00 -.369665511806E+00 -.397827870578E+00 -.424737422754E+00 - -.450192664946E+00 -.473990623092E+00 -.495929248688E+00 -.515810534644E+00 -.533443568713E+00 - -.548647005957E+00 -.561250959487E+00 -.571098559422E+00 -.578047385797E+00 -.581970850496E+00 - -.582759507989E+00 -.580322230028E+00 -.574587172346E+00 -.565502475854E+00 -.553036669453E+00 - -.537178765788E+00 -.517938060244E+00 -.495343655779E+00 -.469443743020E+00 -.440304668356E+00 - -.408009823263E+00 -.372658388161E+00 -.334363962266E+00 -.293253109204E+00 -.249463845549E+00 - -.203144096704E+00 -.154450141698E+00 -.103545065558E+00 -.505972355791E-01 .422118435037E-02 - .607356687336E-01 .118770703133E+00 .178151083690E+00 .238703133269E+00 .300255825175E+00 - .362641806123E+00 .425698282651E+00 .489267724798E+00 .553198639047E+00 .617346185705E+00 - .681572690236E+00 .745748071125E+00 .809750185218E+00 .873465095943E+00 .936787262563E+00 - .999619647884E+00 .106187374368E+01 .112346952189E+01 .118433533419E+01 .124440780089E+01 - .130363174786E+01 .136196026186E+01 .141935493496E+01 .147578635931E+01 .153123491448E+01 - pseudo wavefunction - .218956271236E-08 .232853731939E-08 .247633283903E-08 .263350914692E-08 .280066165482E-08 - .297842356609E-08 .316746827437E-08 .336851191456E-08 .358231607565E-08 .380969068571E-08 - .405149708012E-08 .430865126438E-08 .458212738416E-08 .487296141551E-08 .518225508933E-08 - .551118006491E-08 .586098236839E-08 .623298711293E-08 .662860351846E-08 .704933025010E-08 - .749676109528E-08 .797259100139E-08 .847862249646E-08 .901677251750E-08 .958907967217E-08 - .101977119614E-07 .108449749922E-07 .115333207116E-07 .122653566952E-07 .130438560249E-07 - .138717677941E-07 .147522282793E-07 .156885728206E-07 .166843484570E-07 .177433273630E-07 - .188695211380E-07 .200671960034E-07 .213408889635E-07 .226954249925E-07 .241359353126E-07 - .256678768316E-07 .272970528147E-07 .290296348686E-07 .308721863202E-07 .328316870799E-07 - .349155600826E-07 .371316994072E-07 .394885001804E-07 .419948903795E-07 .446603646524E-07 - .474950202856E-07 .505095954540E-07 .537155098992E-07 .571249081895E-07 .607507057255E-07 - .646066376656E-07 .687073109576E-07 .730682596721E-07 .777060038480E-07 .826381120736E-07 - .878832680391E-07 .934613413135E-07 .993934626141E-07 .105702103853E-06 .112411163265E-06 - .119546055937E-06 .127133810085E-06 .135203169442E-06 .143784702144E-06 .152910916526E-06 - .162616384268E-06 .172937871363E-06 .183914477387E-06 .195587783614E-06 .208002010539E-06 - .221204185385E-06 .235244320254E-06 .250175601577E-06 .266054591595E-06 .282941442624E-06 - .300900124922E-06 .319998669015E-06 .340309423411E-06 .361909328660E-06 .384880208823E-06 - .409309081427E-06 .435288487101E-06 .462916840133E-06 .492298801276E-06 .523545674215E-06 - .556775827199E-06 .592115141435E-06 .629697487941E-06 .669665234663E-06 .712169785782E-06 - .757372155245E-06 .805443576708E-06 .856566152178E-06 .910933541838E-06 .968751697642E-06 - .103023964348E-05 .109563030486E-05 .116517139124E-05 .123912633435E-05 .131777528612E-05 - .140141617987E-05 .149036585894E-05 .158496127682E-05 .168556077361E-05 .179254543339E-05 - .190632052774E-05 .202731705092E-05 .215599335248E-05 .229283687343E-05 .243836599264E-05 - .259313199047E-05 .275772113691E-05 .293275691232E-05 .311890236913E-05 .331686264334E-05 - .352738762548E-05 .375127480106E-05 .398937227126E-05 .424258196533E-05 .451186305689E-05 - .479823559697E-05 .510278437766E-05 .542666304090E-05 .577109844805E-05 .613739532668E-05 - .652694121234E-05 .694121170381E-05 .738177605187E-05 .785030310269E-05 .834856761838E-05 - .887845699854E-05 .944197842833E-05 .100412664801E-04 .106785911972E-04 .113563666910E-04 - .120771602828E-04 .128437022265E-04 .136588960471E-04 .145258295363E-04 .154477864443E-04 - .164282589144E-04 .174709607057E-04 .185798412548E-04 .197591006292E-04 .210132054297E-04 - .223469057002E-04 .237652529115E-04 .252736190839E-04 .268777171238E-04 .285836224491E-04 - .303977959860E-04 .323271086232E-04 .343788672178E-04 .365608422481E-04 .388812972205E-04 - .413490199393E-04 .439733557593E-04 .467642429443E-04 .497322502669E-04 .528886169905E-04 - .562452953834E-04 .598149959264E-04 .636112353834E-04 .676483879156E-04 .719417394325E-04 - .765075453832E-04 .813630922052E-04 .865267626630E-04 .920181053188E-04 .978579083995E-04 - .104068278334E-03 .110672723258E-03 .117696241795E-03 .125165417449E-03 .133108518963E-03 - .141555607012E-03 .150538647639E-03 .160091632841E-03 .170250708777E-03 .181054312050E-03 - .192543314587E-03 .204761177655E-03 .217754115565E-03 .231571269696E-03 .246264893467E-03 - .261890548934E-03 .278507315760E-03 .296178013296E-03 .314969436616E-03 .334952607354E-03 - .356203040258E-03 .378801026453E-03 .402831934419E-03 .428386529788E-03 .455561315122E-03 - .484458890884E-03 .515188338911E-03 .547865629759E-03 .582614055368E-03 .619564688599E-03 - .658856871252E-03 .700638732301E-03 .745067738151E-03 .792311276842E-03 .842547278224E-03 - .895964872245E-03 .952765087595E-03 .101316159310E-02 .107738148435E-02 .114566611822E-02 - .121827199796E-02 .129547171201E-02 .137755492921E-02 .146482945396E-02 .155762234454E-02 - .165628109804E-02 .176117490568E-02 .187269598229E-02 .199126097392E-02 .211731244780E-02 - .225132046880E-02 .239378426702E-02 .254523400092E-02 .270623262086E-02 .287737783785E-02 - .305930420238E-02 .325268529854E-02 .345823605839E-02 .367671520179E-02 .390892780684E-02 - .415572801592E-02 .441802188243E-02 .469677036303E-02 .499299245990E-02 .530776851733E-02 - .564224367649E-02 .599763149164E-02 .637521771040E-02 .677636421979E-02 .720251315875E-02 - .765519119673E-02 .813601397597E-02 .864669071392E-02 .918902895958E-02 .976493949519E-02 - .103764413717E-01 .110256670632E-01 .117148677202E-01 .124464184994E-01 .132228239381E-01 - .140467233398E-01 .149208961241E-01 .158482670924E-01 .168319115429E-01 .178750601640E-01 - .189811036167E-01 .201535967037E-01 .213962620035E-01 .227129928301E-01 .241078553505E-01 - .255850896706E-01 .271491096661E-01 .288045012983E-01 .305560191190E-01 .324085806157E-01 - .343672580002E-01 .364372669816E-01 .386239519923E-01 .409327672608E-01 .433692530325E-01 - .459390061349E-01 .486476439698E-01 .515007608800E-01 .545038756841E-01 .576623690057E-01 - .609814088226E-01 .644658624452E-01 .681201928799E-01 .719483372536E-01 .759535646558E-01 - .801383104002E-01 .845039833061E-01 .890507421517E-01 .937772369574E-01 .986803102010E-01 - .103754652460E+00 .108992406302E+00 .114382711524E+00 .119911184035E+00 .125559319842E+00 - .131303814694E+00 .137115788989E+00 .142959906607E+00 .148793375340E+00 .154564815662E+00 - .160212983748E+00 .165665333889E+00 .170836404978E+00 .175626015540E+00 .179917252025E+00 - .183574235960E+00 .186439657197E+00 .188332063205E+00 .189042898415E+00 .188333293344E+00 - .185930611060E+00 .181524768985E+00 .174764367533E+00 .165252674340E+00 .152543534451E+00 - .136137303465E+00 .115476932961E+00 .899443762009E-01 .588575274751E-01 .214679608933E-01 - -.230402063008E-01 -.755499352962E-01 -.137008911248E+00 -.208424679085E+00 -.290856664305E+00 - -.385404408255E+00 -.493191295522E+00 -.615343021690E+00 -.752960054156E+00 -.907083390376E+00 - -.107865303238E+01 -.126845878984E+01 -.147708331310E+01 -.170487395686E+01 -.195219484755E+01 - ae wavefunction - -.536101783626E-06 -.566731674216E-06 -.598998393350E-06 -.632996056907E-06 -.668823939111E-06 - -.706586775376E-06 -.746395082529E-06 -.788365497426E-06 -.832621134942E-06 -.879291967002E-06 - -.928515223102E-06 -.980435814581E-06 -.103520678336E-05 -.109298977706E-05 -.115395555187E-05 - -.121828450512E-05 -.128616723910E-05 -.135780515810E-05 -.143341110094E-05 -.151321001078E-05 - -.159743964471E-05 -.168635132548E-05 -.178021073803E-05 -.187929877328E-05 -.198391242245E-05 - -.209436572460E-05 -.221099077092E-05 -.233413876911E-05 -.246418117140E-05 -.260151087037E-05 - -.274654346647E-05 -.289971861165E-05 -.306150143387E-05 -.323238404728E-05 -.341288715340E-05 - -.360356173888E-05 -.380499087555E-05 -.401779162935E-05 -.424261708452E-05 -.448015849015E-05 - -.473114753673E-05 -.499635877045E-05 -.527661215383E-05 -.557277578153E-05 -.588576876090E-05 - -.621656426730E-05 -.656619278483E-05 -.693574554398E-05 -.732637816789E-05 -.773931454033E-05 - -.817585090865E-05 -.863736023606E-05 -.912529681859E-05 -.964120118261E-05 -.101867052801E-04 - -.107635379999E-04 -.113735310134E-04 -.120186249763E-04 -.127008761066E-04 -.134224631620E-04 - -.141856948422E-04 -.149930176387E-04 -.158470241628E-04 -.167504619773E-04 -.177062429645E-04 - -.187174532615E-04 -.197873637968E-04 -.209194414650E-04 -.221173609770E-04 -.233850174257E-04 - -.247265396117E-04 -.261463041708E-04 -.276489505547E-04 -.292393969122E-04 -.309228569265E-04 - -.327048576631E-04 -.345912584890E-04 -.365882711258E-04 -.387024809027E-04 -.409408692801E-04 - -.433108377169E-04 -.458202329610E-04 -.484773738442E-04 -.512910796690E-04 -.542707002790E-04 - -.574261479093E-04 -.607679309195E-04 -.643071895163E-04 -.680557335777E-04 -.720260827007E-04 - -.762315085949E-04 -.806860799566E-04 -.854047099590E-04 -.904032065085E-04 -.956983254175E-04 - -.101307826655E-03 -.107250533847E-03 -.113546397200E-03 -.120216560037E-03 -.127283429146E-03 - -.134770749128E-03 -.142703680987E-03 -.151108885161E-03 -.160014609238E-03 -.169450780615E-03 - -.179449104329E-03 -.190043166358E-03 -.201268542650E-03 -.213162914176E-03 -.225766188318E-03 - -.239120626900E-03 -.253270981186E-03 -.268264634195E-03 -.284151750684E-03 -.300985435148E-03 - -.318821898243E-03 -.337720631997E-03 -.357744594226E-03 -.378960402562E-03 -.401438538524E-03 - -.425253562063E-03 -.450484337038E-03 -.477214268067E-03 -.505531549232E-03 -.535529425100E-03 - -.567306464547E-03 -.600966847864E-03 -.636620667639E-03 -.674384243889E-03 -.714380453950E-03 - -.756739077580E-03 -.801597157778E-03 -.849099377752E-03 -.899398454521E-03 -.952655549546E-03 - -.100904069682E-02 -.106873324880E-02 -.113192234048E-02 -.119880737195E-02 -.126959850972E-02 - -.134451720690E-02 -.142379674247E-02 -.150768277961E-02 -.159643394318E-02 -.169032241604E-02 - -.178963455415E-02 -.189467151991E-02 -.200574993344E-02 -.212320254095E-02 -.224737889944E-02 - -.237864607673E-02 -.251738936557E-02 -.266401301033E-02 -.281894094456E-02 -.298261753737E-02 - -.315550834638E-02 -.333810087452E-02 -.353090532766E-02 -.373445536958E-02 -.394930887054E-02 - -.417604864495E-02 -.441528317342E-02 -.466764730362E-02 -.493380292413E-02 -.521443960449E-02 - -.551027519424E-02 -.582205637278E-02 -.615055914135E-02 -.649658924739E-02 -.686098253079E-02 - -.724460518054E-02 -.764835388940E-02 -.807315589310E-02 -.851996887955E-02 -.898978075238E-02 - -.948360923208E-02 -.100025012766E-01 -.105475323021E-01 -.111198051839E-01 -.117204490144E-01 - -.123506175966E-01 -.130114876473E-01 -.137042566849E-01 -.144301405748E-01 -.151903707028E-01 - -.159861907493E-01 -.168188530310E-01 -.176896143795E-01 -.185997315250E-01 -.195504559491E-01 - -.205430281756E-01 -.215786714620E-01 -.226585848587E-01 -.237839356012E-01 -.249558508004E-01 - -.261754083986E-01 -.274436273588E-01 -.287614570573E-01 -.301297658517E-01 -.315493287996E-01 - -.330208145055E-01 -.345447710802E-01 -.361216111996E-01 -.377515962570E-01 -.394348196090E-01 - -.411711889241E-01 -.429604076503E-01 -.448019556293E-01 -.466950688954E-01 -.486387187107E-01 - -.506315899001E-01 -.526720585685E-01 -.547581692967E-01 -.568876119341E-01 -.590576981247E-01 - -.612653377276E-01 -.635070153134E-01 -.657787669410E-01 -.680761574398E-01 -.703942584348E-01 - -.727276273586E-01 -.750702876857E-01 -.774157106025E-01 -.797567982874E-01 -.820858689314E-01 - -.843946435909E-01 -.866742349567E-01 -.889151381788E-01 -.911072240103E-01 -.932397347472E-01 - -.953012836910E-01 -.972798591178E-01 -.991628339244E-01 -.100936982187E+00 -.102588503787E+00 - -.104103058009E+00 -.105465806612E+00 -.106661466439E+00 -.107674371217E+00 -.108488542019E+00 - -.109087765860E+00 -.109455682088E+00 -.109575876389E+00 -.109431982318E+00 -.109007790228E+00 - -.108287363304E+00 -.107255160291E+00 -.105896164298E+00 -.104196016958E+00 -.102141157078E+00 - -.997189628239E-01 -.969178963442E-01 -.937276496130E-01 -.901392901288E-01 -.861454049368E-01 - -.817402412733E-01 -.769198419493E-01 -.716821734070E-01 -.660272442061E-01 -.599572115290E-01 - -.534764731665E-01 -.465917423516E-01 -.393121027954E-01 -.316490413466E-01 -.236164558706E-01 - -.152306362186E-01 -.651021650088E-02 .252390279276E-02 .118486640978E-01 .214389948883E-01 - .312679844924E-01 .413070982198E-01 .515264315289E-01 .618950045854E-01 .723810897488E-01 - .829525487922E-01 .935771353457E-01 .104222703781E+00 .114857281016E+00 .125449020922E+00 - .135966158592E+00 .146377143557E+00 .156651058934E+00 .166758235407E+00 .176670829436E+00 - .186363193474E+00 .195812019109E+00 .204996319490E+00 .213897312916E+00 .222498233152E+00 - .230784062274E+00 .238741165754E+00 .246356804380E+00 .253618499595E+00 .260513234966E+00 - .267026483401E+00 .273141055686E+00 .278835770148E+00 .284083945975E+00 .288851724406E+00 - .293096222972E+00 .296763529046E+00 .299786539550E+00 .302082654739E+00 .303551334972E+00 - .304071530662E+00 .303498997310E+00 .301663509446E+00 .298365990043E+00 .293375575414E+00 - .286426639851E+00 .277215810049E+00 .265399006391E+00 .250588556805E+00 .232350440001E+00 - .210201726225E+00 .183608284426E+00 .151982851428E+00 .114683703356E+00 .710139142905E-01 - .202213930930E-01 -.385001016044E-01 -.106008774941E+00 -.183211203312E+00 -.271057075428E+00 - -.370531975857E+00 -.482647889515E+00 -.608431082006E+00 -.748906999512E+00 -.905081839991E+00 - -.107792047920E+01 -.126832049323E+01 -.147708210107E+01 -.170487395686E+01 -.195219484755E+01 - End of Dataset - PAW_PBE O 08Apr2002 - 6.00000000000000000 - parameters from PSCTR are: - VRHFIN =O: s2p4 - LEXCH = PE - EATOM = 432.3788 eV, 31.7789 Ry - - TITEL = PAW_PBE O 08Apr2002 - LULTRA = F use ultrasoft PP ? - IUNSCR = 0 unscreen: 0-lin 1-nonlin 2-no - RPACOR = .000 partial core radius - POMASS = 16.000; ZVAL = 6.000 mass and valenz - RCORE = 1.520 outmost cutoff radius - RWIGS = 1.550; RWIGS = .820 wigner-seitz radius (au A) - ENMAX = 400.000; ENMIN = 300.000 eV - ICORE = 2 local potential - LCOR = T correct aug charges - LPAW = T paw PP - EAUG = 605.392 - DEXC = .000 - RMAX = 2.264 core radius for proj-oper - RAUG = 1.300 factor for augmentation sphere - RDEP = 1.550 radius for radial grids - QCUT = -5.520; QGAM = 11.041 optimization parameters - - Description - l E TYP RCUT TYP RCUT - 0 .000 23 1.200 - 0 -.700 23 1.200 - 1 .000 23 1.520 - 1 .600 23 1.520 - 2 .000 7 1.500 - Error from kinetic energy argument (eV) - NDATA = 100 - STEP = 20.000 1.050 - 163. 160. 159. 156. 154. 151. 148. 146. - 142. 139. 137. 134. 130. 126. 123. 119. - 115. 111. 108. 102. 98.8 95.2 90.0 86.6 - 83.2 78.3 73.5 70.4 65.9 61.6 57.4 53.4 - 49.6 46.0 42.6 39.3 35.3 32.4 28.9 26.4 - 23.4 20.6 18.1 15.8 13.7 11.9 10.3 8.47 - 7.22 5.87 4.73 3.95 3.13 2.45 1.80 1.37 - 1.03 .721 .493 .329 .215 .138 .882E-01 .534E-01 - .367E-01 .267E-01 .223E-01 .205E-01 .193E-01 .181E-01 .162E-01 .138E-01 - .112E-01 .878E-02 .646E-02 .490E-02 .370E-02 .300E-02 .259E-02 .238E-02 - .219E-02 .196E-02 .167E-02 .132E-02 .100E-02 .764E-03 .617E-03 .544E-03 - .522E-03 .507E-03 .467E-03 .403E-03 .312E-03 .236E-03 .181E-03 .157E-03 - .152E-03 .150E-03 .139E-03 .118E-03 -END of PSCTR-controll parameters - local part - 122.832189257630020 - .23155445E+02 .23152693E+02 .23149261E+02 .23143544E+02 .23135541E+02 - .23125253E+02 .23112681E+02 .23097823E+02 .23080677E+02 .23061237E+02 - .23039495E+02 .23015440E+02 .22989059E+02 .22960335E+02 .22929249E+02 - .22895777E+02 .22859896E+02 .22821578E+02 .22780793E+02 .22737509E+02 - .22691690E+02 .22643299E+02 .22592293E+02 .22538630E+02 .22482260E+02 - .22423132E+02 .22361190E+02 .22296376E+02 .22228625E+02 .22157873E+02 - .22084048E+02 .22007079E+02 .21926890E+02 .21843403E+02 .21756538E+02 - .21666211E+02 .21572340E+02 .21474838E+02 .21373619E+02 .21268597E+02 - .21159684E+02 .21046794E+02 .20929842E+02 .20808743E+02 .20683417E+02 - .20553785E+02 .20419772E+02 .20281308E+02 .20138327E+02 .19990769E+02 - .19838580E+02 .19681713E+02 .19520129E+02 .19353797E+02 .19182693E+02 - .19006804E+02 .18826128E+02 .18640671E+02 .18450451E+02 .18255500E+02 - .18055858E+02 .17851580E+02 .17642733E+02 .17429396E+02 .17211664E+02 - .16989641E+02 .16763448E+02 .16533218E+02 .16299098E+02 .16061247E+02 - .15819840E+02 .15575061E+02 .15327109E+02 .15076196E+02 .14822544E+02 - .14566388E+02 .14307973E+02 .14047552E+02 .13785392E+02 .13521763E+02 - .13256948E+02 .12991234E+02 .12724915E+02 .12458289E+02 .12191659E+02 - .11925331E+02 .11659614E+02 .11394816E+02 .11131245E+02 .10869211E+02 - .10609017E+02 .10350966E+02 .10095354E+02 .98424727E+01 .95926072E+01 - .93460340E+01 .91030212E+01 .88638270E+01 .86286987E+01 .83978722E+01 - .81715707E+01 .79500043E+01 .77333688E+01 .75218455E+01 .73156002E+01 - .71147829E+01 .69195273E+01 .67299503E+01 .65461519E+01 .63682145E+01 - .61962037E+01 .60301671E+01 .58701350E+01 .57161205E+01 .55681193E+01 - .54261103E+01 .52900556E+01 .51599012E+01 .50355773E+01 .49169989E+01 - .48040663E+01 .46966659E+01 .45946711E+01 .44979426E+01 .44063297E+01 - .43196709E+01 .42377948E+01 .41605214E+01 .40876627E+01 .40190236E+01 - .39544034E+01 .38935965E+01 .38363932E+01 .37825814E+01 .37319469E+01 - .36842749E+01 .36393508E+01 .35969612E+01 .35568949E+01 .35189437E+01 - .34829034E+01 .34485744E+01 .34157630E+01 .33842813E+01 .33539488E+01 - .33245924E+01 .32960472E+01 .32681572E+01 .32407752E+01 .32137639E+01 - .31869956E+01 .31603530E+01 .31337289E+01 .31070267E+01 .30801603E+01 - .30530540E+01 .30256429E+01 .29978721E+01 .29696971E+01 .29410832E+01 - .29120056E+01 .28824486E+01 .28524057E+01 .28218788E+01 .27908779E+01 - .27594206E+01 .27275318E+01 .26952425E+01 .26625901E+01 .26296170E+01 - .25963704E+01 .25629018E+01 .25292661E+01 .24955211E+01 .24617268E+01 - .24279449E+01 .23942383E+01 .23606701E+01 .23273035E+01 .22942010E+01 - .22614239E+01 .22290318E+01 .21970823E+01 .21656302E+01 .21347276E+01 - .21044231E+01 .20747616E+01 .20457843E+01 .20175281E+01 .19900255E+01 - .19633044E+01 .19373883E+01 .19122957E+01 .18880405E+01 .18646316E+01 - .18420733E+01 .18203652E+01 .17995024E+01 .17794755E+01 .17602707E+01 - .17418705E+01 .17242532E+01 .17073938E+01 .16912639E+01 .16758320E+01 - .16610641E+01 .16469237E+01 .16333722E+01 .16203693E+01 .16078735E+01 - .15958421E+01 .15842318E+01 .15729988E+01 .15620996E+01 .15514907E+01 - .15411295E+01 .15309742E+01 .15209843E+01 .15111206E+01 .15013460E+01 - .14916249E+01 .14819243E+01 .14722133E+01 .14624637E+01 .14526498E+01 - .14427487E+01 .14327405E+01 .14226081E+01 .14123373E+01 .14019171E+01 - .13913392E+01 .13805984E+01 .13696923E+01 .13586213E+01 .13473883E+01 - .13359990E+01 .13244615E+01 .13127860E+01 .13009850E+01 .12890728E+01 - .12770654E+01 .12649804E+01 .12528367E+01 .12406544E+01 .12284542E+01 - .12162578E+01 .12040872E+01 .11919646E+01 .11799123E+01 .11679522E+01 - .11561062E+01 .11443952E+01 .11328397E+01 .11214589E+01 .11102712E+01 - .10992936E+01 .10885419E+01 .10780303E+01 .10677713E+01 .10577759E+01 - .10480534E+01 .10386110E+01 .10294545E+01 .10205875E+01 .10120120E+01 - .10037281E+01 .99573405E+00 .98802637E+00 .98059993E+00 .97344797E+00 - .96656217E+00 .95993281E+00 .95354881E+00 .94739790E+00 .94146671E+00 - .93574091E+00 .93020536E+00 .92484425E+00 .91964123E+00 .91457956E+00 - .90964227E+00 .90481229E+00 .90007260E+00 .89540637E+00 .89079709E+00 - .88622870E+00 .88168571E+00 .87715333E+00 .87261756E+00 .86806530E+00 - .86348444E+00 .85886393E+00 .85419386E+00 .84946550E+00 .84467136E+00 - .83980521E+00 .83486211E+00 .82983841E+00 .82473177E+00 .81954111E+00 - .81426662E+00 .80890973E+00 .80347303E+00 .79796024E+00 .79237615E+00 - .78672657E+00 .78101820E+00 .77525858E+00 .76945600E+00 .76361942E+00 - .75775831E+00 .75188262E+00 .74600265E+00 .74012893E+00 .73427215E+00 - .72844301E+00 .72265218E+00 .71691014E+00 .71122715E+00 .70561310E+00 - .70007743E+00 .69462911E+00 .68927647E+00 .68402723E+00 .67888835E+00 - .67386605E+00 .66896570E+00 .66419185E+00 .65954814E+00 .65503733E+00 - .65066125E+00 .64642082E+00 .64231605E+00 .63834605E+00 .63450904E+00 - .63080240E+00 .62722268E+00 .62376568E+00 .62042644E+00 .61719934E+00 - .61407817E+00 .61105614E+00 .60812599E+00 .60528004E+00 .60251030E+00 - .59980849E+00 .59716614E+00 .59457468E+00 .59202550E+00 .58951003E+00 - .58701980E+00 .58454654E+00 .58208221E+00 .57961910E+00 .57714987E+00 - .57466763E+00 .57216594E+00 .56963895E+00 .56708132E+00 .56448837E+00 - .56185603E+00 .55918091E+00 .55646027E+00 .55369208E+00 .55087499E+00 - .54800835E+00 .54509219E+00 .54212720E+00 .53911474E+00 .53605675E+00 - .53295582E+00 .52981506E+00 .52663812E+00 .52342909E+00 .52019253E+00 - .51693334E+00 .51365677E+00 .51036832E+00 .50707371E+00 .50377881E+00 - .50048961E+00 .49721211E+00 .49395232E+00 .49071615E+00 .48750942E+00 - .48433774E+00 .48120651E+00 .47812083E+00 .47508551E+00 .47210497E+00 - .46918326E+00 .46632398E+00 .46353029E+00 .46080485E+00 .45814984E+00 - .45556693E+00 .45305727E+00 .45062147E+00 .44825964E+00 .44597137E+00 - .44375571E+00 .44161126E+00 .43953613E+00 .43752797E+00 .43558402E+00 - .43370110E+00 .43187571E+00 .43010401E+00 .42838185E+00 .42670486E+00 - .42506848E+00 .42346796E+00 .42189845E+00 .42035503E+00 .41883273E+00 - .41732664E+00 .41583186E+00 .41434364E+00 .41285733E+00 .41136849E+00 - .40987289E+00 .40836657E+00 .40684582E+00 .40530728E+00 .40374789E+00 - .40216498E+00 .40055624E+00 .39891975E+00 .39725399E+00 .39555786E+00 - .39383066E+00 .39207210E+00 .39028230E+00 .38846177E+00 .38661143E+00 - .38473254E+00 .38282674E+00 .38089598E+00 .37894254E+00 .37696897E+00 - .37497807E+00 .37297287E+00 .37095659E+00 .36893261E+00 .36690442E+00 - .36487563E+00 .36284989E+00 .36083085E+00 .35882219E+00 .35682749E+00 - .35485030E+00 .35289401E+00 .35096191E+00 .34905706E+00 .34718238E+00 - .34534052E+00 .34353392E+00 .34176471E+00 .34003479E+00 .33834572E+00 - .33669879E+00 .33509493E+00 .33353480E+00 .33201871E+00 .33054663E+00 - .32911826E+00 .32773295E+00 .32638975E+00 .32508743E+00 .32382450E+00 - .32259918E+00 .32140947E+00 .32025315E+00 .31912781E+00 .31803085E+00 - .31695955E+00 .31591105E+00 .31488241E+00 .31387062E+00 .31287264E+00 - .31188540E+00 .31090587E+00 .30993106E+00 .30895805E+00 .30798401E+00 - .30700625E+00 .30602221E+00 .30502951E+00 .30402592E+00 .30300946E+00 - .30197832E+00 .30093095E+00 .29986602E+00 .29878246E+00 .29767946E+00 - .29655644E+00 .29541311E+00 .29424942E+00 .29306559E+00 .29186206E+00 - .29063955E+00 .28939897E+00 .28814149E+00 .28686844E+00 .28558136E+00 - .28428197E+00 .28297213E+00 .28165382E+00 .28032916E+00 .27900034E+00 - .27766963E+00 .27633933E+00 .27501179E+00 .27368934E+00 .27237430E+00 - .27106894E+00 .26977549E+00 .26849606E+00 .26723268E+00 .26598726E+00 - .26476157E+00 .26355722E+00 .26237566E+00 .26121818E+00 .26008586E+00 - .25897959E+00 .25790008E+00 .25684781E+00 .25582306E+00 .25482591E+00 - .25385623E+00 .25291367E+00 .25199772E+00 .25110764E+00 .25024254E+00 - .24940133E+00 .24858278E+00 .24778552E+00 .24700803E+00 .24624869E+00 - .24550578E+00 .24477747E+00 .24406190E+00 .24335715E+00 .24266125E+00 - .24197226E+00 .24128820E+00 .24060715E+00 .23992721E+00 .23924657E+00 - .23856345E+00 .23787620E+00 .23718326E+00 .23648318E+00 .23577464E+00 - .23505648E+00 .23432765E+00 .23358730E+00 .23283470E+00 .23206930E+00 - .23129074E+00 .23049880E+00 .22969344E+00 .22887479E+00 .22804315E+00 - .22719895E+00 .22634282E+00 .22547549E+00 .22459785E+00 .22371090E+00 - .22281576E+00 .22191365E+00 .22100589E+00 .22009385E+00 .21917899E+00 - .21826279E+00 .21734679E+00 .21643251E+00 .21552151E+00 .21461531E+00 - .21371541E+00 .21282327E+00 .21194030E+00 .21106783E+00 .21020712E+00 - .20935932E+00 .20852550E+00 .20770662E+00 .20690351E+00 .20611688E+00 - .20534731E+00 .20459524E+00 .20386099E+00 .20314472E+00 .20244647E+00 - .20176612E+00 .20110343E+00 .20045804E+00 .19982942E+00 .19921696E+00 - .19861993E+00 .19803748E+00 .19746867E+00 .19691247E+00 .19636779E+00 - .19583345E+00 .19530823E+00 .19479088E+00 .19428008E+00 .19377454E+00 - .19327293E+00 .19277395E+00 .19227630E+00 .19177873E+00 .19128003E+00 - .19077902E+00 .19027463E+00 .18976581E+00 .18925164E+00 .18873125E+00 - .18820390E+00 .18766893E+00 .18712580E+00 .18657407E+00 .18601343E+00 - .18544366E+00 .18486468E+00 .18427653E+00 .18367934E+00 .18307336E+00 - .18245897E+00 .18183663E+00 .18120690E+00 .18057043E+00 .17992795E+00 - .17928028E+00 .17862829E+00 .17797292E+00 .17731514E+00 .17665599E+00 - .17599649E+00 .17533773E+00 .17468077E+00 .17402668E+00 .17337651E+00 - .17273128E+00 .17209201E+00 .17145962E+00 .17083504E+00 .17021908E+00 - .16961253E+00 .16901607E+00 .16843034E+00 .16785584E+00 .16729304E+00 - .16674226E+00 .16620377E+00 .16567772E+00 .16516416E+00 .16466305E+00 - .16417424E+00 .16369750E+00 .16323250E+00 .16277882E+00 .16233597E+00 - .16190338E+00 .16148038E+00 .16106628E+00 .16066029E+00 .16026161E+00 - .15986936E+00 .15948266E+00 .15910059E+00 .15872220E+00 .15834656E+00 - .15797274E+00 .15759979E+00 .15722681E+00 .15685292E+00 .15647729E+00 - .15609910E+00 .15571761E+00 .15533214E+00 .15494205E+00 .15454679E+00 - .15414587E+00 .15373889E+00 .15332551E+00 .15290550E+00 .15247869E+00 - .15204501E+00 .15160447E+00 .15115717E+00 .15070328E+00 .15024306E+00 - .14977685E+00 .14930505E+00 .14882814E+00 .14834665E+00 .14786118E+00 - .14737238E+00 .14688092E+00 .14638754E+00 .14589300E+00 .14539806E+00 - .14490354E+00 .14441021E+00 .14391889E+00 .14343036E+00 .14294540E+00 - .14246476E+00 .14198915E+00 .14151925E+00 .14105571E+00 .14059910E+00 - .14014996E+00 .13970877E+00 .13927593E+00 .13885178E+00 .13843659E+00 - .13803056E+00 .13763383E+00 .13724643E+00 .13686835E+00 .13649948E+00 - .13613966E+00 .13578864E+00 .13544611E+00 .13511171E+00 .13478500E+00 - .13446548E+00 .13415263E+00 .13384585E+00 .13354452E+00 .13324799E+00 - .13295557E+00 .13266656E+00 .13238023E+00 .13209586E+00 .13181273E+00 - .13153012E+00 .13124732E+00 .13096365E+00 .13067845E+00 .13039111E+00 - .13010103E+00 .12980768E+00 .12951055E+00 .12920922E+00 .12890329E+00 - .12859244E+00 .12827640E+00 .12795499E+00 .12762805E+00 .12729554E+00 - .12695744E+00 .12661382E+00 .12626482E+00 .12591063E+00 .12555151E+00 - .12518776E+00 .12481975E+00 .12444790E+00 .12407269E+00 .12369460E+00 - .12331418E+00 .12293200E+00 .12254866E+00 .12216478E+00 .12178098E+00 - .12139790E+00 .12101618E+00 .12063646E+00 .12025935E+00 .11988545E+00 - .11951535E+00 .11914960E+00 .11878872E+00 .11843318E+00 .11808343E+00 - .11773986E+00 .11740281E+00 .11707256E+00 .11674936E+00 .11643337E+00 - .11612472E+00 .11582347E+00 .11552960E+00 .11524306E+00 .11496374E+00 - .11469144E+00 .11442595E+00 .11416697E+00 .11391417E+00 .11366717E+00 - .11342554E+00 .11318884E+00 .11295655E+00 .11272816E+00 .11250313E+00 - .11228088E+00 .11206084E+00 .11184242E+00 .11162503E+00 .11140810E+00 - .11119104E+00 .11097329E+00 .11075431E+00 .11053359E+00 .11031063E+00 - .11008499E+00 .10985625E+00 .10962403E+00 .10938800E+00 .10914789E+00 - .10890345E+00 .10865450E+00 .10840093E+00 .10814264E+00 .10787962E+00 - .10761191E+00 .10733958E+00 .10706278E+00 .10678170E+00 .10649658E+00 - .10620769E+00 .10591537E+00 .10561998E+00 .10532192E+00 .10502162E+00 - .10471954E+00 .10441617E+00 .10411201E+00 .10380756E+00 .10350335E+00 - .10319991E+00 .10289777E+00 .10259743E+00 .10229940E+00 .10200418E+00 - .10171222E+00 .10142397E+00 .10113985E+00 .10086023E+00 .10058546E+00 - .10031584E+00 .10005162E+00 .99793034E-01 .99540245E-01 .99293377E-01 - .99052504E-01 .98817651E-01 .98588793E-01 .98365858E-01 .98148724E-01 - .97937225E-01 .97731147E-01 .97530237E-01 .97334202E-01 .97142709E-01 - .96955397E-01 .96771871E-01 .96591713E-01 .96414480E-01 .96239713E-01 - .96066940E-01 .95895679E-01 .95725442E-01 .95555746E-01 .95386107E-01 - .95216055E-01 .95045131E-01 .94872896E-01 .94698932E-01 .94522846E-01 - .94344276E-01 .94162891E-01 .93978395E-01 .93790532E-01 .93599082E-01 - .93403871E-01 .93204764E-01 .93001674E-01 .92794556E-01 .92583411E-01 - .92368286E-01 .92149271E-01 .91926498E-01 .91700141E-01 .91470413E-01 - .91237566E-01 .91001884E-01 .90763683E-01 .90523308E-01 .90281128E-01 - .90037534E-01 .89792935E-01 .89547752E-01 .89302418E-01 .89057370E-01 - .88813047E-01 .88569884E-01 .88328311E-01 .88088743E-01 .87851584E-01 - .87617217E-01 .87386003E-01 .87158276E-01 .86934344E-01 .86714482E-01 - .86498932E-01 .86287900E-01 .86081555E-01 .85880026E-01 .85683402E-01 - .85491732E-01 .85305023E-01 .85123242E-01 .84946313E-01 .84774125E-01 - .84606523E-01 .84443320E-01 .84284292E-01 .84129183E-01 .83977708E-01 - .83829555E-01 .83684387E-01 .83541847E-01 .83401561E-01 .83263141E-01 - .83126188E-01 .82990297E-01 .82855060E-01 .82720073E-01 .82584933E-01 - .82449250E-01 .82312643E-01 .82174750E-01 .82035227E-01 .81893753E-01 - .81750031E-01 .81603794E-01 .81454803E-01 .81302851E-01 .81147768E-01 - .80989416E-01 .80827694E-01 .80662540E-01 .80493929E-01 .80321872E-01 - .80146420E-01 .79967660E-01 .79785713E-01 .79600737E-01 .79412920E-01 - .79222482E-01 .79029671E-01 .78834760E-01 .78638045E-01 .78439844E-01 - .78240491E-01 .78040334E-01 .77839732E-01 .77639049E-01 .77438658E-01 - .77238926E-01 .77040221E-01 .76842902E-01 .76647319E-01 .76453807E-01 - .76262685E-01 .76074254E-01 .75888790E-01 .75706547E-01 .75527750E-01 - .75352598E-01 .75181256E-01 .75013859E-01 .74850509E-01 .74691274E-01 - .74536187E-01 .74385246E-01 .74238414E-01 .74095622E-01 .73956766E-01 - .73821710E-01 .73690288E-01 .73562306E-01 .73437542E-01 .73315749E-01 - .73196658E-01 .73079982E-01 .72965415E-01 .72852638E-01 .72741320E-01 - .72631122E-01 .72521701E-01 .72412713E-01 .72303815E-01 .72194667E-01 - gradient corrections used for XC - 5 - atomic pseudo charge-density - .60000000E+01 .59917682E+01 .59671789E+01 .59265479E+01 .58703891E+01 - .57993990E+01 .57144341E+01 .56164855E+01 .55066511E+01 .53861066E+01 - .52560766E+01 .51178084E+01 .49725469E+01 .48215134E+01 .46658876E+01 - .45067929E+01 .43452859E+01 .41823479E+01 .40188803E+01 .38557025E+01 - .36935506E+01 .35330797E+01 .33748662E+01 .32194109E+01 .30671444E+01 - .29184307E+01 .27735730E+01 .26328185E+01 .24963632E+01 .23643571E+01 - .22369087E+01 .21140897E+01 .19959388E+01 .18824658E+01 .17736551E+01 - .16694691E+01 .15698510E+01 .14747279E+01 .13840130E+01 .12976078E+01 - .12154045E+01 .11372872E+01 .10631344E+01 .99281940E+00 .92621249E+00 - .86318152E+00 .80359313E+00 .74731357E+00 .69420942E+00 .64414831E+00 - .59699943E+00 .55263402E+00 .51092580E+00 .47175127E+00 .43498998E+00 - .40052480E+00 .36824205E+00 .33803164E+00 .30978717E+00 .28340598E+00 - .25878921E+00 .23584178E+00 .21447237E+00 .19459343E+00 .17612108E+00 - .15897509E+00 .14307879E+00 .12835897E+00 .11474584E+00 .10217290E+00 - .90576828E-01 .79897428E-01 .70077479E-01 .61062654E-01 .52801404E-01 - .45244856E-01 .38346707E-01 .32063120E-01 .26352622E-01 .21176003E-01 - .16496215E-01 .12278281E-01 .84891979E-02 .50978486E-02 .20749112E-02 - -.60722392E-03 -.29745366E-02 -.50514558E-02 -.68609362E-02 -.84245308E-02 - -.97624615E-02 -.10893686E-01 -.11835965E-01 -.12605919E-01 -.13219093E-01 - -.13690009E-01 -.14032225E-01 -.14258381E-01 -.14380251E-01 -.14408793E-01 - -.14354189E-01 -.14225891E-01 -.14032660E-01 -.13782607E-01 -.13483228E-01 - -.13141441E-01 -.12763619E-01 -.12355619E-01 -.11922818E-01 -.11470137E-01 - -.11002072E-01 -.10522716E-01 -.10035788E-01 -.95446538E-02 -.90523500E-02 - -.85616040E-02 -.80748545E-02 -.75942711E-02 -.71217719E-02 -.66590412E-02 - -.62075454E-02 -.57685488E-02 -.53431281E-02 -.49321863E-02 -.45364660E-02 - -.41565619E-02 -.37929322E-02 -.34459103E-02 -.31157151E-02 -.28024608E-02 - -.25061667E-02 -.22267656E-02 -.19641127E-02 -.17179931E-02 -.14881294E-02 - -.12741886E-02 -.10757886E-02 -.89250485E-03 -.72387531E-03 -.56940653E-03 - -.42857839E-03 -.30084889E-03 -.18565853E-03 -.82434402E-04 .94060408E-05 - .90451458E-04 .16129340E-03 .22252332E-03 .27472986E-03 .31849633E-03 - .35439845E-03 .38300228E-03 .40486239E-03 .42052015E-03 .43050232E-03 - .43531967E-03 .43546591E-03 .43141669E-03 .42362876E-03 .41253930E-03 - .39856538E-03 .38210349E-03 .36352929E-03 .34319737E-03 .32144120E-03 - .29857309E-03 .27488433E-03 .25064534E-03 .22610596E-03 .20149575E-03 - .17702443E-03 .15288230E-03 .12924076E-03 .10625290E-03 .84054063E-04 - .62762536E-04 .42480190E-04 .23293206E-04 .52728069E-05 -.11523997E-04 - -.27053634E-04 -.41285196E-04 -.54199648E-04 -.65789036E-04 -.76055698E-04 - -.85011472E-04 -.92676912E-04 -.99080513E-04 -.10425795E-03 -.10825132E-03 - -.11110843E-03 -.11288204E-03 -.11362924E-03 -.11341070E-03 -.11229009E-03 - -.11033340E-03 -.10760841E-03 -.10418409E-03 -.10013005E-03 -.95516074E-04 - -.90411625E-04 -.84885403E-04 -.79004941E-04 -.72836222E-04 -.66443339E-04 - -.59888174E-04 -.53230123E-04 -.46525844E-04 -.39829037E-04 -.33190254E-04 - -.26656746E-04 -.20272330E-04 -.14077288E-04 -.81082945E-05 -.23983708E-05 - .30231404E-05 .81305709E-05 .12901903E-04 .17318722E-04 .21366154E-04 - .25032774E-04 .28310510E-04 .31194523E-04 .33683071E-04 .35777367E-04 - .37481423E-04 .38801876E-04 .39747820E-04 .40330618E-04 .40563715E-04 - .40462443E-04 .40043828E-04 .39326388E-04 .38329937E-04 .37075387E-04 - .35584548E-04 .33879943E-04 .31984612E-04 .29921930E-04 .27715431E-04 - .25388634E-04 .22964881E-04 .20467181E-04 .17918061E-04 .15339435E-04 - .12752470E-04 .10177472E-04 .76337790E-05 .51396670E-05 .27122626E-05 - .36747166E-06 -.18800836E-05 -.40171154E-05 -.60317107E-05 -.79133600E-05 - -.96529757E-05 -.11242900E-04 -.12676905E-04 -.13950176E-04 -.15059296E-04 - -.16002213E-04 -.16778201E-04 -.17387818E-04 -.17832850E-04 -.18116252E-04 - -.18242083E-04 -.18215435E-04 -.18042359E-04 -.17729783E-04 -.17285432E-04 - -.16717741E-04 -.16035770E-04 -.15249111E-04 -.14367805E-04 -.13402245E-04 - -.12363095E-04 -.11261198E-04 -.10107488E-04 -.89129121E-05 -.76883443E-05 - -.64445099E-05 -.51919113E-05 -.39407569E-05 -.27008960E-05 -.14817571E-05 - -.29229229E-06 .85907414E-06 .19644910E-05 .30167200E-05 .40091707E-05 - .49359281E-05 .57917760E-05 .65722140E-05 .72734684E-05 .78924981E-05 - .84269947E-05 .88753771E-05 .92367814E-05 .95110452E-05 .96986879E-05 - .98008862E-05 .98194454E-05 .97567671E-05 .96158136E-05 .94000686E-05 - .91134958E-05 .87604949E-05 .83458553E-05 .78747087E-05 .73524802E-05 - .67848387E-05 .61776463E-05 .55369089E-05 .48687256E-05 .41792398E-05 - .34745909E-05 .27608672E-05 .20440608E-05 .13300240E-05 .62442817E-06 - -.67274844E-07 -.73988911E-06 -.13885077E-05 -.20085430E-05 -.25957536E-05 - -.31462683E-05 -.36566061E-05 -.41236935E-05 -.45448774E-05 -.49179355E-05 - -.52410820E-05 -.55129711E-05 -.57326961E-05 -.58997856E-05 -.60141966E-05 - -.60763041E-05 -.60868881E-05 -.60471176E-05 -.59585325E-05 -.58230221E-05 - -.56428027E-05 -.54203921E-05 -.51585832E-05 -.48604156E-05 -.45291462E-05 - -.41682184E-05 -.37812318E-05 -.33719094E-05 -.29440665E-05 -.25015785E-05 - -.20483491E-05 -.15882795E-05 -.11252375E-05 -.66302845E-06 -.20536640E-06 - .24415270E-06 .68207665E-06 .11051209E-05 .15101907E-05 .18944013E-05 - .22550957E-05 .25898612E-05 .28965426E-05 .31732540E-05 .34183878E-05 - .36306212E-05 .38089213E-05 .39525463E-05 .40610461E-05 .41342594E-05 - .41723089E-05 .41755949E-05 .41447863E-05 .40808098E-05 .39848377E-05 - .38582733E-05 .37027357E-05 .35200423E-05 .33121910E-05 .30813405E-05 - .28297905E-05 .25599605E-05 .22743685E-05 .19756094E-05 .16663331E-05 - .13492220E-05 .10269701E-05 .70226093E-06 .37774670E-06 .56028197E-07 - -.26036489E-06 -.56899253E-06 -.86752192E-06 -.11537438E-05 -.14255877E-05 - -.16811355E-05 -.19186339E-05 -.21365050E-05 -.23333557E-05 -.25079852E-05 - -.26593909E-05 -.27867730E-05 -.28895365E-05 -.29672929E-05 -.30198589E-05 - -.30472548E-05 -.30496999E-05 -.30276079E-05 -.29815799E-05 -.29123962E-05 - -.28210073E-05 -.27085230E-05 -.25762012E-05 -.24254351E-05 -.22577400E-05 - -.20747392E-05 -.18781493E-05 -.16697650E-05 -.14514439E-05 -.12250901E-05 - -.99263919E-06 -.75604189E-06 -.51724870E-06 -.27819440E-06 -.40783164E-07 - .19312596E-06 .42173291E-06 .64330979E-06 .85621327E-06 .10588960E-05 - .12499175E-05 .14279530E-05 .15918027E-05 .17403988E-05 .18728116E-05 - .19882544E-05 .20860878E-05 .21658217E-05 .22271172E-05 .22697861E-05 - .22937907E-05 .22992407E-05 .22863909E-05 .22556358E-05 .22075048E-05 - .21426558E-05 .20618676E-05 .19660321E-05 .18561454E-05 .17332978E-05 - .15986645E-05 .14534943E-05 .12990990E-05 .11368416E-05 .96812543E-06 - .79438183E-06 .61705882E-06 .43760937E-06 .25747988E-06 .78098960E-07 - -.99133517E-07 -.27285691E-06 -.44175989E-06 -.60458990E-06 -.76016206E-06 - -.90736736E-06 -.10451802E-05 -.11726648E-05 -.12889818E-05 -.13933923E-05 - -.14852629E-05 -.15640686E-05 -.16293950E-05 -.16809403E-05 -.17185153E-05 - -.17420434E-05 -.17515594E-05 -.17472073E-05 -.17292375E-05 -.16980032E-05 - -.16539558E-05 -.15976400E-05 -.15296880E-05 -.14508129E-05 -.13618024E-05 - -.12635108E-05 -.11568517E-05 -.10427895E-05 -.92233154E-06 -.79651917E-06 - -.66641916E-06 -.53311498E-06 -.39769801E-06 -.26125892E-06 -.12487913E-06 - .10377485E-07 .14347264E-06 .27340134E-06 .39919922E-06 .51994941E-06 - .63478896E-06 .74291471E-06 .84358862E-06 .93614249E-06 .10199820E-05 - .10945904E-05 .11595310E-05 .12144494E-05 .12590751E-05 .12932221E-05 - .13167890E-05 .13297585E-05 .13321964E-05 .13242491E-05 .13061420E-05 - .12781757E-05 .12407232E-05 .11942252E-05 .11391859E-05 .10761679E-05 - .10057870E-05 .92870654E-06 .84563134E-06 .75730164E-06 .66448672E-06 - .56797846E-06 .46858480E-06 .36712315E-06 .26441394E-06 .16127411E-06 - .58510840E-07 -.43084584E-07 -.14274268E-06 -.23972139E-06 -.33331146E-06 - -.42284137E-06 -.50768199E-06 -.58725077E-06 -.66101551E-06 -.72849772E-06 - -.78927542E-06 -.84298553E-06 -.88932573E-06 -.92805581E-06 -.95899854E-06 - -.98204001E-06 -.99712946E-06 -.10042787E-05 -.10035609E-05 -.99510908E-06 - -.97911412E-06 -.95582224E-06 -.92553223E-06 -.88859224E-06 -.84539628E-06 - -.79638041E-06 -.74201862E-06 -.68281852E-06 -.61931691E-06 -.55207504E-06 - -.48167388E-06 -.40870931E-06 -.33378719E-06 -.25751852E-06 -.18051463E-06 - -.10338237E-06 -.26719534E-07 .48889673E-07 .12287892E-06 .19470384E-06 - .26384591E-06 .32981604E-06 .39215784E-06 .45045066E-06 .50431220E-06 - .55340089E-06 .59741779E-06 .63610824E-06 .66926307E-06 .69671942E-06 - .71836129E-06 .73411956E-06 .74397180E-06 .74794162E-06 .74609770E-06 - .73855250E-06 .72546064E-06 .70701697E-06 .68345439E-06 .65504139E-06 - .62207935E-06 .58489965E-06 .54386058E-06 .49934410E-06 .45175249E-06 - .40150487E-06 .34903364E-06 .29478097E-06 .23919513E-06 .18272695E-06 - .12582629E-06 .68938549E-07 .12501322E-07 -.43058875E-07 -.97329706E-07 - -.14991596E-06 -.20044230E-06 -.24855584E-06 -.29392849E-06 -.33625901E-06 - -.37527494E-06 -.41073416E-06 -.44242622E-06 -.47017345E-06 -.49383173E-06 - -.51329101E-06 -.52847558E-06 -.53934403E-06 -.54588897E-06 -.54813649E-06 - -.54614532E-06 -.54000588E-06 -.52983894E-06 -.51579416E-06 -.49804846E-06 - -.47680410E-06 -.45228674E-06 -.42474318E-06 -.39443917E-06 -.36165694E-06 - -.32669276E-06 -.28985441E-06 -.25145854E-06 -.21182812E-06 -.17128979E-06 - -.13017128E-06 -.88798891E-07 -.47494935E-07 -.65753680E-08 .33652554E-07 - .72892492E-07 .11086111E-06 .14729002E-06 .18192762E-06 .21454067E-06 - .24491580E-06 .27286079E-06 .29820565E-06 .32080356E-06 .34053152E-06 - .35729090E-06 .37100778E-06 .38163299E-06 .38914209E-06 .39353509E-06 - .39483599E-06 .39309215E-06 .38837349E-06 .38077154E-06 .37039831E-06 - .35738509E-06 .34188101E-06 .32405161E-06 .30407723E-06 .28215135E-06 - .25847886E-06 .23327422E-06 .20675970E-06 .17916344E-06 .15071762E-06 - .12165660E-06 .92215039E-07 .62626105E-07 .33119689E-07 .39206951E-08 - -.24752597E-07 -.52690095E-07 -.79691358E-07 -.10556696E-06 -.13013974E-06 - -.15324595E-06 -.17473624E-06 -.19447656E-06 -.21234887E-06 -.22825180E-06 - -.24210104E-06 -.25382974E-06 -.26338863E-06 -.27074611E-06 -.27588811E-06 - -.27881792E-06 -.27955575E-06 -.27813834E-06 -.27461828E-06 -.26906337E-06 - -.26155573E-06 -.25219095E-06 -.24107705E-06 -.22833345E-06 -.21408978E-06 - -.19848472E-06 -.18166473E-06 -.16378279E-06 -.14499707E-06 -.12546963E-06 - -.10536508E-06 -.84849265E-07 -.64087970E-07 -.43245621E-07 -.22484060E-07 - -.19613409E-08 .18169418E-07 .37761115E-07 .56673688E-07 .74775054E-07 - .91941974E-07 .10806083E-06 .12302832E-06 .13675204E-06 .14915099E-06 - .16015600E-06 .16970998E-06 .17776817E-06 .18429822E-06 .18928021E-06 - .19270655E-06 .19458179E-06 .19492237E-06 .19375623E-06 .19112240E-06 - .18707045E-06 .18165991E-06 .17495962E-06 .16704703E-06 .15800738E-06 - .14793295E-06 .13692218E-06 .12507877E-06 .11251081E-06 .99329838E-07 - .85649915E-07 .71586695E-07 .57256498E-07 .42775398E-07 .28258334E-07 - .13818240E-07 -.43478729E-09 -.14394282E-07 -.27958162E-07 -.41029432E-07 - -.53516833E-07 -.65335434E-07 -.76407165E-07 -.86661288E-07 -.96034794E-07 - -.10447275E-06 -.11192854E-06 -.11836410E-06 -.12375001E-06 -.12806557E-06 - -.13129879E-06 -.13344629E-06 -.13451320E-06 -.13451290E-06 -.13346681E-06 - -.13140400E-06 -.12836090E-06 -.12438080E-06 -.11951341E-06 -.11381435E-06 - -.10734461E-06 -.10016996E-06 -.92360356E-07 -.83989297E-07 -.75133217E-07 - -.65870815E-07 -.56282407E-07 -.46449269E-07 -.36452990E-07 -.26374834E-07 - -.16295114E-07 -.62925859E-08 .35561287E-08 .13177100E-07 .22499609E-07 - .31456639E-07 .39985322E-07 .48027346E-07 .55529326E-07 .62443121E-07 - .68726111E-07 .74341419E-07 .79258092E-07 .83451231E-07 .86902064E-07 - .89597984E-07 .91532524E-07 .92705296E-07 .93121878E-07 .92793663E-07 - .91737653E-07 .89976232E-07 .87536883E-07 .84451885E-07 .80757970E-07 - .76495956E-07 .71710350E-07 .66448940E-07 .60762354E-07 .54703620E-07 - .48327702E-07 .41691044E-07 .34851096E-07 .27865848E-07 .20793373E-07 - .13691366E-07 .66167019E-08 -.37499308E-09 -.72297542E-08 -.13895671E-07 - -.20323255E-07 -.26465788E-07 -.32279633E-07 -.37724526E-07 -.42763829E-07 - -.47364755E-07 -.51498560E-07 -.55140694E-07 -.58270921E-07 -.60873410E-07 - -.62936773E-07 -.64454090E-07 -.65422877E-07 -.65845040E-07 -.65726779E-07 - -.65078469E-07 -.63914512E-07 -.62253155E-07 -.60116282E-07 -.57529183E-07 - -.54520303E-07 -.51120960E-07 -.47365060E-07 -.43288783E-07 -.38930265E-07 - -.34329266E-07 -.29526833E-07 -.24564953E-07 -.19486211E-07 -.14333446E-07 - -.91494082E-08 -.39764231E-08 .11439326E-08 .61711490E-08 .11066085E-07 - .15791256E-07 .20311104E-07 .24592250E-07 .28603725E-07 .32317176E-07 - .35707053E-07 .38750770E-07 .41428839E-07 .43724980E-07 .45626202E-07 - .47122860E-07 .48208684E-07 .48880781E-07 .49139608E-07 .48988926E-07 - .48435724E-07 .47490115E-07 .46165220E-07 .44477022E-07 .42444198E-07 - .40087938E-07 .37431747E-07 .34501224E-07 .31323833E-07 .27928668E-07 - .24346193E-07 .20607989E-07 .16746490E-07 .12794713E-07 .87859919E-08 - .47537088E-08 .73102898E-09 -.32493587E-08 -.71554951E-08 -.10956395E-07 - -.14622282E-07 -.18124808E-07 -.21437265E-07 -.24534773E-07 -.27394460E-07 - -.29995620E-07 -.32319853E-07 -.34351183E-07 -.36076162E-07 -.37483945E-07 - -.38566352E-07 -.39317902E-07 -.39735828E-07 -.39820072E-07 -.39573258E-07 - -.39000641E-07 -.38110042E-07 -.36911758E-07 -.35418458E-07 -.33645056E-07 - -.31608577E-07 -.29327996E-07 -.26824071E-07 -.24119164E-07 -.21237046E-07 - -.18202698E-07 -.15042101E-07 -.11782020E-07 -.84497905E-08 -.50730892E-08 - -.16797180E-08 .17026196E-08 .50465364E-08 .83251756E-08 .11512419E-07 - .14583088E-07 .17513133E-07 .20279819E-07 .22861888E-07 .25239723E-07 - .27395485E-07 .29313242E-07 .30979082E-07 .32381206E-07 .33510003E-07 - .34358115E-07 .34920476E-07 .35194336E-07 .35179264E-07 .34877139E-07 - .34292118E-07 .33430584E-07 .32301084E-07 .30914248E-07 .29282688E-07 - .27420888E-07 .25345076E-07 .23073086E-07 .20624207E-07 .18019022E-07 - .15279237E-07 .12427505E-07 .94872409E-08 .64824308E-08 .34374431E-08 - .37683268E-09 -.26748531E-08 -.56932672E-08 -.86544532E-08 -.11535032E-07 - -.14312380E-07 -.16964808E-07 -.19471719E-07 -.21813770E-07 -.23973015E-07 - -.25933039E-07 -.27679077E-07 -.29198125E-07 -.30479028E-07 -.31512564E-07 - -.32291502E-07 -.32810648E-07 -.33066883E-07 -.33059167E-07 -.32788546E-07 - -.32258130E-07 -.31473058E-07 -.30440450E-07 -.29169342E-07 -.27670607E-07 - -.25956858E-07 -.24042349E-07 -.21942849E-07 -.19675514E-07 -.17258751E-07 - -.14712064E-07 -.12055899E-07 -.93114809E-08 -.65006434E-08 -.36456576E-08 - -.76905595E-09 .21065446E-08 .49586189E-08 .77649082E-08 .10503593E-07 - .13153461E-07 .15694069E-07 .18105899E-07 .20370507E-07 .22470662E-07 - 24.7554104503838985 T - Non local Part - 0 2 1.19823013906127396 - 1.10994077959183524 1.53342233373160219 1.53342233373160219 -0.291376959654070899 - Reciprocal Space Part - .41916247E+01 .41825847E+01 .41555387E+01 .41107084E+01 .40484610E+01 - .39693053E+01 .38738873E+01 .37629841E+01 .36374959E+01 .34984375E+01 - .33469290E+01 .31841841E+01 .30114991E+01 .28302395E+01 .26418272E+01 - .24477262E+01 .22494282E+01 .20484379E+01 .18462583E+01 .16443755E+01 - .14442443E+01 .12472735E+01 .10548126E+01 .86813848E+00 .68844301E+00 - .51682202E+00 .35426518E+00 .20164722E+00 .59720666E-01 -.70890044E-01 - -.18969273E+00 -.29633001E+00 -.39058015E+00 -.47235620E+00 -.54170338E+00 - -.59879486E+00 -.64392596E+00 -.67750676E+00 -.70005339E+00 -.71217809E+00 - -.71457813E+00 -.70802382E+00 -.69334585E+00 -.67142204E+00 -.64316388E+00 - -.60950289E+00 -.57137716E+00 -.52971824E+00 -.48543852E+00 -.43941937E+00 - -.39250026E+00 -.34546882E+00 -.29905223E+00 -.25390984E+00 -.21062725E+00 - -.16971183E+00 -.13158971E+00 -.96604303E-01 -.65016283E-01 -.37004945E-01 - -.12670925E-01 .79598551E-02 .24931149E-01 .38350371E-01 .48381788E-01 - .55239058E-01 .59177307E-01 .60484919E-01 .59475206E-01 .56478136E-01 - .51832277E-01 .45877121E-01 .38945906E-01 .31359071E-01 .23418444E-01 - .15402235E-01 .75609010E-02 .11392130E-03 -.67525066E-02 -.12886855E-01 - -.18172761E-01 -.22528680E-01 -.25906755E-01 -.28290977E-01 -.29694738E-01 - -.30157854E-01 -.29743190E-01 -.28532968E-01 -.26624897E-01 -.24128204E-01 - -.21159697E-01 -.17839940E-01 -.14289626E-01 -.10626249E-01 -.69611057E-02 - -.33967125E-02 -.24653651E-04 .30761027E-02 .58404133E-02 .82176957E-02 - Real Space Part - -.12209911E+02 -.12156465E+02 -.11996746E+02 -.11732600E+02 -.11367080E+02 - -.10904404E+02 -.10349903E+02 -.97099514E+01 -.89918873E+01 -.82039151E+01 - -.73550000E+01 -.64547502E+01 -.55132907E+01 -.45411287E+01 -.35490140E+01 - -.25477947E+01 -.15482719E+01 -.56105360E+00 .40358764E+00 .13358530E+01 - .22265484E+01 .30672055E+01 .38501921E+01 .45688082E+01 .52173671E+01 - .57912593E+01 .62869985E+01 .67022486E+01 .70358309E+01 .72877116E+01 - .74589701E+01 .75517488E+01 .75691844E+01 .75153242E+01 .73950278E+01 - .72138561E+01 .69779520E+01 .66939128E+01 .63686597E+01 .60093047E+01 - .56230197E+01 .52169103E+01 .47978951E+01 .43725954E+01 .39472355E+01 - .35275565E+01 .31187441E+01 .27253720E+01 .23513613E+01 .19999558E+01 - .16737134E+01 .13745126E+01 .11035728E+01 .86148821E+00 .64827189E+00 - .46341029E+00 .30592455E+00 .17443747E+00 .67243739E-01 -.17618413E-01 - -.82296239E-01 -.12905384E+00 -.16020751E+00 -.17806636E+00 -.18487943E+00 - -.18279001E+00 -.17379778E+00 -.15972907E+00 -.14221522E+00 -.12267879E+00 - -.10232730E+00 -.82153699E-01 -.62942943E-01 -.45283648E-01 -.29583985E-01 - -.16090730E-01 -.49105123E-02 .39677126E-02 .10649843E-01 .15314281E-01 - .18190739E-01 .19540772E-01 .19640479E-01 .18765672E-01 .17179704E-01 - .15123994E-01 .12811214E-01 .10420974E-01 .80977811E-02 .59509921E-02 - .40564286E-02 .24593019E-02 .11780974E-02 .20907384E-03 -.46894317E-03 - -.88975727E-03 -.10952287E-02 -.11311262E-02 -.10435471E-02 -.87599685E-03 - Reciprocal Space Part - .74573153E+01 .74205324E+01 .73105035E+01 .71281866E+01 .68751723E+01 - .65536755E+01 .61665220E+01 .57171327E+01 .52095018E+01 .46481714E+01 - .40382008E+01 .33851306E+01 .26949407E+01 .19740037E+01 .12290314E+01 - .46701580E+00 -.30483477E+00 -.10791659E+01 -.18485513E+01 -.26055719E+01 - -.33428971E+01 -.40533700E+01 -.47300925E+01 -.53665105E+01 -.59564989E+01 - -.64944419E+01 -.69753105E+01 -.73947331E+01 -.77490593E+01 -.80354149E+01 - -.82517461E+01 -.83968535E+01 -.84704128E+01 -.84729835E+01 -.84060025E+01 - -.82717655E+01 -.80733934E+01 -.78147852E+01 -.75005585E+01 -.71359771E+01 - -.67268679E+01 -.62795286E+01 -.58006267E+01 -.52970927E+01 -.47760092E+01 - -.42444981E+01 -.37096071E+01 -.31781994E+01 -.26568473E+01 -.21517323E+01 - -.16685537E+01 -.12124471E+01 -.78791534E+00 -.39877098E+00 -.48094094E-01 - .26179610E+00 .52935445E+00 .75380808E+00 .93513994E+00 .10740583E+01 - .11719530E+01 .12308401E+01 .12532955E+01 .12423801E+01 .12015583E+01 - .11346105E+01 .10455433E+01 .93849855E+00 .81766341E+00 .68718315E+00 - .55107898E+00 .41317216E+00 .27701602E+00 .14583714E+00 .22486520E-01 - -.90598413E-01 -.19142056E+00 -.27843862E+00 -.35057128E+00 -.40719064E+00 - -.44810548E+00 -.47353521E+00 -.48407567E+00 -.48065789E+00 -.46450122E+00 - -.43706235E+00 -.39998148E+00 -.35502741E+00 -.30404270E+00 -.24889052E+00 - -.19140434E+00 -.13334157E+00 -.76342240E-01 -.21893397E-01 .28700093E-01 - .74337975E-01 .11414004E+00 .14745461E+00 .17386013E+00 .19316046E+00 - Real Space Part - -.14450582E+03 -.14434158E+03 -.14384692E+03 -.14301613E+03 -.14184006E+03 - -.14030674E+03 -.13840209E+03 -.13611089E+03 -.13341784E+03 -.13030866E+03 - -.12677136E+03 -.12279734E+03 -.11838257E+03 -.11352859E+03 -.10824339E+03 - -.10254210E+03 -.96447492E+02 -.89990226E+02 -.83208815E+02 -.76149381E+02 - -.68865127E+02 -.61415564E+02 -.53865525E+02 -.46283974E+02 -.38742660E+02 - -.31314650E+02 -.24072789E+02 -.17088132E+02 -.10428398E+02 -.41564905E+01 - .16708644E+01 .70043321E+01 .11802990E+02 .16035133E+02 .19678836E+02 - .22722270E+02 .25163755E+02 .27011560E+02 .28283456E+02 .29006050E+02 - .29213914E+02 .28948539E+02 .28257163E+02 .27191494E+02 .25806374E+02 - .24158431E+02 .22304747E+02 .20301581E+02 .18203183E+02 .16060736E+02 - .13921425E+02 .11827682E+02 .98165975E+01 .79195094E+01 .61617801E+01 - .45627407E+01 .31358031E+01 .18887196E+01 .82397384E+00 -.60720401E-01 - -.77183450E+00 -.13193800E+01 -.17162274E+01 -.19774128E+01 -.21194552E+01 - -.21597028E+01 -.21157294E+01 -.20047908E+01 -.18433559E+01 -.16467180E+01 - -.14286910E+01 -.12013912E+01 -.97510211E+00 -.75821818E+00 -.55725868E+00 - -.37694436E+00 -.22032548E+00 -.88950652E-01 .16934939E-01 .98173080E-01 - .15646828E+00 .19416536E+00 .21403714E+00 .21908924E+00 .21238723E+00 - .19691002E+00 .17543163E+00 .15043210E+00 .12403694E+00 .97983416E-01 - .73610913E-01 .51872133E-01 .33361169E-01 .18354475E-01 .68606192E-02 - -.13250790E-02 -.65645922E-02 -.93230150E-02 -.10118734E-01 -.94798863E-02 - Non local Part - 1 2 1.19823013906127396 - 6.12884028017874360 -3.81892483499089330 -3.81892483499089330 1.42081284536133179 - Reciprocal Space Part - .00000000E+00 .24190713E+00 .48134296E+00 .71587281E+00 .94313460E+00 - .11608735E+01 .13669746E+01 .15594931E+01 .17366816E+01 .18970136E+01 - .20392032E+01 .21622207E+01 .22653035E+01 .23479626E+01 .24099842E+01 - .24514270E+01 .24726145E+01 .24741237E+01 .24567692E+01 .24215837E+01 - .23697959E+01 .23028052E+01 .22221538E+01 .21294985E+01 .20265799E+01 - .19151923E+01 .17971534E+01 .16742740E+01 .15483304E+01 .14210370E+01 - .12940221E+01 .11688056E+01 .10467802E+01 .92919538E+00 .81714463E+00 - .71155640E+00 .61318834E+00 .52262508E+00 .44027930E+00 .36639596E+00 - .30105950E+00 .24420362E+00 .19562346E+00 .15498971E+00 .12186422E+00 - .95716908E-01 .75943293E-01 .61882440E-01 .52834833E-01 .48079811E-01 - .46892228E-01 .48558017E-01 .52388387E-01 .57732421E-01 .63987899E-01 - .70610211E-01 .77119283E-01 .83104495E-01 .88227596E-01 .92223688E-01 - .94900397E-01 .96135352E-01 .95872176E-01 .94115169E-01 .90922917E-01 - .86401051E-01 .80694419E-01 .73978879E-01 .66452981E-01 .58329740E-01 - .49828715E-01 .41168581E-01 .32560350E-01 .24201382E-01 .16270280E-01 - .89227536E-02 .22884849E-02 -.35309816E-02 -.84633498E-02 -.12465719E-01 - -.15523834E-01 -.17650532E-01 -.18883476E-01 -.19282310E-01 -.18925339E-01 - -.17905890E-01 -.16328465E-01 -.14304828E-01 -.11950138E-01 -.93792522E-02 - -.67032934E-02 -.40265698E-02 -.14439170E-02 .96148255E-03 .31197699E-02 - .49755497E-02 .64885011E-02 .76334748E-02 .84001065E-02 .87919916E-02 - Real Space Part - .00000000E+00 .79674956E+00 .15859159E+01 .23600635E+01 .31120483E+01 - .38351532E+01 .45232120E+01 .51707187E+01 .57729178E+01 .63258763E+01 - .68265322E+01 .72727217E+01 .76631830E+01 .79975380E+01 .82762527E+01 - .85005780E+01 .86724745E+01 .87945214E+01 .88698160E+01 .89018646E+01 - .88944696E+01 .88516162E+01 .87773614E+01 .86757301E+01 .85506195E+01 - .84057148E+01 .82444190E+01 .80697972E+01 .78845365E+01 .76909225E+01 - .74908310E+01 .72857355E+01 .70767279E+01 .68645513E+01 .66496437E+01 - .64321882E+01 .62121700E+01 .59894356E+01 .57637521E+01 .55348655E+01 - .53025546E+01 .50666788E+01 .48272185E+01 .45843073E+01 .43382543E+01 - .40895568E+01 .38389031E+01 .35871659E+01 .33353872E+01 .30847548E+01 - .28365735E+01 .25922301E+01 .23531559E+01 .21207871E+01 .18965247E+01 - .16816961E+01 .14775193E+01 .12850711E+01 .11052602E+01 .93880647E+00 - .78622548E+00 .64782090E+00 .52368250E+00 .41369091E+00 .31752808E+00 - .23469302E+00 .16452201E+00 .10621225E+00 .58848150E-01 .21429047E-01 - -.71024369E-02 -.27832509E-01 -.41849597E-01 -.50219785E-01 -.53964937E-01 - -.54044003E-01 -.51337836E-01 -.46637720E-01 -.40637642E-01 -.33930212E-01 - -.27006003E-01 -.20256005E-01 -.13976760E-01 -.83777375E-02 -.35904248E-02 - .32136120E-03 .33504644E-02 .55351505E-02 .69480767E-02 .76858459E-02 - .78594557E-02 .75858795E-02 .69809449E-02 .61535968E-02 .52015693E-02 - .42084251E-02 .32418692E-02 .23532017E-02 .15777427E-02 .93604221E-03 - Reciprocal Space Part - .00000000E+00 .31744093E+00 .62796632E+00 .92479987E+00 .12014407E+01 - .14517937E+01 .16702913E+01 .18520039E+01 .19927369E+01 .20891120E+01 - .21386315E+01 .21397237E+01 .20917694E+01 .19951083E+01 .18510259E+01 - .16617203E+01 .14302515E+01 .11604730E+01 .85694736E+00 .52484880E+00 - .16985417E+00 -.20197520E+00 -.58431776E+00 -.97071968E+00 -.13547235E+01 - -.17299949E+01 -.20904447E+01 -.24303437E+01 -.27444280E+01 -.30279929E+01 - -.32769731E+01 -.34880080E+01 -.36584915E+01 -.37866046E+01 -.38713313E+01 - -.39124572E+01 -.39105517E+01 -.38669350E+01 -.37836290E+01 -.36632969E+01 - -.35091693E+01 -.33249628E+01 -.31147888E+01 -.28830588E+01 -.26343861E+01 - -.23734858E+01 -.21050774E+01 -.18337905E+01 -.15640757E+01 -.13001231E+01 - -.10457895E+01 -.80453601E+00 -.57937641E+00 -.37283792E+00 -.18693396E+00 - -.23149557E-01 .11756098E+00 .23476454E+00 .32852852E+00 .39939002E+00 - .44831599E+00 .47665573E+00 .48608716E+00 .47855846E+00 .45622663E+00 - .42139471E+00 .37644900E+00 .32379812E+00 .26581491E+00 .20478287E+00 - .14284783E+00 .81976051E-01 .23919311E-01 -.29812460E-01 -.77970740E-01 - -.11958010E+00 -.15394216E+00 -.18063212E+00 -.19948839E+00 -.21059606E+00 - -.21426485E+00 -.21100257E+00 -.20148507E+00 -.18652355E+00 -.16703047E+00 - -.14398496E+00 -.11839869E+00 -.91283257E-01 -.63619700E-01 -.36331110E-01 - -.10258728E-01 .13857887E-01 .35396331E-01 .53862293E-01 .68895888E-01 - .80273504E-01 .87905366E-01 .91829151E-01 .92200087E-01 .89278037E-01 - Real Space Part - .00000000E+00 -.20833035E+01 -.41655263E+01 -.62451081E+01 -.83195511E+01 - -.10385006E+02 -.12435921E+02 -.14464767E+02 -.16461863E+02 -.18415296E+02 - -.20310962E+02 -.22132707E+02 -.23862587E+02 -.25481222E+02 -.26968246E+02 - -.28302832E+02 -.29464273E+02 -.30432608E+02 -.31189254E+02 -.31717642E+02 - -.32003813E+02 -.32036975E+02 -.31809978E+02 -.31319701E+02 -.30567341E+02 - -.29558576E+02 -.28303611E+02 -.26817098E+02 -.25117923E+02 -.23228879E+02 - -.21176227E+02 -.18989155E+02 -.16699160E+02 -.14339360E+02 -.11943772E+02 - -.95465606E+01 -.71812913E+01 -.48802088E+01 -.26735552E+01 -.58895310E+00 - .13491329E+01 .31198413E+01 .47062558E+01 .60956367E+01 .72795389E+01 - .82538163E+01 .90185169E+01 .95776756E+01 .99390140E+01 .10113561E+02 - .10115209E+02 .99602166E+01 .96666821E+01 .92540003E+01 .87423176E+01 - .81520050E+01 .75031602E+01 .68151530E+01 .61062235E+01 .53931413E+01 - .46909323E+01 .40126745E+01 .33693654E+01 .27698580E+01 .22208628E+01 - .17270086E+01 .12909577E+01 .91356460E+00 .59407062E+00 .33032511E+00 - .11902304E+00 -.44049687E-01 -.16377201E+00 -.24545238E+00 -.29460892E+00 - -.31677078E+00 -.31730480E+00 -.30127048E+00 -.27330483E+00 -.23753750E+00 - -.19753537E+00 -.15627485E+00 -.11613935E+00 -.78938581E-01 -.45946163E-01 - -.17951420E-01 .46784902E-02 .21930096E-01 .34072423E-01 .41586401E-01 - .45097684E-01 .45315224E-01 .42977316E-01 .38806326E-01 .33472725E-01 - .27568557E-01 .21590035E-01 .15928553E-01 .10869144E-01 .65951677E-02 - PAW radial sets - 321 0.721520152002725790 -(5E20.12) - augmentation charges (non sperical) - -.157752259102E+00 .256865056813E-01 .447401437060E-01 .282550287931E-02 .256865056813E-01 - -.513111026050E-02 -.610189826978E-02 .234333105778E-03 .447401437060E-01 -.610189826978E-02 - .206642369840E+00 -.512388802954E-01 .282550287931E-02 .234333105778E-03 -.512388802954E-01 - .161404628631E-01 - uccopancies in atom - .199999999995E+01 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .133333333287E+01 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 - grid - .292861757568E-04 .302384891324E-04 .312217693632E-04 .322370234141E-04 .332852909940E-04 - .343676456204E-04 .354851957192E-04 .366390857593E-04 .378304974248E-04 .390606508255E-04 - .403308057460E-04 .416422629358E-04 .429963654417E-04 .443944999831E-04 .458380983718E-04 - .473286389788E-04 .488676482478E-04 .504567022590E-04 .520974283424E-04 .537915067449E-04 - .555406723508E-04 .573467164586E-04 .592114886153E-04 .611368985105E-04 .631249179321E-04 - .651775827859E-04 .672969951799E-04 .694853255777E-04 .717448150208E-04 .740777774238E-04 - .764866019442E-04 .789737554287E-04 .815417849398E-04 .841933203642E-04 .869310771058E-04 - .897578588667E-04 .926765605186E-04 .956901710669E-04 .988017767123E-04 .102014564011E-03 - .105331823137E-03 .108756951255E-03 .112293455994E-03 .115944959045E-03 .119715199866E-03 - .123608039513E-03 .127627464593E-03 .131777591350E-03 .136062669876E-03 .140487088466E-03 - .145055378110E-03 .149772217137E-03 .154642436003E-03 .159671022236E-03 .164863125548E-03 - .170224063108E-03 .175759324983E-03 .181474579766E-03 .187375680376E-03 .193468670057E-03 - .199759788562E-03 .206255478546E-03 .212962392164E-03 .219887397881E-03 .227037587508E-03 - .234420283464E-03 .242043046275E-03 .249913682317E-03 .258040251807E-03 .266431077064E-03 - .275094751026E-03 .284040146052E-03 .293276423008E-03 .302813040649E-03 .312659765305E-03 - .322826680882E-03 .333324199190E-03 .344163070606E-03 .355354395080E-03 .366909633507E-03 - .378840619461E-03 .391159571315E-03 .403879104750E-03 .417012245681E-03 .430572443592E-03 - .444573585311E-03 .459030009230E-03 .473956519990E-03 .489368403644E-03 .505281443305E-03 - .521711935319E-03 .538676705943E-03 .556193128586E-03 .574279141596E-03 .592953266629E-03 - .612234627622E-03 .632142970374E-03 .652698682767E-03 .673922815646E-03 .695837104379E-03 - .718463991113E-03 .741826647755E-03 .765948999709E-03 .790855750370E-03 .816572406429E-03 - .843125303987E-03 .870541635532E-03 .898849477784E-03 .928077820446E-03 .958256595896E-03 - .989416709837E-03 .102159007295E-02 .105480963356E-02 .108910941142E-02 .112452453248E-02 - .116109126493E-02 .119884705630E-02 .123783057181E-02 .127808173400E-02 .131964176357E-02 - .136255322161E-02 .140686005323E-02 .145260763247E-02 .149984280887E-02 .154861395536E-02 - .159897101787E-02 .165096556643E-02 .170465084799E-02 .176008184098E-02 .181731531158E-02 - .187640987187E-02 .193742603983E-02 .200042630136E-02 .206547517423E-02 .213263927416E-02 - .220198738308E-02 .227359051949E-02 .234752201127E-02 .242385757072E-02 .250267537214E-02 - .258405613183E-02 .266808319080E-02 .275484260011E-02 .284442320898E-02 .293691675577E-02 - .303241796195E-02 .313102462912E-02 .323283773910E-02 .333796155744E-02 .344650374009E-02 - .355857544374E-02 .367429143961E-02 .379377023099E-02 .391713417460E-02 .404450960591E-02 - .417602696847E-02 .431182094758E-02 .445203060811E-02 .459679953703E-02 .474627599036E-02 - .490061304506E-02 .505996875575E-02 .522450631661E-02 .539439422848E-02 .556980647142E-02 - .575092268290E-02 .593792834175E-02 .613101495811E-02 .633038026953E-02 .653622844353E-02 - .674877028662E-02 .696822346022E-02 .719481270355E-02 .742877006381E-02 .767033513377E-02 - .791975529717E-02 .817728598207E-02 .844319092237E-02 .871774242798E-02 .900122166363E-02 - .929391893683E-02 .959613399516E-02 .990817633326E-02 .102303655097E-01 .105630314745E-01 - .109065149065E-01 .112611675628E-01 .116273526388E-01 .120054451399E-01 .123958322659E-01 - .127989138074E-01 .132151025550E-01 .136448247225E-01 .140885203828E-01 .145466439191E-01 - .150196644899E-01 .155080665096E-01 .160123501446E-01 .165330318254E-01 .170706447755E-01 - .176257395575E-01 .181988846371E-01 .187906669648E-01 .194016925775E-01 .200325872188E-01 - .206839969800E-01 .213565889615E-01 .220510519564E-01 .227680971554E-01 .235084588754E-01 - .242728953116E-01 .250621893137E-01 .258771491876E-01 .267186095236E-01 .275874320505E-01 - .284845065186E-01 .294107516104E-01 .303671158820E-01 .313545787337E-01 .323741514141E-01 - .334268780544E-01 .345138367389E-01 .356361406081E-01 .367949389994E-01 .379914186235E-01 - .392268047802E-01 .405023626127E-01 .418193984038E-01 .431792609133E-01 .445833427591E-01 - .460330818438E-01 .475299628269E-01 .490755186453E-01 .506713320832E-01 .523190373930E-01 - .540203219690E-01 .557769280752E-01 .575906546298E-01 .594633590472E-01 .613969591405E-01 - .633934350851E-01 .654548314468E-01 .675832592756E-01 .697808982676E-01 .720499989972E-01 - .743928852218E-01 .768119562617E-01 .793096894569E-01 .818886427046E-01 .845514570782E-01 - .873008595323E-01 .901396656953E-01 .930707827527E-01 .960972124246E-01 .992220540394E-01 - .102448507708E+00 .105779877601E+00 .109219575332E+00 .112771123452E+00 .116438159057E+00 - .120224437512E+00 .124133836297E+00 .128170358977E+00 .132338139305E+00 .136641445452E+00 - .141084684380E+00 .145672406352E+00 .150409309599E+00 .155300245122E+00 .160350221666E+00 - .165564410850E+00 .170948152458E+00 .176506959912E+00 .182246525918E+00 .188172728291E+00 - .194291635982E+00 .200609515285E+00 .207132836263E+00 .213868279365E+00 .220822742274E+00 - .228003346967E+00 .235417447012E+00 .243072635094E+00 .250976750795E+00 .259137888621E+00 - .267564406289E+00 .276264933290E+00 .285248379723E+00 .294523945424E+00 .304101129382E+00 - .313989739470E+00 .324199902489E+00 .334742074538E+00 .345627051723E+00 .356865981211E+00 - .368470372648E+00 .380452109945E+00 .392823463449E+00 .405597102506E+00 .418786108438E+00 - .432403987941E+00 .446464686913E+00 .460982604738E+00 .475972609033E+00 .491450050872E+00 - .507430780509E+00 .523931163606E+00 .540968097998E+00 .558559030995E+00 .576721977248E+00 - .595475537203E+00 .614838916143E+00 .634831943861E+00 .655475094963E+00 .676789509841E+00 - .698797016317E+00 .721520152003E+00 .744982187373E+00 .769207149603E+00 .794219847171E+00 - .820045895265E+00 - aepotential - .344620864381E+05 .335729348910E+05 .326607094679E+05 .317298527617E+05 .307850610750E+05 - .298308294196E+05 .288714423118E+05 .279109409932E+05 .269531004174E+05 .260014122025E+05 - .250590723857E+05 .241289743073E+05 .232137061556E+05 .223155526546E+05 .214365006885E+05 - .205782481780E+05 .197422158561E+05 .189295613384E+05 .181411950859E+05 .173777977152E+05 - .166398382559E+05 .159275929117E+05 .152411639803E+05 .145804985929E+05 .139454070005E+05 - .133355801830E+05 .127506065798E+05 .121899878290E+05 .116531533851E+05 .111394739797E+05 - .106482738762E+05 .101788419327E+05 .973044147139E+04 .930231902072E+04 .889371196167E+04 - .850385516385E+04 .813198665588E+04 .777735243911E+04 .743921050565E+04 .711683412068E+04 - .680951449358E+04 .651656285928E+04 .623731207683E+04 .597111778273E+04 .571735918511E+04 - .547543952008E+04 .524478624895E+04 .502485103028E+04 .481510949625E+04 .461506088322E+04 - .442422753164E+04 .424215429199E+04 .406840786784E+04 .390257606950E+04 .374426708320E+04 - .359310864864E+04 .344874729194E+04 .331084749161E+04 .317909090091E+04 .305317553308E+04 - .293281500979E+04 .281773778683E+04 .270768642593E+04 .260241688250E+04 .250169782385E+04 - .240530996858E+04 .231304545700E+04 .222470724985E+04 .214010855063E+04 .205907226117E+04 - .198143045752E+04 .190702389788E+04 .183570154950E+04 .176732014469E+04 .170174376187E+04 - .163884341822E+04 .157849670118E+04 .152058740347E+04 .146500519043E+04 .141164527724E+04 - .136040813035E+04 .131119918080E+04 .126392855649E+04 .121851082761E+04 .117486476841E+04 - .113291313152E+04 .109258243223E+04 .105380275072E+04 .101650753965E+04 .980633446472E+03 - .946120143433E+03 .912910169256E+03 .880948776621E+03 .850183792788E+03 .820565482959E+03 - .792046425154E+03 .764581390092E+03 .738127227908E+03 .712642762779E+03 .688088691006E+03 - .664427485954E+03 .641623309210E+03 .619641924627E+03 .598450617897E+03 .578018121645E+03 - .558314542462E+03 .539311293781E+03 .520981031521E+03 .503297592970E+03 .486235939917E+03 - .469772103352E+03 .453883132589E+03 .438547046213E+03 .423742785978E+03 .409450172651E+03 - .395649864932E+03 .382323319715E+03 .369452755171E+03 .357021114941E+03 .345012034961E+03 - .333409811120E+03 .322199369640E+03 .311366237899E+03 .300896517183E+03 .290776857231E+03 - .280994431097E+03 .271536912121E+03 .262392451581E+03 .253549657589E+03 .244997574942E+03 - .236725666004E+03 .228723792657E+03 .220982198738E+03 .213491493677E+03 .206242636794E+03 - .199226922258E+03 .192435964878E+03 .185861686483E+03 .179496302942E+03 .173332311815E+03 - .167362480543E+03 .161579835190E+03 .155977649674E+03 .150549435529E+03 .145288932112E+03 - .140190097209E+03 .135247098073E+03 .130454302933E+03 .125806272739E+03 .121297753428E+03 - .116923668358E+03 .112679111224E+03 .108559339155E+03 .104559766209E+03 .100675957051E+03 - .969036209796E+02 .932386061771E+02 .896768941581E+02 .862145945364E+02 .828479399394E+02 - .795732811790E+02 .763870825897E+02 .732859175903E+02 .702664644175E+02 .673255020247E+02 - .644599061844E+02 .616666457159E+02 .589427788941E+02 .562854499948E+02 .536918860003E+02 - .511593934268E+02 .486853553017E+02 .462672282535E+02 .439025397420E+02 .415888854025E+02 - .393239265054E+02 .371053875305E+02 .349310538513E+02 .327987695257E+02 .307064351866E+02 - .286520060380E+02 .266334899472E+02 .246489456285E+02 .226964809271E+02 .207742511855E+02 - .188804577096E+02 .170133463090E+02 .151712059355E+02 .133523673943E+02 .115552021482E+02 - .977812119341E+01 .801957401914E+01 .627804764882E+01 .455206574938E+01 .284018782908E+01 - .114100849772E+01 -.546843190099E+00 -.222470432416E+01 -.389387865170E+01 -.555563702498E+01 - -.721121777413E+01 -.886182701424E+01 -.105086388850E+02 -.121527957221E+02 -.137954081656E+02 - -.154375552027E+02 -.170802841491E+02 -.187246105688E+02 -.203715181315E+02 -.220219584159E+02 - -.236768506503E+02 -.253370814013E+02 -.270035042054E+02 -.286769391470E+02 -.303581723845E+02 - -.320479556231E+02 -.337470055368E+02 -.354560031382E+02 -.371755930961E+02 -.389063829998E+02 - -.406489425672E+02 -.424038027938E+02 -.441714550387E+02 -.459523500399E+02 -.477468968516E+02 - -.495554616915E+02 -.513783666850E+02 -.532158884890E+02 -.550682567708E+02 -.569356525179E+02 - -.588182061426E+02 -.607159953416E+02 -.626290426590E+02 -.645573126945E+02 -.665007088812E+02 - -.684590697493E+02 -.704321645699E+02 -.724196882588E+02 -.744212553972E+02 -.764363932049E+02 - -.784645332739E+02 -.805050018497E+02 -.825570084189E+02 -.846196323419E+02 -.866918072559E+02 - -.887723029672E+02 -.908597045751E+02 -.929523886095E+02 -.950484960626E+02 -.971459023431E+02 - -.992421844218E+02 -.101334585782E+03 -.103419980279E+03 -.105494836659E+03 -.107555186343E+03 - -.109596598129E+03 -.111614164704E+03 -.113602507280E+03 -.115555806133E+03 -.117467866281E+03 - -.119332228743E+03 -.121142338730E+03 -.122891782384E+03 -.124574603359E+03 -.126185709187E+03 - -.127721375786E+03 -.129179849068E+03 -.130562037348E+03 -.131872249654E+03 -.133118881188E+03 - -.134314825072E+03 -.135477192987E+03 -.136625659703E+03 -.137778518637E+03 -.138945648412E+03 - -.140118549526E+03 -.141259817826E+03 -.142297364032E+03 -.143130166505E+03 -.143649392083E+03 - -.143770896700E+03 -.143466650444E+03 -.142779438341E+03 -.141810639779E+03 -.140684648871E+03 - -.139508468373E+03 -.138347629848E+03 -.137225671915E+03 -.136138333179E+03 -.135069529969E+03 - -.134002012204E+03 -.132922043139E+03 -.131820225779E+03 -.130690626727E+03 -.129529519065E+03 - -.128334338388E+03 -.127103016727E+03 -.125833658340E+03 -.124524453614E+03 -.123173726082E+03 - -.121780032930E+03 -.120342269386E+03 -.118859752079E+03 -.117332272953E+03 -.115760124514E+03 - -.114144101237E+03 -.112485482930E+03 -.110786005302E+03 -.109047821948E+03 -.107273460804E+03 - -.105465777240E+03 -.103627905226E+03 -.101763207541E+03 -.998752256539E+02 -.979676297084E+02 - -.960441689068E+02 -.941086224963E+02 -.921647514802E+02 -.902162518570E+02 -.882667076453E+02 - -.863195480576E+02 - core charge-density - .625549835994E-05 .666800504134E-05 .710770694600E-05 .757639628637E-05 .807598331802E-05 - .860850410778E-05 .917612881239E-05 .978117050118E-05 .104260945584E-04 .111135287033E-04 - .118462736682E-04 .126273145781E-04 .134598330771E-04 .143472202518E-04 .152930904017E-04 - .163012957151E-04 .173759419064E-04 .185214048808E-04 .197423484910E-04 .210437434593E-04 - .224308875404E-04 .239094270056E-04 .254853795358E-04 .271651586146E-04 .289555995192E-04 - .308639870146E-04 .328980848607E-04 .350661672522E-04 .373770523150E-04 .398401377963E-04 - .424654390887E-04 .452636297410E-04 .482460846186E-04 .514249258846E-04 .548130719857E-04 - .584242898380E-04 .622732504215E-04 .663755880027E-04 .707479632232E-04 .754081303033E-04 - .803750086285E-04 .856687590020E-04 .913108648668E-04 .973242188169E-04 .103733214742E-03 - .110563845969E-03 .117843809786E-03 .125602618763E-03 .133871719311E-03 .142684617931E-03 - .152077015675E-03 .162086951316E-03 .172754953815E-03 .184124204661E-03 .196240710731E-03 - .209153488342E-03 .222914759203E-03 .237580159043E-03 .253208959714E-03 .269864305635E-03 - .287613465490E-03 .306528100151E-03 .326684547867E-03 .348164127795E-03 .371053463070E-03 - .395444824619E-03 .421436497058E-03 .449133168056E-03 .478646342645E-03 .510094784058E-03 - .543604982759E-03 .579311655433E-03 .617358275824E-03 .657897639406E-03 .701092464009E-03 - .747116028632E-03 .796152852835E-03 .848399419223E-03 .904064941684E-03 .963372182234E-03 - .102655831945E-02 .109387587165E-02 .116559367828E-02 .124199794286E-02 .132339334157E-02 - .141010420110E-02 .150247575032E-02 .160087545001E-02 .170569440540E-02 .181734886664E-02 - .193628182230E-02 .206296469151E-02 .219789912070E-02 .234161889100E-02 .249469194297E-02 - .265772252544E-02 .283135347583E-02 .301626863953E-02 .321319543645E-02 .342290758323E-02 - .364622797998E-02 .388403177110E-02 .413724958987E-02 .440687099725E-02 .469394812583E-02 - .499959954031E-02 .532501432642E-02 .567145642088E-02 .604026919554E-02 .643288030937E-02 - .685080684263E-02 .729566072830E-02 .776915449617E-02 .827310734610E-02 .880945156718E-02 - .938023932048E-02 .998764980358E-02 .106339968159E-01 .113217367443E-01 .120534769893E-01 - .128319848529E-01 .136601969090E-01 .145412288792E-01 .154783860366E-01 .164751741595E-01 - .175353110613E-01 .186627387172E-01 .198616360155E-01 .211364321554E-01 .224918207178E-01 - .239327744331E-01 .254645606710E-01 .270927576767E-01 .288232715768E-01 .306623541799E-01 - .326166215923E-01 .346930736722E-01 .368991143409E-01 .392425727696E-01 .417317254593E-01 - .443753192252E-01 .471825950990E-01 .501633131551E-01 .533277782643E-01 .566868667757E-01 - .602520541187E-01 .640354433157E-01 .680497943852E-01 .723085546110E-01 .768258896433E-01 - .816167153881E-01 .866967306317E-01 .920824503355E-01 .977912395230E-01 .103841347667E+00 - .110251943473E+00 .117043149927E+00 .124236079476E+00 .131852869168E+00 .139916715573E+00 - .148451909274E+00 .157483868688E+00 .167039172970E+00 .177145593679E+00 .187832124907E+00 - .199129011493E+00 .211067774932E+00 .223681236533E+00 .237003537347E+00 .251070154350E+00 - .265917912286E+00 .281584990564E+00 .298110924537E+00 .315536600407E+00 .333904243004E+00 - .353257395572E+00 .373640890661E+00 .395100811173E+00 .417684440517E+00 .441440200801E+00 - .466417577909E+00 .492667032246E+00 .520239893902E+00 .549188240900E+00 .579564759170E+00 - .611422582830E+00 .644815113329E+00 .679795815970E+00 .716417992322E+00 .754734527020E+00 - .794797607463E+00 .836658414955E+00 .880366785870E+00 .925970841497E+00 .973516585329E+00 - .102304746666E+01 .107460390956E+01 .112822280638E+01 .118393697538E+01 .124177458210E+01 - .130175852453E+01 .136390578269E+01 .142822673320E+01 .149472443039E+01 .156339385578E+01 - .163422113833E+01 .170718274867E+01 .178224467121E+01 .185936155863E+01 .193847587451E+01 - .201951703024E+01 .210240052383E+01 .218702708883E+01 .227328186302E+01 .236103358719E+01 - .245013384581E+01 .254041636236E+01 .263169636304E+01 .272377002387E+01 .281641401710E+01 - .290938517367E+01 .300242027945E+01 .309523602333E+01 .318752911609E+01 .327897659887E+01 - .336923636007E+01 .345794787948E+01 .354473321719E+01 .362919826436E+01 .371093427085E+01 - .378951966301E+01 .386452216249E+01 .393550121345E+01 .400201072252E+01 .406360211102E+01 - .411982767477E+01 .417024424100E+01 .421441710619E+01 .425192423234E+01 .428236067202E+01 - .430534318581E+01 .432051500785E+01 .432755070794E+01 .432616109105E+01 .431609806767E+01 - .429715942168E+01 .426919339592E+01 .423210301053E+01 .418585002452E+01 .413045844838E+01 - .406601751409E+01 .399268400981E+01 .391068388909E+01 .382031307013E+01 .372193734800E+01 - .361599135397E+01 .350297650932E+01 .338345793746E+01 .325806031784E+01 .312746268671E+01 - .299239221437E+01 .285361701458E+01 .271193806915E+01 .256818037860E+01 .242318347665E+01 - .227779147070E+01 .213284279909E+01 .198915989658E+01 .184753899553E+01 .170874027411E+01 - .157347856698E+01 .144241483371E+01 .131614854842E+01 .119521112569E+01 .108006043765E+01 - .971076418067E+00 .868557721402E+00 .772719447114E+00 .683692073759E+00 .601521935591E+00 - .526173696431E+00 .457535189769E+00 .395424650783E+00 .339599878201E+00 .289768462616E+00 - .245598123128E+00 .206726459316E+00 .172769862786E+00 .143331658667E+00 .118009628694E+00 - .964029802611E-01 .781187114291E-01 .627772595572E-01 .500173176187E-01 .394997339384E-01 - .309104557903E-01 .239625219489E-01 .183971482330E-01 .139839814991E-01 .105206211709E-01 - .783152347062E-02 .576641243399E-02 .419832401429E-02 .302140579039E-02 .214858584976E-02 - .150921140926E-02 .104674188219E-02 .716563673537E-03 .483976205693E-03 .322381627428E-03 - .211695211051E-03 .136980222199E-03 .873004178539E-04 .547754089416E-04 .338188194079E-04 - .205362239785E-04 .122588804757E-04 .718986054261E-05 .414088618653E-05 .234058876995E-05 - .129766794578E-05 - kinetic energy-density - .132176025795E+00 .133935190758E+00 .135761668823E+00 .137658262485E+00 .139627986720E+00 - .141674035833E+00 .143799794426E+00 .146008844928E+00 .148304976284E+00 .150692193057E+00 - .153174724964E+00 .155757037169E+00 .158443841093E+00 .161240106033E+00 .164151071593E+00 - .167182260952E+00 .170339495149E+00 .173628908334E+00 .177056964154E+00 .180630473327E+00 - .184356612448E+00 .188242944155E+00 .192297438694E+00 .196528496986E+00 .200944975290E+00 - .205556211542E+00 .210372053444E+00 .215402888447E+00 .220659675688E+00 .226153980051E+00 - .231898008388E+00 .237904648105E+00 .244187508236E+00 .250760963072E+00 .257640198646E+00 - .264841262088E+00 .272381114163E+00 .280277685096E+00 .288549933816E+00 .297217911178E+00 - .306302826851E+00 .315827120668E+00 .325814538349E+00 .336290211906E+00 .347280745353E+00 - .358814305519E+00 .370920718749E+00 .383631573741E+00 .396980330632E+00 .411002437249E+00 - .425735452489E+00 .441219177486E+00 .457495795227E+00 .474610018769E+00 .492609248970E+00 - .511543742045E+00 .531466787872E+00 .552434899374E+00 .574508014020E+00 .597749707978E+00 - .622227423754E+00 .648012712331E+00 .675181490499E+00 .703814314438E+00 .733996670649E+00 - .765819285087E+00 .799378452009E+00 .834776383364E+00 .872121580296E+00 .911529228018E+00 - .953121615574E+00 .997028581984E+00 .104338799046E+01 .109234623230E+01 .114405876274E+01 - .119869066993E+01 .125641728002E+01 .131742479982E+01 .138191099985E+01 .145008593986E+01 - .152217273989E+01 .159840839916E+01 .167904466597E+01 .176434896181E+01 .185460536262E+01 - .195011564109E+01 .205120037326E+01 .215820011361E+01 .227147664259E+01 .239141429086E+01 - .251842134511E+01 .265293153969E+01 .279540564002E+01 .294633312225E+01 .310623395535E+01 - .327566049175E+01 .345519947206E+01 .364547415152E+01 .384714655437E+01 .406091986370E+01 - .428754095473E+01 .452780307932E+01 .478254871036E+01 .505267255494E+01 .533912474579E+01 - .564291422071E+01 .596511230019E+01 .630685647417E+01 .666935440928E+01 .705388818805E+01 - .746181879232E+01 .789459084458E+01 .835373761891E+01 .884088633706E+01 .935776376336E+01 - .990620211314E+01 .104881452909E+02 .111056554739E+02 .117609200576E+02 .124562589809E+02 - .131941324473E+02 .139771490622E+02 .148080744026E+02 .156898400404E+02 .166255530370E+02 - .176185059297E+02 .186721872297E+02 .197902924519E+02 .209767356968E+02 .222356618045E+02 - .235714591012E+02 .249887727582E+02 .264925187826E+02 .280878986594E+02 .297804146618E+02 - .315758858496E+02 .334804647683E+02 .355006548677E+02 .376433286489E+02 .399157465539E+02 - .423255766040E+02 .448809147943E+02 .475903062448E+02 .504627671092E+02 .535078072330E+02 - .567354535528E+02 .601562742178E+02 .637814034155E+02 .676225668666E+02 .716921079591E+02 - .760030144672E+02 .805689458084E+02 .854042607667E+02 .905240456056E+02 .959441424815E+02 - .101681178049E+03 .107752592143E+03 .114176666392E+03 .120972552609E+03 .128160300793E+03 - .135760886523E+03 .143796237537E+03 .152289259245E+03 .161263858899E+03 .170744968109E+03 - .180758563383E+03 .191331684306E+03 .202492448959E+03 .214270066138E+03 .226694843879E+03 - .239798193771E+03 .253612630490E+03 .268171765933E+03 .283510297290E+03 .299663988351E+03 - .316669643277E+03 .334565072038E+03 .353389046636E+03 .373181247220E+03 .393982197127E+03 - .415833185818E+03 .438776178681E+03 .462853712577E+03 .488108776000E+03 .514584672670E+03 - .542324867365E+03 .571372812760E+03 .601771756058E+03 .633564524166E+03 .666793286221E+03 - .701499292269E+03 .737722586982E+03 .775501697325E+03 .814873293226E+03 .855871820381E+03 - .898529104489E+03 .942873926389E+03 .988931567784E+03 .103672332747E+04 .108626600830E+04 - .113757137544E+04 .119064558683E+04 .124548859720E+04 .130209353751E+04 .136044607208E+04 - .142052373640E+04 .148229525921E+04 .154571987295E+04 .161074661763E+04 .167731364382E+04 - .174534752129E+04 .181476256062E+04 .188546015605E+04 .195732815867E+04 .203024028995E+04 - .210405560636E+04 .217861802691E+04 .225375593595E+04 .232928187445E+04 .240499233356E+04 - .248066766472E+04 .255607212096E+04 .263095404408E+04 .270504621268E+04 .277806636514E+04 - .284971791180E+04 .291969084901E+04 .298766288709E+04 .305330080234E+04 .311626202128E+04 - .317619644332E+04 .323274850470E+04 .328555948400E+04 .333427004551E+04 .337852301282E+04 - .341796636105E+04 .345225641087E+04 .348106120307E+04 .350406402702E+04 .352096707125E+04 - .353149515895E+04 .353539952622E+04 .353246159564E+04 .352249669327E+04 .350535765276E+04 - .348093824682E+04 .344917638314E+04 .341005700022E+04 .336361459689E+04 .330993533011E+04 - .324915861635E+04 .318147817463E+04 .310714245333E+04 .302645438806E+04 .293977044482E+04 - .284749891086E+04 .275009740545E+04 .264806959424E+04 .254196110373E+04 .243235464705E+04 - .231986438895E+04 .220512959614E+04 .208880763954E+04 .197156643697E+04 .185407644573E+04 - .173700236837E+04 .162099461974E+04 .150668097393E+04 .139465831045E+04 .128548489127E+04 - .117967334783E+04 .107768468195E+04 .979923607561E+03 .886735573996E+03 .798405745392E+03 - .715159972906E+03 .637167313519E+03 .564542994768E+03 .497350259215E+03 .435599806459E+03 - .379246858276E+03 .328187667685E+03 .282258420739E+03 .241239058244E+03 .204862611625E+03 - .172828208383E+03 .144814513432E+03 .120490951119E+03 .995258554820E+02 .815921605138E+02 - .663716392437E+02 .535583897932E+02 .428618420638E+02 .340093008571E+02 .267479559883E+02 - .208462991666E+02 .160949283081E+02 .123067613777E+02 .931671330706E+01 .698090988085E+01 - .517552365756E+01 .379532122669E+01 .275201013792E+01 .197246887711E+01 .139693522036E+01 - .977217978443E+00 .674985355080E+00 .460170689103E+00 .309524004753E+00 .205326232749E+00 - .134272726203E+00 .865241474580E-01 .549161358338E-01 .343144068647E-01 .210989666792E-01 - .127597318321E-01 .758574113557E-02 .443101963639E-02 .254169787533E-02 .143092283623E-02 - .790186700406E-03 - pspotential - -.153267498751E+03 -.153268334719E+03 -.153269144358E+03 -.153269928498E+03 -.153270687940E+03 - -.153271423465E+03 -.153272135824E+03 -.153272825746E+03 -.153273493938E+03 -.153274141086E+03 - -.153274767850E+03 -.153275374873E+03 -.153275962777E+03 -.153276532163E+03 -.153277083615E+03 - -.153277617698E+03 -.153278134957E+03 -.153278635922E+03 -.153279121108E+03 -.153279591009E+03 - -.153280046109E+03 -.153280486871E+03 -.153280913748E+03 -.153281327177E+03 -.153281727581E+03 - -.153282115370E+03 -.153282490940E+03 -.153282854677E+03 -.153283206952E+03 -.153283548126E+03 - -.153283878548E+03 -.153284198557E+03 -.153284508479E+03 -.153284808632E+03 -.153285099324E+03 - -.153285380850E+03 -.153285653501E+03 -.153285917553E+03 -.153286173278E+03 -.153286420936E+03 - -.153286660782E+03 -.153286893059E+03 -.153287118007E+03 -.153287335853E+03 -.153287546822E+03 - -.153287751128E+03 -.153287948980E+03 -.153288140580E+03 -.153288326123E+03 -.153288505800E+03 - -.153288679792E+03 -.153288848278E+03 -.153289011428E+03 -.153289169410E+03 -.153289322383E+03 - -.153289470504E+03 -.153289613923E+03 -.153289752785E+03 -.153289887232E+03 -.153290017399E+03 - -.153290143418E+03 -.153290265418E+03 -.153290383520E+03 -.153290497845E+03 -.153290608507E+03 - -.153290715618E+03 -.153290819284E+03 -.153290919611E+03 -.153291016697E+03 -.153291110640E+03 - -.153291201533E+03 -.153291289466E+03 -.153291374526E+03 -.153291456797E+03 -.153291536359E+03 - -.153291613289E+03 -.153291687662E+03 -.153291759550E+03 -.153291829021E+03 -.153291896142E+03 - -.153291960976E+03 -.153292023584E+03 -.153292084023E+03 -.153292142348E+03 -.153292198613E+03 - -.153292252867E+03 -.153292305158E+03 -.153292355532E+03 -.153292404029E+03 -.153292450691E+03 - -.153292495556E+03 -.153292538656E+03 -.153292580026E+03 -.153292619695E+03 -.153292657691E+03 - -.153292694037E+03 -.153292728756E+03 -.153292761868E+03 -.153292793388E+03 -.153292823331E+03 - -.153292851708E+03 -.153292878528E+03 -.153292903794E+03 -.153292927509E+03 -.153292949673E+03 - -.153292970281E+03 -.153292989325E+03 -.153293006793E+03 -.153293022672E+03 -.153293036943E+03 - -.153293049582E+03 -.153293060563E+03 -.153293069855E+03 -.153293077423E+03 -.153293083226E+03 - -.153293087219E+03 -.153293089351E+03 -.153293089567E+03 -.153293087804E+03 -.153293083994E+03 - -.153293078063E+03 -.153293069929E+03 -.153293059505E+03 -.153293046693E+03 -.153293031390E+03 - -.153293013483E+03 -.153292992849E+03 -.153292969357E+03 -.153292942866E+03 -.153292913222E+03 - -.153292880262E+03 -.153292843808E+03 -.153292803672E+03 -.153292759650E+03 -.153292711525E+03 - -.153292659062E+03 -.153292602011E+03 -.153292540105E+03 -.153292473056E+03 -.153292400559E+03 - -.153292322284E+03 -.153292237881E+03 -.153292146975E+03 -.153292049166E+03 -.153291944026E+03 - -.153291831096E+03 -.153291709890E+03 -.153291579885E+03 -.153291440524E+03 -.153291291215E+03 - -.153291131321E+03 -.153290960167E+03 -.153290777030E+03 -.153290581140E+03 -.153290371673E+03 - -.153290147752E+03 -.153289908442E+03 -.153289652744E+03 -.153289379593E+03 -.153289087853E+03 - -.153288776312E+03 -.153288443679E+03 -.153288088575E+03 -.153287709530E+03 -.153287304978E+03 - -.153286873247E+03 -.153286412556E+03 -.153285921003E+03 -.153285396563E+03 -.153284837074E+03 - -.153284240234E+03 -.153283603586E+03 -.153282924511E+03 -.153282200217E+03 -.153281427727E+03 - -.153280603866E+03 -.153279725251E+03 -.153278788273E+03 -.153277789085E+03 -.153276723588E+03 - -.153275587408E+03 -.153274375886E+03 -.153273084050E+03 -.153271706604E+03 -.153270237900E+03 - -.153268671918E+03 -.153267002237E+03 -.153265222017E+03 -.153263323962E+03 -.153261300295E+03 - -.153259142728E+03 -.153256842423E+03 -.153254389959E+03 -.153251775295E+03 -.153248987724E+03 - -.153246015835E+03 -.153242847465E+03 -.153239469645E+03 -.153235868555E+03 -.153232029459E+03 - -.153227936653E+03 -.153223573395E+03 -.153218921843E+03 -.153213962975E+03 -.153208676519E+03 - -.153203040866E+03 -.153197032984E+03 -.153190628326E+03 -.153183800728E+03 -.153176522303E+03 - -.153168763333E+03 -.153160492144E+03 -.153151674979E+03 -.153142275862E+03 -.153132256458E+03 - -.153121575910E+03 -.153110190681E+03 -.153098054380E+03 -.153085117571E+03 -.153071327580E+03 - -.153056628283E+03 -.153040959881E+03 -.153024258665E+03 -.153006456759E+03 -.152987481856E+03 - -.152967256927E+03 -.152945699921E+03 -.152922723439E+03 -.152898234395E+03 -.152872133647E+03 - -.152844315614E+03 -.152814667865E+03 -.152783070683E+03 -.152749396601E+03 -.152713509918E+03 - -.152675266173E+03 -.152634511599E+03 -.152591082542E+03 -.152544804840E+03 -.152495493173E+03 - -.152442950375E+03 -.152386966703E+03 -.152327319066E+03 -.152263770217E+03 -.152196067893E+03 - -.152123943913E+03 -.152047113229E+03 -.151965272928E+03 -.151878101180E+03 -.151785256138E+03 - -.151686374786E+03 -.151581071732E+03 -.151468937946E+03 -.151349539448E+03 -.151222415938E+03 - -.151087079381E+03 -.150943012535E+03 -.150789667437E+03 -.150626463844E+03 -.150452787634E+03 - -.150267989181E+03 -.150071381702E+03 -.149862239601E+03 -.149639796804E+03 -.149403245124E+03 - -.149151732663E+03 -.148884362277E+03 -.148600190139E+03 -.148298224436E+03 -.147977424245E+03 - -.147636698633E+03 -.147274906062E+03 -.146890854152E+03 -.146483299908E+03 -.146050950508E+03 - -.145592464773E+03 -.145106455457E+03 -.144591492526E+03 -.144046107597E+03 -.143468799752E+03 - -.142858042941E+03 -.142212295229E+03 -.141530010130E+03 -.140809650298E+03 -.140049703820E+03 - -.139248703340E+03 -.138405248186E+03 -.137518029605E+03 -.136585859073E+03 -.135607699519E+03 - -.134582699073E+03 -.133510226679E+03 -.132389908643E+03 -.131221664747E+03 -.130005742202E+03 - -.128742745182E+03 -.127433657208E+03 -.126079853056E+03 -.124683096318E+03 -.123245518152E+03 - -.121769572251E+03 -.120257960715E+03 -.118713525584E+03 -.117139101555E+03 -.115537327466E+03 - -.113910418052E+03 -.112259903701E+03 -.110586354425E+03 -.108889113652E+03 -.107166074813E+03 - -.105413536199E+03 -.103626169033E+03 -.101788508452E+03 -.999430277917E+02 -.980420648473E+02 - -.960785627187E+02 -.940556466143E+02 -.921485909176E+02 -.902256659693E+02 -.882744476111E+02 - -.863187908432E+02 - core charge-density (pseudized) - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 .000000000000E+00 - .000000000000E+00 - pseudo wavefunction - .165601274856E-03 .170986215157E-03 .176546260279E-03 .182287104195E-03 .188214626029E-03 - .194334896081E-03 .200654182042E-03 .207178955413E-03 .213915898130E-03 .220871909412E-03 - .228054112820E-03 .235469863558E-03 .243126756002E-03 .251032631476E-03 .259195586288E-03 - .267623980014E-03 .276326444066E-03 .285311890524E-03 .294589521270E-03 .304168837407E-03 - .314059648988E-03 .324272085066E-03 .334816604067E-03 .345704004495E-03 .356945435997E-03 - .368552410777E-03 .380536815389E-03 .392910922904E-03 .405687405487E-03 .418879347365E-03 - .432500258235E-03 .446564087093E-03 .461085236521E-03 .476078577438E-03 .491559464327E-03 - .507543750959E-03 .524047806630E-03 .541088532924E-03 .558683381021E-03 .576850369569E-03 - .595608103136E-03 .614975791265E-03 .634973268142E-03 .655621012910E-03 .676940170642E-03 - .698952573993E-03 .721680765562E-03 .745148020973E-03 .769378372712E-03 .794396634742E-03 - .820228427910E-03 .846900206184E-03 .874439283748E-03 .902873862971E-03 .932233063289E-03 - .962546951024E-03 .993846570176E-03 .102616397421E-02 .105953225889E-02 .109398559615E-02 - .112955926913E-02 .116628970826E-02 .120421452859E-02 .124337256831E-02 .128380392853E-02 - .132555001431E-02 .136865357713E-02 .141315875859E-02 .145911113565E-02 .150655776733E-02 - .155554724285E-02 .160612973141E-02 .165835703357E-02 .171228263430E-02 .176796175772E-02 - .182545142368E-02 .188481050614E-02 .194609979345E-02 .200938205063E-02 .207472208357E-02 - .214218680549E-02 .221184530537E-02 .228376891874E-02 .235803130072E-02 .243470850144E-02 - .251387904391E-02 .259562400442E-02 .268002709556E-02 .276717475196E-02 .285715621874E-02 - .295006364293E-02 .304599216783E-02 .314504003038E-02 .324730866178E-02 .335290279132E-02 - .346193055363E-02 .357450359938E-02 .369073720957E-02 .381075041359E-02 .393466611106E-02 - .406261119765E-02 .419471669497E-02 .433111788476E-02 .447195444729E-02 .461737060442E-02 - .476751526719E-02 .492254218825E-02 .508261011925E-02 .524788297332E-02 .541852999284E-02 - .559472592264E-02 .577665118885E-02 .596449208355E-02 .615844095538E-02 .635869640641E-02 - .656546349531E-02 .677895394718E-02 .699938637020E-02 .722698647920E-02 .746198732663E-02 - .770462954092E-02 .795516157261E-02 .821383994844E-02 .848092953369E-02 .875670380303E-02 - .904144512013E-02 .933544502630E-02 .963900453860E-02 .995243445741E-02 .102760556841E-01 - .106101995490E-01 .109552081499E-01 .113114347013E-01 .116792438955E-01 .120590122749E-01 - .124511286162E-01 .128559943277E-01 .132740238587E-01 .137056451223E-01 .141512999320E-01 - .146114444525E-01 .150865496644E-01 .155771018444E-01 .160836030610E-01 .166065716853E-01 - .171465429196E-01 .177040693415E-01 .182797214664E-01 .188740883277E-01 .194877780754E-01 - .201214185942E-01 .207756581406E-01 .214511660017E-01 .221486331730E-01 .228687730598E-01 - .236123221990E-01 .243800410052E-01 .251727145395E-01 .259911533031E-01 .268361940553E-01 - .277087006579E-01 .286095649458E-01 .295397076241E-01 .305000791949E-01 .314916609108E-01 - .325154657596E-01 .335725394789E-01 .346639616015E-01 .357908465336E-01 .369543446654E-01 - .381556435158E-01 .393959689112E-01 .406765862011E-01 .419988015081E-01 .433639630173E-01 - .447734623020E-01 .462287356896E-01 .477312656669E-01 .492825823258E-01 .508842648510E-01 - .525379430496E-01 .542452989239E-01 .560080682881E-01 .578280424287E-01 .597070698116E-01 - .616470578325E-01 .636499746161E-01 .657178508593E-01 .678527817232E-01 .700569287714E-01 - .723325219554E-01 .746818616470E-01 .771073207187E-01 .796113466687E-01 .821964637939E-01 - .848652754061E-01 .876204660936E-01 .904648040245E-01 .934011432916E-01 .964324262953E-01 - .995616861634E-01 .102792049205E+00 .106126737391E+00 .109569070868E+00 .113122470484E+00 - .116790460339E+00 .120576670337E+00 .124484838752E+00 .128518814779E+00 .132682561076E+00 - .136980156286E+00 .141415797513E+00 .145993802769E+00 .150718613337E+00 .155594796077E+00 - .160627045623E+00 .165820186468E+00 .171179174922E+00 .176709100891E+00 .182415189482E+00 - .188302802382E+00 .194377438986E+00 .200644737239E+00 .207110474140E+00 .213780565882E+00 - .220661067553E+00 .227758172370E+00 .235078210363E+00 .242627646458E+00 .250413077873E+00 - .258441230761E+00 .266718955998E+00 .275253224027E+00 .284051118653E+00 .293119829670E+00 - .302466644194E+00 .312098936569E+00 .322024156685E+00 .332249816565E+00 .342783475014E+00 - .353632720169E+00 .364805149715E+00 .376308348564E+00 .388149863728E+00 .400337176150E+00 - .412877669191E+00 .425778593474E+00 .439047027769E+00 .452689835565E+00 .466713616955E+00 - .481124655463E+00 .495928859375E+00 .511131697159E+00 .526738126515E+00 .542752516577E+00 - .559178562785E+00 .576019193926E+00 .593276470840E+00 .610951476266E+00 .629044195346E+00 - .647553386288E+00 .666476440712E+00 .685809233285E+00 .705545960242E+00 .725678966536E+00 - .746198561387E+00 .767092822191E+00 .788347386848E+00 .809945234816E+00 .831866457373E+00 - .854088017907E+00 .876583503344E+00 .899322868247E+00 .922272173564E+00 .945393322553E+00 - .968643796991E+00 .991976397530E+00 .101533899278E+01 .103867428264E+01 .106191958231E+01 - .108500663448E+01 .110786145843E+01 .113040424569E+01 .115254931351E+01 .117420512822E+01 - .119527441206E+01 .121565434786E+01 .123523689697E+01 .125390924631E+01 .127155440041E+01 - .128805193389E+01 .130327891850E+01 .131711103614E+01 .132942388590E+01 .134009448735E+01 - .134900297496E+01 .135603446881E+01 .136108109375E+01 .136404410364E+01 .136483604759E+01 - .136338289235E+01 .135962598792E+01 .135352373274E+01 .134505276160E+01 .133420844359E+01 - .132100444141E+01 .130547105033E+01 .128765200718E+01 .126759944388E+01 .124536666092E+01 - .122099842355E+01 .119451854586E+01 .116591463800E+01 .113513192355E+01 .110229857916E+01 - .106760690066E+01 .103126913660E+01 .993503299915E+00 .954531323645E+00 .914577215088E+00 - .873865221786E+00 - ae wavefunction - -.779383096528E-03 -.804670312887E-03 -.830777581751E-03 -.857731471485E-03 -.885559409570E-03 - -.914289710274E-03 -.943951603198E-03 -.974575262735E-03 -.100619183847E-02 -.103883348655E-02 - -.107253340205E-02 -.110732585237E-02 -.114324621168E-02 -.118033099650E-02 -.121861790238E-02 - -.125814584174E-02 -.129895498293E-02 -.134108679051E-02 -.138458406684E-02 -.142949099492E-02 - -.147585318269E-02 -.152371770861E-02 -.157313316876E-02 -.162414972543E-02 -.167681915716E-02 - -.173119491046E-02 -.178733215307E-02 -.184528782898E-02 -.190512071508E-02 -.196689147963E-02 - -.203066274263E-02 -.209649913792E-02 -.216446737738E-02 -.223463631706E-02 -.230707702532E-02 - -.238186285320E-02 -.245906950689E-02 -.253877512250E-02 -.262106034307E-02 -.270600839809E-02 - -.279370518532E-02 -.288423935523E-02 -.297770239805E-02 -.307418873338E-02 -.317379580270E-02 - -.327662416455E-02 -.338277759273E-02 -.349236317747E-02 -.360549142956E-02 -.372227638785E-02 - -.384283572975E-02 -.396729088528E-02 -.409576715439E-02 -.422839382787E-02 -.436530431191E-02 - -.450663625628E-02 -.465253168635E-02 -.480313713910E-02 -.495860380302E-02 -.511908766224E-02 - -.528474964477E-02 -.545575577518E-02 -.563227733166E-02 -.581449100761E-02 -.600257907796E-02 - -.619672957020E-02 -.639713644035E-02 -.660399975388E-02 -.681752587179E-02 -.703792764195E-02 - -.726542459571E-02 -.750024315008E-02 -.774261681542E-02 -.799278640894E-02 -.825100027389E-02 - -.851751450485E-02 -.879259317897E-02 -.907650859340E-02 -.936954150911E-02 -.967198140099E-02 - -.998412671452E-02 -.103062851291E-01 -.106387738280E-01 -.109819197754E-01 -.113360599999E-01 - -.117015418854E-01 -.120787234691E-01 -.124679737464E-01 -.128696729834E-01 -.132842130364E-01 - -.137119976791E-01 -.141534429365E-01 -.146089774276E-01 -.150790427142E-01 -.155640936577E-01 - -.160645987838E-01 -.165810406541E-01 -.171139162452E-01 -.176637373357E-01 -.182310308994E-01 - -.188163395071E-01 -.194202217343E-01 -.200432525764E-01 -.206860238705E-01 -.213491447237E-01 - -.220332419481E-01 -.227389605007E-01 -.234669639306E-01 -.242179348300E-01 -.249925752914E-01 - -.257916073683E-01 -.266157735405E-01 -.274658371825E-01 -.283425830349E-01 -.292468176777E-01 - -.301793700053E-01 -.311410917014E-01 -.321328577144E-01 -.331555667305E-01 -.342101416451E-01 - -.352975300301E-01 -.364187045964E-01 -.375746636502E-01 -.387664315412E-01 -.399950591018E-01 - -.412616240742E-01 -.425672315256E-01 -.439130142467E-01 -.453001331341E-01 -.467297775521E-01 - -.482031656720E-01 -.497215447865E-01 -.512861915962E-01 -.528984124638E-01 -.545595436345E-01 - -.562709514173E-01 -.580340323242E-01 -.598502131628E-01 -.617209510776E-01 -.636477335360E-01 - -.656320782528E-01 -.676755330486E-01 -.697796756363E-01 -.719461133288E-01 -.741764826622E-01 - -.764724489270E-01 -.788357056004E-01 -.812679736711E-01 -.837710008495E-01 -.863465606530E-01 - -.889964513581E-01 -.917224948098E-01 -.945265350766E-01 -.974104369411E-01 -.100376084214E+00 - -.103425377862E+00 -.106560233929E+00 -.109782581249E+00 -.113094358924E+00 -.116497513566E+00 - -.119993996267E+00 -.123585759308E+00 -.127274752560E+00 -.131062919588E+00 -.134952193412E+00 - -.138944491932E+00 -.143041712971E+00 -.147245728938E+00 -.151558381071E+00 -.155981473248E+00 - -.160516765342E+00 -.165165966088E+00 -.169930725446E+00 -.174812626431E+00 -.179813176378E+00 - -.184933797634E+00 -.190175817616E+00 -.195540458251E+00 -.201028824724E+00 -.206641893546E+00 - -.212380499881E+00 -.218245324131E+00 -.224236877725E+00 -.230355488105E+00 -.236601282866E+00 - -.242974173035E+00 -.249473835456E+00 -.256099694256E+00 -.262850901371E+00 -.269726316115E+00 - -.276724483765E+00 -.283843613151E+00 -.291081553233E+00 -.298435768663E+00 -.305903314322E+00 - -.313480808822E+00 -.321164407001E+00 -.328949771388E+00 -.336832042685E+00 -.344805809276E+00 - -.352865075782E+00 -.361003230735E+00 -.369213013385E+00 -.377486479727E+00 -.385814967803E+00 - -.394189062379E+00 -.402598559074E+00 -.411032428077E+00 -.419478777565E+00 -.427924816961E+00 - -.436356820221E+00 -.444760089293E+00 -.453118917987E+00 -.461416556449E+00 -.469635176497E+00 - -.477755838092E+00 -.485758457214E+00 -.493621775488E+00 -.501323331879E+00 -.508839436836E+00 - -.516145149286E+00 -.523214256890E+00 -.530019260023E+00 -.536531359954E+00 -.542720451743E+00 - -.548555122378E+00 -.554002654726E+00 -.559029037887E+00 -.563598984561E+00 -.567675956067E+00 - -.571222195686E+00 -.574198770982E+00 -.576565625816E+00 -.578281642748E+00 -.579304716540E+00 - -.579591839480E+00 -.579099199228E+00 -.577782289902E+00 -.575596037067E+00 -.572494937302E+00 - -.568433212954E+00 -.563364982657E+00 -.557244448127E+00 -.550026097668E+00 -.541664926755E+00 - -.532116675918E+00 -.521338086057E+00 -.509287171175E+00 -.495923508326E+00 -.481208544420E+00 - -.465105919304E+00 -.447581804307E+00 -.428605255216E+00 -.408148578344E+00 -.386187708121E+00 - -.362702594311E+00 -.337677596716E+00 -.311101884914E+00 -.282969840345E+00 -.253281457808E+00 - -.222042743227E+00 -.189266104353E+00 -.154970730897E+00 -.119182960394E+00 -.819366258111E-01 - -.432733805088E-01 -.324299545533E-02 .380963775271E-01 .806779844544E-01 .124426300356E+00 - .169256927002E+00 .215076575501E+00 .261783156083E+00 .309265998475E+00 .357406219523E+00 - .406077232836E+00 .455145352347E+00 .504470381268E+00 .553906024273E+00 .603299959640E+00 - .652493503846E+00 .701320993687E+00 .749609226077E+00 .797177403836E+00 .843837924822E+00 - .889398035072E+00 .933662031769E+00 .976433575826E+00 .101751780301E+01 .105672315067E+01 - .109386297533E+01 .112875707838E+01 .116123322551E+01 .119112869576E+01 .121829185458E+01 - .124258372123E+01 .126387948974E+01 .128206996159E+01 .129706285239E+01 .130878394122E+01 - .131717803816E+01 .132220975218E+01 .132386404652E+01 .132214657395E+01 .131708378801E+01 - .130872283014E+01 .129713119621E+01 .128239618878E+01 .126462416508E+01 .124393959283E+01 - .122048392909E+01 .119441433896E+01 .116590227308E+01 .113513192355E+01 .110229857916E+01 - .106760690066E+01 .103126913660E+01 .993503299915E+00 .954531323645E+00 .914577215088E+00 - .873865221786E+00 - pseudo wavefunction - -.412220112469E-04 -.425624482010E-04 -.439464728195E-04 -.453755024641E-04 -.468510005858E-04 - -.483744782236E-04 -.499474955513E-04 -.515716634757E-04 -.532486452866E-04 -.549801583594E-04 - -.567679759144E-04 -.586139288326E-04 -.605199075306E-04 -.624878638966E-04 -.645198132893E-04 - -.666178366018E-04 -.687840823927E-04 -.710207690860E-04 -.733301872437E-04 -.757147019107E-04 - -.781767550374E-04 -.807188679802E-04 -.833436440837E-04 -.860537713465E-04 -.888520251743E-04 - -.917412712218E-04 -.947244683276E-04 -.978046715442E-04 -.100985035267E-03 -.104268816463E-03 - -.107659378009E-03 -.111160192133E-03 -.114774843972E-03 -.118507035241E-03 -.122360588027E-03 - -.126339448699E-03 -.130447691954E-03 -.134689524986E-03 -.139069291798E-03 -.143591477648E-03 - -.148260713640E-03 -.153081781474E-03 -.158059618336E-03 -.163199321955E-03 -.168506155828E-03 - -.173985554604E-03 -.179643129654E-03 -.185484674815E-03 -.191516172325E-03 -.197743798948E-03 - -.204173932299E-03 -.210813157375E-03 -.217668273302E-03 -.224746300292E-03 -.232054486837E-03 - -.239600317127E-03 -.247391518721E-03 -.255436070452E-03 -.263742210605E-03 -.272318445350E-03 - -.281173557452E-03 -.290316615266E-03 -.299756982024E-03 -.309504325423E-03 -.319568627522E-03 - -.329960194969E-03 -.340689669551E-03 -.351768039092E-03 -.363206648708E-03 -.375017212419E-03 - -.387211825149E-03 -.399802975108E-03 -.412803556582E-03 -.426226883132E-03 -.440086701234E-03 - -.454397204349E-03 -.469173047458E-03 -.484429362069E-03 -.500181771710E-03 -.516446407924E-03 - -.533239926792E-03 -.550579525983E-03 -.568482962361E-03 -.586968570171E-03 -.606055279807E-03 - -.625762637196E-03 -.646110823808E-03 -.667120677320E-03 -.688813712947E-03 -.711212145472E-03 - -.734338911988E-03 -.758217695378E-03 -.782872948560E-03 -.808329919522E-03 -.834614677163E-03 - -.861754137983E-03 -.889776093630E-03 -.918709239353E-03 -.948583203367E-03 -.979428577181E-03 - -.101127694691E-02 -.104416092559E-02 -.107811418657E-02 -.111317149796E-02 -.114936875821E-02 - -.118674303286E-02 -.122533259242E-02 -.126517695159E-02 -.130631690962E-02 -.134879459210E-02 - -.139265349403E-02 -.143793852429E-02 -.148469605160E-02 -.153297395193E-02 -.158282165747E-02 - -.163429020713E-02 -.168743229878E-02 -.174230234307E-02 -.179895651908E-02 -.185745283172E-02 - -.191785117100E-02 -.198021337325E-02 -.204460328423E-02 -.211108682442E-02 -.217973205627E-02 - -.225060925375E-02 -.232379097404E-02 -.239935213163E-02 -.247737007471E-02 -.255792466414E-02 - -.264109835484E-02 -.272697627989E-02 -.281564633733E-02 -.290719927965E-02 -.300172880635E-02 - -.309933165926E-02 -.320010772105E-02 -.330416011687E-02 -.341159531922E-02 -.352252325622E-02 - -.363705742327E-02 -.375531499834E-02 -.387741696092E-02 -.400348821471E-02 -.413365771428E-02 - -.426805859572E-02 -.440682831139E-02 -.455010876899E-02 -.469804647501E-02 -.485079268268E-02 - -.500850354455E-02 -.517134026996E-02 -.533946928727E-02 -.551306241133E-02 -.569229701603E-02 - -.587735621227E-02 -.606842903139E-02 -.626571061432E-02 -.646940240646E-02 -.667971235858E-02 - -.689685513379E-02 -.712105232080E-02 -.735253265363E-02 -.759153223789E-02 -.783829478379E-02 - -.809307184612E-02 -.835612307119E-02 -.862771645107E-02 -.890812858518E-02 -.919764494940E-02 - -.949656017280E-02 -.980517832225E-02 -.101238131949E-01 -.104527886188E-01 -.107924387616E-01 - -.111431084476E-01 -.115051534833E-01 -.118789409908E-01 -.122648497510E-01 -.126632705538E-01 - -.130746065579E-01 -.134992736592E-01 -.139377008669E-01 -.143903306890E-01 -.148576195256E-01 - -.153400380707E-01 -.158380717219E-01 -.163522209980E-01 -.168830019638E-01 -.174309466622E-01 - -.179966035535E-01 -.185805379595E-01 -.191833325146E-01 -.198055876210E-01 -.204479219077E-01 - -.211109726928E-01 -.217953964482E-01 -.225018692639E-01 -.232310873126E-01 -.239837673115E-01 - -.247606469798E-01 -.255624854903E-01 -.263900639122E-01 -.272441856433E-01 -.281256768272E-01 - -.290353867542E-01 -.299741882405E-01 -.309429779831E-01 -.319426768846E-01 -.329742303434E-01 - -.340386085044E-01 -.351368064621E-01 -.362698444117E-01 -.374387677378E-01 -.386446470349E-01 - -.398885780472E-01 -.411716815209E-01 -.424951029540E-01 -.438600122329E-01 -.452676031415E-01 - -.467190927260E-01 -.482157205004E-01 -.497587474713E-01 -.513494549631E-01 -.529891432198E-01 - -.546791297580E-01 -.564207474440E-01 -.582153422637E-01 -.600642707520E-01 -.619688970453E-01 - -.639305895159E-01 -.659507169443E-01 -.680306441808E-01 -.701717272434E-01 -.723753077929E-01 - -.746427069221E-01 -.769752181897E-01 -.793740998211E-01 -.818405659956E-01 -.843757771268E-01 - -.869808290391E-01 -.896567409320E-01 -.924044420163E-01 -.952247566937E-01 -.981183881437E-01 - -.101085900167E+00 -.104127697127E+00 -.107244001807E+00 -.110434831009E+00 -.113699968673E+00 - -.117038936314E+00 -.120450960536E+00 -.123934937372E+00 -.127489393177E+00 -.131112441808E+00 - -.134801737757E+00 -.138554424943E+00 -.142367080808E+00 -.146235655364E+00 -.150155404816E+00 - -.154120819373E+00 -.158125544834E+00 -.162162297548E+00 -.166222772304E+00 -.170297542723E+00 - -.174375953731E+00 -.178446005655E+00 -.182494229536E+00 -.186505553254E+00 -.190463158067E+00 - -.194348325228E+00 -.198140272376E+00 -.201815979445E+00 -.205350003927E+00 -.208714285396E+00 - -.211877939310E+00 -.214807040213E+00 -.217464394627E+00 -.219809304039E+00 -.221797318607E+00 - -.223379982348E+00 -.224504570832E+00 -.225113822576E+00 -.225145665596E+00 -.224532940792E+00 - -.223203124070E+00 -.221078049349E+00 -.218073634810E+00 -.214099614936E+00 -.209059281106E+00 - -.202849233644E+00 -.195359148430E+00 -.186471561366E+00 -.176061674254E+00 -.163997186071E+00 - -.150138154291E+00 -.134336891962E+00 -.116437908003E+00 -.962779008330E-01 -.736858195368E-01 - -.484830127511E-01 -.204834941246E-01 .105056345896E-01 .446835448931E-01 .822547466436E-01 - .123427745979E+00 .168413145922E+00 .217420989654E+00 .270657084570E+00 .328317970202E+00 - .390584105101E+00 .457610748007E+00 .529515901005E+00 .606351591923E+00 .688292477140E+00 - .775483611861E+00 .868104097163E+00 .966343881368E+00 .107040649767E+01 .118051230869E+01 - .129690233012E+01 - ae wavefunction - .151059377480E-03 .155960524120E-03 .161020612578E-03 .166244792305E-03 .171638379267E-03 - .177206861306E-03 .182955903670E-03 .188891354729E-03 .195019251859E-03 .201345827531E-03 - .207877515575E-03 .214620957660E-03 .221583009967E-03 .228770750086E-03 .236191484124E-03 - .243852754039E-03 .251762345212E-03 .259928294254E-03 .268358897063E-03 .277062717136E-03 - .286048594142E-03 .295325652768E-03 .304903311844E-03 .314791293754E-03 .324999634147E-03 - .335538691950E-03 .346419159699E-03 .357652074193E-03 .369248827483E-03 .381221178204E-03 - .393581263265E-03 .406341609899E-03 .419515148098E-03 .433115223427E-03 .447155610239E-03 - .461650525311E-03 .476614641884E-03 .492063104159E-03 .508011542228E-03 .524476087471E-03 - .541473388430E-03 .559020627168E-03 .577135536133E-03 .595836415542E-03 .615142151292E-03 - .635072233421E-03 .655646775136E-03 .676886532411E-03 .698812924191E-03 .721448053199E-03 - .744814727376E-03 .768936481966E-03 .793837602267E-03 .819543147059E-03 .846078972739E-03 - .873471758171E-03 .901749030273E-03 .930939190367E-03 .961071541300E-03 .992176315370E-03 - .102428470306E-02 .105742888264E-02 .109164205057E-02 .112695845284E-02 .116341341721E-02 - .120104338633E-02 .123988595187E-02 .127997988956E-02 .132136519524E-02 .136408312197E-02 - .140817621812E-02 .145368836653E-02 .150066482477E-02 .154915226652E-02 .159919882404E-02 - .165085413180E-02 .170416937133E-02 .175919731719E-02 .181599238422E-02 .187461067603E-02 - .193511003469E-02 .199755009177E-02 .206199232064E-02 .212850009012E-02 .219713871947E-02 - .226797553469E-02 .234107992624E-02 .241652340816E-02 .249437967854E-02 .257472468145E-02 - .265763667029E-02 .274319627253E-02 .283148655597E-02 .292259309636E-02 .301660404653E-02 - .311361020695E-02 .321370509767E-02 .331698503180E-02 .342354919032E-02 .353349969836E-02 - .364694170279E-02 .376398345126E-02 .388473637250E-02 .400931515794E-02 .413783784463E-02 - .427042589925E-02 .440720430340E-02 .454830163989E-02 .469385018009E-02 .484398597219E-02 - .499884893033E-02 .515858292446E-02 .532333587081E-02 .549325982298E-02 .566851106323E-02 - .584925019418E-02 .603564223044E-02 .622785669018E-02 .642606768641E-02 .663045401763E-02 - .684119925789E-02 .705849184563E-02 .728252517141E-02 .751349766390E-02 .775161287407E-02 - .799707955702E-02 .825011175122E-02 .851092885468E-02 .877975569759E-02 .905682261099E-02 - .934236549099E-02 .963662585794E-02 .993985090987E-02 .102522935698E-01 .105742125261E-01 - .109058722650E-01 .112475430948E-01 .115995011607E-01 .119620284495E-01 .123354127833E-01 - .127199478006E-01 .131159329245E-01 .135236733165E-01 .139434798145E-01 .143756688539E-01 - .148205623706E-01 .152784876835E-01 .157497773562E-01 .162347690359E-01 .167338052661E-01 - .172472332744E-01 .177754047297E-01 .183186754705E-01 .188774051983E-01 .194519571368E-01 - .200426976531E-01 .206499958378E-01 .212742230423E-01 .219157523701E-01 .225749581184E-01 - .232522151676E-01 .239478983153E-01 .246623815501E-01 .253960372634E-01 .261492353938E-01 - .269223425006E-01 .277157207625E-01 .285297268961E-01 .293647109914E-01 .302210152575E-01 - .310989726746E-01 .319989055478E-01 .329211239561E-01 .338659240917E-01 .348335864849E-01 - .358243741068E-01 .368385303458E-01 .378762768513E-01 .389378112376E-01 .400233046424E-01 - .411328991343E-01 .422667049611E-01 .434247976343E-01 .446072148414E-01 .458139531821E-01 - .470449647194E-01 .483001533414E-01 .495793709266E-01 .508824133076E-01 .522090160269E-01 - .535588498806E-01 .549315162446E-01 .563265421791E-01 .577433753083E-01 .591813784716E-01 - .606398241459E-01 .621178886351E-01 .636146460304E-01 .651290619393E-01 .666599869875E-01 - .682061500989E-01 .697661515563E-01 .713384558542E-01 .729213843511E-01 .745131077342E-01 - .761116383119E-01 .777148221508E-01 .793203310770E-01 .809256545684E-01 .825280915617E-01 - .841247422088E-01 .857124996153E-01 .872880416035E-01 .888478225428E-01 .903880652988E-01 - .919047533556E-01 .933936231734E-01 .948501568487E-01 .962695751503E-01 .976468310133E-01 - .989766035796E-01 .100253292878E+00 .101471015254E+00 .102623599651E+00 .103704584878E+00 - .104707217978E+00 .105624453851E+00 .106448956270E+00 .107173100449E+00 .107788977341E+00 - .108288399829E+00 .108662911011E+00 .108903794772E+00 .109002088849E+00 .108948600619E+00 - .108733925814E+00 .108348470429E+00 .107782476040E+00 .107026048811E+00 .106069192420E+00 - .104901845194E+00 .103513921706E+00 .101895359105E+00 .100036168453E+00 .979264913315E-01 - .955566619749E-01 .929172751856E-01 .899992602665E-01 .867939611894E-01 .832932231985E-01 - .794894860197E-01 .753758838152E-01 .709463519862E-01 .661957408865E-01 .611199364627E-01 - .557159877905E-01 .499822414220E-01 .439184824105E-01 .375260818220E-01 .308081504919E-01 - .237696987296E-01 .164178016160E-01 .876176947364E-02 .813323004364E-03 -.741322752467E-02 - -.159007998325E-01 -.246293549443E-01 -.335757116697E-01 -.427133621408E-01 -.520122910084E-01 - -.614388017831E-01 -.709553547884E-01 -.805204219704E-01 -.900883637045E-01 -.996093305631E-01 - -.109029187229E+00 -.118289445417E+00 -.127327179510E+00 -.136074889026E+00 -.144460276770E+00 - -.152405938844E+00 -.159829009187E+00 -.166640846770E+00 -.172746868312E+00 -.178046592839E+00 - -.182433887306E+00 -.185797331820E+00 -.188020606003E+00 -.188982836131E+00 -.188558895599E+00 - -.186619682941E+00 -.183032406141E+00 -.177660891660E+00 -.170365923942E+00 -.161005611726E+00 - -.149435772257E+00 -.135510322374E+00 -.119081665288E+00 -.100001062586E+00 -.781189819864E-01 - -.532854121368E-01 -.253501363098E-01 .583704303801E-02 .404261369719E-01 .785668685721E-01 - .120408646344E+00 .166100622522E+00 .215791847373E+00 .269631532049E+00 .327769434397E+00 - .390356384479E+00 .457544969431E+00 .529490400826E+00 .606351591923E+00 .688292477140E+00 - .775483611861E+00 .868104097163E+00 .966343881368E+00 .107040649767E+01 .118051230869E+01 - .129690233012E+01 - pseudo wavefunction - .876800942919E-08 .934750820283E-08 .996530744023E-08 .106239385109E-07 .113261000886E-07 - .120746692089E-07 .128727130575E-07 .137235015379E-07 .146305206693E-07 .155974868702E-07 - .166283621861E-07 .177273705236E-07 .188990149574E-07 .201480961813E-07 .214797321784E-07 - .228993791914E-07 .244128540793E-07 .260263581512E-07 .277465025757E-07 .295803354691E-07 - .315353707747E-07 .336196190504E-07 .358416202909E-07 .382104789196E-07 .407359010930E-07 - .434282344708E-07 .462985106142E-07 .493584901867E-07 .526207111420E-07 .560985400973E-07 - .598062271014E-07 .637589640228E-07 .679729467968E-07 .724654417870E-07 .772548565319E-07 - .823608151682E-07 .878042388385E-07 .936074314137E-07 .997941708807E-07 .106389806770E-06 - .113421364022E-06 .120917653723E-06 .128909391148E-06 .137429321620E-06 .146512354678E-06 - .156195707115E-06 .166519055469E-06 .177524698598E-06 .189257730987E-06 .201766227524E-06 - .215101440481E-06 .229318009513E-06 .244474185538E-06 .260632069415E-06 .277857866393E-06 - .296222157385E-06 .315800188158E-06 .336672177651E-06 .358923646660E-06 .382645768248E-06 - .407935741319E-06 .434897188879E-06 .463640582620E-06 .494283695562E-06 .526952084616E-06 - .561779605040E-06 .598908958892E-06 .638492279736E-06 .680691755993E-06 .725680295482E-06 - .773642233894E-06 .824774090084E-06 .879285371278E-06 .937399431503E-06 .999354386754E-06 - .106540409064E-05 .113581917451E-05 .121088815635E-05 .129091862290E-05 .137623848999E-05 - .146719734613E-05 .156416788485E-05 .166754743180E-05 .177775957271E-05 .189525588897E-05 - .202051780793E-05 .215405857544E-05 .229642535878E-05 .244820148864E-05 .261000884915E-05 - .278251042597E-05 .296641302275E-05 .316247015708E-05 .337148514794E-05 .359431440709E-05 - .383187094802E-05 .408512812686E-05 .435512363048E-05 .464296372811E-05 .494982780407E-05 - .527697318997E-05 .562574031625E-05 .599755820430E-05 .639395032137E-05 .681654082259E-05 - .726706120540E-05 .774735740376E-05 .825939735129E-05 .880527904412E-05 .938723913663E-05 - .100076621053E-04 .106690900180E-04 .113742329492E-04 .121259800829E-04 .129274115503E-04 - .137818110482E-04 .146926792929E-04 .156637483622E-04 .166989969852E-04 .178026668427E-04 - .189792799449E-04 .202336571571E-04 .215709379492E-04 .229966014514E-04 .245164888998E-04 - .261368275659E-04 .278642562675E-04 .297058525640E-04 .316691617501E-04 .337622277638E-04 - .359936261373E-04 .383724991248E-04 .409085931505E-04 .436122987313E-04 .464946930367E-04 - .495675852597E-04 .528435649859E-04 .563360537566E-04 .600593600386E-04 .640287378248E-04 - .682604491045E-04 .727718304609E-04 .775813640660E-04 .827087533641E-04 .881750037533E-04 - .940025085951E-04 .100215140902E-03 .106838351079E-03 .113899271120E-03 .121426825680E-03 - .129451850478E-03 .138007218521E-03 .147127974656E-03 .156851478992E-03 .167217559805E-03 - .178268676513E-03 .190050093415E-03 .202610064881E-03 .216000032767E-03 .230274836838E-03 - .245492939072E-03 .261716662751E-03 .279012447307E-03 .297451119968E-03 .317108185303E-03 - .338064133837E-03 .360404770996E-03 .384221567711E-03 .409612034101E-03 .436680117756E-03 - .465536628216E-03 .496299689376E-03 .529095221642E-03 .564057455770E-03 .601329480479E-03 - .641063826030E-03 .683423086115E-03 .728580580566E-03 .776721061532E-03 .828041465956E-03 - .882751717358E-03 .941075580128E-03 .100325156974E-02 .106953392247E-02 .114019362857E-02 - .121551953281E-02 .129581950697E-02 .138142169865E-02 .147267586158E-02 .156995477238E-02 - .167365573951E-02 .178420221022E-02 .190204548166E-02 .202766652295E-02 .216157791508E-02 - .230432591607E-02 .245649265950E-02 .261869849446E-02 .279160447600E-02 .297591501533E-02 - .317238069977E-02 .338180129278E-02 .360502892529E-02 .384297148989E-02 .409659625027E-02 - .436693367886E-02 .465508153640E-02 .496220920774E-02 .528956230910E-02 .563846758260E-02 - .601033809478E-02 .640667875647E-02 .682909218230E-02 .727928490893E-02 .775907399167E-02 - .827039400030E-02 .881530443543E-02 .939599758743E-02 .100148068609E-01 .106742155883E-01 - .113768663561E-01 .121255708695E-01 .129233203788E-01 .137732966940E-01 .146788838121E-01 - .156436801832E-01 .166715116379E-01 .177664450033E-01 .189328024277E-01 .201751764366E-01 - .214984457406E-01 .229077918110E-01 .244087162380E-01 .260070588813E-01 .277090168194E-01 - .295211640968E-01 .314504722621E-01 .335043316825E-01 .356905736097E-01 .380174929610E-01 - .404938717663E-01 .431290032176E-01 .459327162362E-01 .489154004572E-01 .520880315025E-01 - .554621963885E-01 .590501188839E-01 .628646845960E-01 .669194655242E-01 .712287437731E-01 - .758075340664E-01 .806716046432E-01 .858374960531E-01 .913225372928E-01 .971448586440E-01 - .103323400480E+00 .109877917210E+00 .116828975410E+00 .124197945074E+00 .132006982779E+00 - .140279005407E+00 .149037652906E+00 .158307238415E+00 .168112683857E+00 .178479438948E+00 - .189433381339E+00 .201000695392E+00 .213207726887E+00 .226080810723E+00 .239646068460E+00 - .253929172356E+00 .268955072346E+00 .284747682278E+00 .301329521590E+00 .318721308578E+00 - .336941501427E+00 .356005783316E+00 .375926488182E+00 .396711964169E+00 .418365872421E+00 - .440886419795E+00 .464265525259E+00 .488487921304E+00 .513530193674E+00 .539359765212E+00 - .565933832605E+00 .593198268522E+00 .621086505922E+00 .649518426467E+00 .678399280811E+00 - .707618675275E+00 .737049666855E+00 .766548016726E+00 .795951661151E+00 .825080467758E+00 - .853736354175E+00 .881703854475E+00 .908751226040E+00 .934632194409E+00 .959088435217E+00 - .981852888934E+00 .100265399395E+01 .102122090455E+01 .103728972981E+01 .105061078496E+01 - .106095678522E+01 .106813183090E+01 .107198092903E+01 .107239966993E+01 .106934352597E+01 - .106283606749E+01 .105297520198E+01 .103993634791E+01 .102397126974E+01 .100540114852E+01 - .984602376785E+00 .961983587564E+00 .937952609537E+00 .912872443939E+00 .887006052763E+00 - .860452992548E+00 - ae wavefunction - .106376700892E-06 .113087413803E-06 .120167236645E-06 .127639483744E-06 .135528816674E-06 - .143861331680E-06 .152664652631E-06 .161968029723E-06 .171802444287E-06 .182200720122E-06 - .193197641780E-06 .204830080265E-06 .217137126625E-06 .230160233977E-06 .243943368496E-06 - .258533169978E-06 .273979122604E-06 .290333736564E-06 .307652741272E-06 .325995290924E-06 - .345424183216E-06 .366006092090E-06 .387811815424E-06 .410916538653E-06 .435400115376E-06 - .461347366055E-06 .488848395999E-06 .517998933913E-06 .548900692345E-06 .581661751487E-06 - .616396967856E-06 .653228409491E-06 .692285819420E-06 .733707109229E-06 .777638884741E-06 - .824237005887E-06 .873667183032E-06 .926105612138E-06 .981739651318E-06 .104076854150E-05 - .110340417408E-05 .116987190869E-05 .124041144428E-05 .131527774710E-05 .139474203931E-05 - .147909285209E-05 .156863714758E-05 .166370151417E-05 .176463343984E-05 .187180266875E-05 - .198560264655E-05 .210645206009E-05 .223479647791E-05 .237111009795E-05 .251589760950E-05 - .266969617698E-05 .283307755347E-05 .300665033235E-05 .319106234635E-05 .338700322333E-05 - .359520710936E-05 .381645556972E-05 .405158067970E-05 .430146831748E-05 .456706167228E-05 - .484936498185E-05 .514944751434E-05 .546844781039E-05 .580757820245E-05 .616812962949E-05 - .655147676623E-05 .695908348745E-05 .739250868932E-05 .785341249074E-05 .834356283974E-05 - .886484255102E-05 .941925680293E-05 .100089411236E-04 .106361698981E-04 .113033654302E-04 - .120131075958E-04 .127681441243E-04 .135714015515E-04 .144259968849E-04 .153352500294E-04 - .163026970217E-04 .173321041264E-04 .184274828491E-04 .195931059255E-04 .208335243507E-04 - .221535855148E-04 .235584525170E-04 .250536247328E-04 .266449597174E-04 .283386965292E-04 - .301414805655E-04 .320603900083E-04 .341029639827E-04 .362772325379E-04 .385917485686E-04 - .410556217999E-04 .436785549684E-04 .464708823404E-04 .494436107148E-04 .526084630715E-04 - .559779250320E-04 .595652943117E-04 .633847333553E-04 .674513253550E-04 .717811338686E-04 - .763912662638E-04 .812999412304E-04 .865265606192E-04 .920917858780E-04 .980176193759E-04 - .104327490922E-03 .111046349803E-03 .118200762693E-03 .125819017788E-03 .133931235567E-03 - .142569486591E-03 .151767916764E-03 .161562880536E-03 .171993082532E-03 .183099728119E-03 - .194926683483E-03 .207520645769E-03 .220931323935E-03 .235211630950E-03 .250417888030E-03 - .266610041664E-03 .283851894174E-03 .302211348653E-03 .321760669129E-03 .342576756879E-03 - .364741443858E-03 .388341804248E-03 .413470485229E-03 .440226058081E-03 .468713390831E-03 - .499044043701E-03 .531336688690E-03 .565717554690E-03 .602320899606E-03 .641289511049E-03 - .682775237216E-03 .726939549682E-03 .773954139915E-03 .824001551398E-03 .877275849343E-03 - .933983330099E-03 .994343272418E-03 .105858873288E-02 .112696738786E-02 .119974242457E-02 - .127719348371E-02 .135961765659E-02 .144733053946E-02 .154066734799E-02 .163998409513E-02 - .174565883545E-02 .185809297922E-02 .197771267987E-02 .210497029824E-02 .224034594739E-02 - .238434912175E-02 .253752041457E-02 .270043332766E-02 .287369617763E-02 .305795410281E-02 - .325389117523E-02 .346223262206E-02 .368374716102E-02 .391924945424E-02 .416960268529E-02 - .443572126384E-02 .471857366264E-02 .501918539142E-02 .533864211224E-02 .567809290071E-02 - .603875365747E-02 .642191067419E-02 .682892435788E-02 .726123311760E-02 .772035741668E-02 - .820790399386E-02 .872557025585E-02 .927514884363E-02 .985853237406E-02 .104777183579E-01 - .111348142943E-01 .118320429415E-01 .125717477618E-01 .133563985387E-01 .141885971617E-01 - .150710835746E-01 .160067418798E-01 .169986065912E-01 .180498690246E-01 .191638838151E-01 - .203441755463E-01 .215944454747E-01 .229185783311E-01 .243206491763E-01 .258049302872E-01 - .273758980435E-01 .290382397858E-01 .307968606070E-01 .326568900396E-01 .346236885944E-01 - .367028541013E-01 .389002278011E-01 .412219001270E-01 .436742161149E-01 .462637803697E-01 - .489974615148E-01 .518823960404E-01 .549259914628E-01 .581359287001E-01 .615201635596E-01 - .650869272297E-01 .688447256561E-01 .728023376806E-01 .769688118071E-01 .813534614566E-01 - .859658585633E-01 .908158253555E-01 .959134241600E-01 .101268945060E+00 .106892891232E+00 - .112795961776E+00 .118989031859E+00 .125483129974E+00 .132289412126E+00 .139419132743E+00 - .146883612124E+00 .154694200223E+00 .162862236587E+00 .171399006251E+00 .180315691438E+00 - .189623318879E+00 .199332702626E+00 .209454382222E+00 .219998556134E+00 .230975010377E+00 - .242393042285E+00 .254261379434E+00 .266588093757E+00 .279380510946E+00 .292645115267E+00 - .306387449993E+00 .320612013705E+00 .335322152738E+00 .350519950160E+00 .366206111659E+00 - .382379848796E+00 .399038760101E+00 .416178710538E+00 .433793709878E+00 .451875790568E+00 - .470414885758E+00 .489398708235E+00 .508812631219E+00 .528639572274E+00 .548859882133E+00 - .569451240978E+00 .590388565945E+00 .611643935260E+00 .633186536732E+00 .654982651249E+00 - .676995685242E+00 .699186268990E+00 .721512438144E+00 .743929910111E+00 .766392449272E+00 - .788852279292E+00 .811260446533E+00 .833566980334E+00 .855720670381E+00 .877668337660E+00 - .899353638918E+00 .920715675787E+00 .941687868576E+00 .962197568574E+00 .982166651298E+00 - .100151294021E+01 .102015199363E+01 .103799875596E+01 .105496880038E+01 .107097916191E+01 - .108594890868E+01 .109979961198E+01 .111245582099E+01 .112384558656E+01 .113390103606E+01 - .114255897893E+01 .114976151523E+01 .115545662016E+01 .115959868275E+01 .116214898256E+01 - .116307609395E+01 .116235621160E+01 .115997339441E+01 .115591972686E+01 .115019539897E+01 - .114280870681E+01 .113377597710E+01 .112312142000E+01 .111087691529E+01 .109708173797E+01 - .108178222991E+01 .106503142466E+01 .104688863309E+01 .102741899727E+01 .100669302004E+01 - .984786077433E+00 .961777919909E+00 .937752168082E+00 .912795806820E+00 .886998680870E+00 - .860452992548E+00 - pseudo wavefunction - -.484981210978E-08 -.517034782341E-08 -.551206851094E-08 -.587637433806E-08 -.626475801078E-08 - -.667881089163E-08 -.712022952007E-08 -.759082256394E-08 -.809251823026E-08 -.862737216586E-08 - -.919757588020E-08 -.980546572483E-08 -.104535324664E-07 -.111444314922E-07 -.118809936904E-07 - -.126662370496E-07 -.135033790242E-07 -.143958497179E-07 -.153473059381E-07 -.163616461796E-07 - -.174430265977E-07 -.185958780382E-07 -.198249241917E-07 -.211352009493E-07 -.225320770357E-07 - -.240212760075E-07 -.256088997050E-07 -.273014532535E-07 -.291058717175E-07 -.310295485164E-07 - -.330803657184E-07 -.352667263361E-07 -.375975887573E-07 -.400825034508E-07 -.427316520988E-07 - -.455558893145E-07 -.485667871188E-07 -.517766823542E-07 -.551987272348E-07 -.588469432353E-07 - -.627362785426E-07 -.668826693048E-07 -.713031049274E-07 -.760156976854E-07 -.810397569369E-07 - -.863958682405E-07 -.921059777024E-07 -.981934818985E-07 -.104683323739E-06 -.111602094668E-06 - -.118978143621E-06 -.126841693181E-06 -.135224963409E-06 -.144162303866E-06 -.153690334354E-06 - -.163848094962E-06 -.174677206025E-06 -.186222038665E-06 -.198529896590E-06 -.211651209915E-06 - -.225639741800E-06 -.240552808727E-06 -.256451515356E-06 -.273401004888E-06 -.291470725984E-06 - -.310734717316E-06 -.331271910937E-06 -.353166455688E-06 -.376508061991E-06 -.401392369417E-06 - -.427921338563E-06 -.456203668815E-06 -.486355243727E-06 -.518499605835E-06 -.552768462857E-06 - -.589302227334E-06 -.628250591955E-06 -.669773142891E-06 -.714040013671E-06 -.761232582275E-06 - -.811544214289E-06 -.865181055189E-06 -.922362874974E-06 -.983323968628E-06 -.104831411609E-05 - -.111759960569E-05 -.119146432515E-05 -.127021092481E-05 -.135416205761E-05 -.144366170111E-05 - -.153907656682E-05 -.164079760268E-05 -.174924159491E-05 -.186485287559E-05 -.198810514322E-05 - -.211950340349E-05 -.225958603841E-05 -.240892701210E-05 -.256813822235E-05 -.273787200769E-05 - -.291882382001E-05 -.311173507387E-05 -.331739618410E-05 -.353664980411E-05 -.377039427823E-05 - -.401958732215E-05 -.428524994664E-05 -.456847064045E-05 -.487040982971E-05 -.519230463199E-05 - -.553547392442E-05 -.590132374684E-05 -.629135306184E-05 -.670715989552E-05 -.715044788386E-05 - -.762303325178E-05 -.812685225324E-05 -.866396910290E-05 -.923658443192E-05 -.984704430227E-05 - -.104978498167E-04 -.111916673638E-04 -.119313395390E-04 -.127198967884E-04 -.135605698208E-04 - -.144568028395E-04 -.154122676493E-04 -.164308786935E-04 -.175168090859E-04 -.186745077006E-04 - -.199087173907E-04 -.212244944099E-04 -.226272291173E-04 -.241226680492E-04 -.257169374475E-04 - -.274165683426E-04 -.292285232921E-04 -.311602248837E-04 -.332195861213E-04 -.354150428150E-04 - -.377555881103E-04 -.402508092948E-04 -.429109270347E-04 -.457468371992E-04 -.487701554451E-04 - -.519932647415E-04 -.554293660300E-04 -.590925322246E-04 -.629977657738E-04 -.671610600158E-04 - -.715994645799E-04 -.763311550967E-04 -.813755075024E-04 -.867531772382E-04 -.924861836656E-04 - -.985980000416E-04 -.105113649416E-03 -.112059806841E-03 -.119464908308E-03 -.127359266843E-03 - -.135775196248E-03 -.144747142968E-03 -.154311826620E-03 -.164508389768E-03 -.175378557515E-03 - -.186966807581E-03 -.199320551533E-03 -.212490327900E-03 -.226530007941E-03 -.241497014895E-03 - -.257452557576E-03 -.274461879255E-03 -.292594522804E-03 -.311924613169E-03 -.332531158267E-03 - -.354498369521E-03 -.377916003265E-03 -.402879724382E-03 -.429491493587E-03 -.457859979859E-03 - -.488100999641E-03 -.520337984491E-03 -.554702478997E-03 -.591334670871E-03 -.630383955233E-03 - -.672009535253E-03 -.716381061407E-03 -.763679311757E-03 -.814096915808E-03 -.867839124620E-03 - -.925124630025E-03 -.986186435947E-03 -.105127278500E-02 -.112064814366E-02 -.119459424963E-02 - -.127341122495E-02 -.135741875884E-02 -.144695736438E-02 -.154238971319E-02 -.164410205274E-02 - -.175250571083E-02 -.186803869227E-02 -.199116737280E-02 -.212238829545E-02 -.226223007509E-02 - -.241125541661E-02 -.257006325271E-02 -.273929100740E-02 -.291961699125E-02 -.311176293483E-02 - -.331649666668E-02 -.353463494230E-02 -.376704643060E-02 -.401465486427E-02 -.427844236040E-02 - -.455945291747E-02 -.485879609456E-02 -.517765087828E-02 -.551726974244E-02 -.587898290465E-02 - -.626420278338E-02 -.667442865800E-02 -.711125153281E-02 -.757635920484E-02 -.807154153319E-02 - -.859869590547E-02 -.915983289434E-02 -.975708209415E-02 -.103926981239E-01 -.110690667787E-01 - -.117887113070E-01 -.125542987846E-01 -.133686465518E-01 -.142347286687E-01 -.151556823396E-01 - -.161348142443E-01 -.171756067022E-01 -.182817235853E-01 -.194570158786E-01 -.207055267687E-01 - -.220314961265E-01 -.234393642216E-01 -.249337744894E-01 -.265195751357E-01 -.282018193402E-01 - -.299857637799E-01 -.318768651574E-01 -.338807743746E-01 -.360033279438E-01 -.382505361751E-01 - -.406285676186E-01 -.431437291758E-01 -.458024412223E-01 -.486112070040E-01 -.515765754874E-01 - -.547050967478E-01 -.580032688826E-01 -.614774753320E-01 -.651339113731E-01 -.689784984396E-01 - -.730167847954E-01 -.772538309642E-01 -.816940781960E-01 -.863411981213E-01 -.911979216348E-01 - -.962658449377E-01 -.101545210582E+00 -.107034661297E+00 -.112730964337E+00 -.118628704124E+00 - -.124719941003E+00 -.130993834083E+00 -.137436226395E+00 -.144029190886E+00 -.150750536321E+00 - -.157573272760E+00 -.164465037129E+00 -.171387480481E+00 -.178295619833E+00 -.185137159123E+00 - -.191851785719E+00 -.198370451268E+00 -.204614648334E+00 -.210495697360E+00 -.215914062001E+00 - -.220758714745E+00 -.224906578945E+00 -.228222077845E+00 -.230556825737E+00 -.231749500859E+00 - -.231625943672E+00 -.229999527507E+00 -.226671850571E+00 -.221433798478E+00 -.214067024019E+00 - -.204345884891E+00 -.192039869647E+00 -.176916526010E+00 -.158744882936E+00 -.137299327216E+00 - -.112363856392E+00 -.837365817490E-01 -.512342988727E-01 -.146968800657E-01 .260088236197E-01 - .709859473943E-01 .120305874995E+00 .174008258681E+00 .232103247571E+00 .294576302991E+00 - .361395818621E+00 .432523481873E+00 .507926877214E+00 .587593208619E+00 .671542180701E+00 - .759835015304E+00 .852575310011E+00 .949896029782E+00 .105192549120E+01 .115872396875E+01 - .127018390490E+01 - ae wavefunction - -.472972142918E-07 -.502809550806E-07 -.534288103841E-07 -.567511463376E-07 -.602589280982E-07 - -.639637587127E-07 -.678779204502E-07 -.720144186850E-07 -.763870284991E-07 -.810103441839E-07 - -.858998318329E-07 -.910718852297E-07 -.965438852493E-07 -.102334263003E-06 -.108462566976E-06 - -.114949534415E-06 -.121817167258E-06 -.129088812886E-06 -.136789250034E-06 -.144944780187E-06 - -.153583324830E-06 -.162734528931E-06 -.172429871071E-06 -.182702780661E-06 -.193588762704E-06 - -.205125530605E-06 -.217353147560E-06 -.230314177081E-06 -.244053843261E-06 -.258620201423E-06 - -.274064319833E-06 -.290440473203E-06 -.307806348753E-06 -.326223265675E-06 -.345756408863E-06 - -.366475077844E-06 -.388452951924E-06 -.411768372601E-06 -.436504644380E-06 -.462750355197E-06 - -.490599717748E-06 -.520152933077E-06 -.551516577900E-06 -.584804017213E-06 -.620135843834E-06 - -.657640346671E-06 -.697454009563E-06 -.739722042725E-06 -.784598948928E-06 -.832249126674E-06 - -.882847512809E-06 -.936580267150E-06 -.993645501866E-06 -.105425405856E-05 -.111863033617E-05 - -.118701317300E-05 -.125965678643E-05 -.133683177411E-05 -.141882618059E-05 -.150594663373E-05 - -.159851955544E-05 -.169689245154E-05 -.180143528606E-05 -.191254194527E-05 -.203063179756E-05 - -.215615135520E-05 -.228957604481E-05 -.243141209348E-05 -.258219853821E-05 -.274250936664E-05 - -.291295579765E-05 -.309418871095E-05 -.328690123535E-05 -.349183150611E-05 -.370976560225E-05 - -.394154067566E-05 -.418804828444E-05 -.445023794372E-05 -.472912090816E-05 -.502577420112E-05 - -.534134490660E-05 -.567705474085E-05 -.603420492205E-05 -.641418135716E-05 -.681846016657E-05 - -.724861356850E-05 -.770631614632E-05 -.819335152374E-05 -.871161947402E-05 -.926314349147E-05 - -.985007885489E-05 -.104747212149E-04 -.111395157389E-04 -.118470668493E-04 -.126001485937E-04 - -.134017156874E-04 -.142549152716E-04 -.151630994328E-04 -.161298385333E-04 -.171589354034E-04 - -.182544404518E-04 -.194206677522E-04 -.206622121687E-04 -.219839675864E-04 -.233911463173E-04 - -.248892997576E-04 -.264843403742E-04 -.281825651068E-04 -.299906802733E-04 -.319158280768E-04 - -.339656148119E-04 -.361481408815E-04 -.384720327353E-04 -.409464768529E-04 -.435812558999E-04 - -.463867871929E-04 -.493741636189E-04 -.525551971624E-04 -.559424652033E-04 -.595493597589E-04 - -.633901398516E-04 -.674799871989E-04 -.718350654298E-04 -.764725830466E-04 -.814108603629E-04 - -.866694006623E-04 -.922689658382E-04 -.982316567873E-04 -.104580998849E-03 -.111342032598E-03 - -.118541410310E-03 -.126207498457E-03 -.134370486580E-03 -.143062502931E-03 -.152317737297E-03 - -.162172571418E-03 -.172665717465E-03 -.183838365057E-03 -.195734337304E-03 -.208400256429E-03 - -.221885719513E-03 -.236243484964E-03 -.251529670323E-03 -.267803962068E-03 -.285129838100E-03 - -.303574803640E-03 -.323210641291E-03 -.344113676076E-03 -.366365056271E-03 -.390051050939E-03 - -.415263365070E-03 -.442099473296E-03 -.470662973201E-03 -.501063959273E-03 -.533419418624E-03 - -.567853649606E-03 -.604498704550E-03 -.643494857881E-03 -.684991100905E-03 -.729145664640E-03 - -.776126572096E-03 -.826112221479E-03 -.879292001813E-03 -.935866942584E-03 -.996050398993E-03 - -.106006877451E-02 -.112816228242E-02 -.120058574819E-02 -.127760945438E-02 -.135952002996E-02 - -.144662138604E-02 -.153923569969E-02 -.163770444806E-02 -.174238949449E-02 -.185367422883E-02 - -.197196476371E-02 -.209769118885E-02 -.223130888538E-02 -.237329990186E-02 -.252417439411E-02 - -.268447213049E-02 -.285476406427E-02 -.303565397484E-02 -.322778017906E-02 -.343181731416E-02 - -.364847819316E-02 -.387851573387E-02 -.412272496194E-02 -.438194508841E-02 -.465706166164E-02 - -.494900879337E-02 -.525877145797E-02 -.558738786364E-02 -.593595189361E-02 -.630561561495E-02 - -.669759185176E-02 -.711315681877E-02 -.755365281070E-02 -.802049094143E-02 -.851515392653E-02 - -.903919890089E-02 -.959426026278E-02 -.101820525334E-01 -.108043732203E-01 -.114631056710E-01 - -.121602219014E-01 -.128977853819E-01 -.136779537620E-01 -.145029815117E-01 -.153752224563E-01 - -.162971321775E-01 -.172712702531E-01 -.183003023012E-01 -.193870017956E-01 -.205342516131E-01 - -.217450452710E-01 -.230224878088E-01 -.243697962648E-01 -.257902996938E-01 -.272874386674E-01 - -.288647641945E-01 -.305259359947E-01 -.322747200519E-01 -.341149853699E-01 -.360506998488E-01 - -.380859251916E-01 -.402248107488E-01 -.424715862004E-01 -.448305529696E-01 -.473060742583E-01 - -.499025635849E-01 -.526244717049E-01 -.554762717828E-01 -.584624426843E-01 -.615874502485E-01 - -.648557263988E-01 -.682716459433E-01 -.718395009169E-01 -.755634723093E-01 -.794475990276E-01 - -.834957439357E-01 -.877115568190E-01 -.920984341201E-01 -.966594753010E-01 -.101397435685E+00 - -.106314675651E+00 -.111413106042E+00 -.116694129691E+00 -.122158578946E+00 -.127806649124E+00 - -.133637827802E+00 -.139650819919E+00 -.145843468624E+00 -.152212671869E+00 -.158754294736E+00 - -.165463077504E+00 -.172332539485E+00 -.179354878656E+00 -.186520867151E+00 -.193819742660E+00 - -.201239095858E+00 -.208764754003E+00 -.216380660953E+00 -.224068754007E+00 -.231808838183E+00 - -.239578458923E+00 -.247352774701E+00 -.255104431738E+00 -.262803443932E+00 -.270417082304E+00 - -.277909779489E+00 -.285243055812E+00 -.292375473379E+00 -.299262621885E+00 -.305857132353E+00 - -.312108700555E+00 -.317964081005E+00 -.323366991509E+00 -.328257862320E+00 -.332573391282E+00 - -.336245933981E+00 -.339202846653E+00 -.341365964104E+00 -.342651386442E+00 -.342969647620E+00 - -.342226187351E+00 -.340321938987E+00 -.337153850317E+00 -.332615249521E+00 -.326596069998E+00 - -.318982997231E+00 -.309659599289E+00 -.298506478860E+00 -.285401461366E+00 -.270219818938E+00 - -.252834523455E+00 -.233116520853E+00 -.210935020787E+00 -.186157798852E+00 -.158651511825E+00 - -.128282029310E+00 -.949147876852E-01 -.584151743313E-01 -.186489519831E-01 .245172652344E-01 - .712154708464E-01 .121575645247E+00 .175725038559E+00 .233787339000E+00 .295881707164E+00 - .362121655279E+00 .432613749428E+00 .507456111914E+00 .586736700416E+00 .670531340478E+00 - .758901488024E+00 .851891699118E+00 .949526784875E+00 .105180863024E+01 .115871265627E+01 - .127018390490E+01 - End of Dataset diff --git a/tests/files/vasp/inputs/POTCAR_Fe3O4.gz b/tests/files/vasp/inputs/POTCAR_Fe3O4.gz new file mode 100644 index 0000000000000000000000000000000000000000..0df9ba9b0d29f5d37ed147f18a8df030187f5f81 GIT binary patch literal 120750 zcmV)NK)1giiwFpn>gr_x15i&?LqSqsMrAWkGyvqiThAv)a^`p6pW?lgAa^6r2MG&< z9#L8WqY-z8I@mWxgVRH`&0!PGrWewuclMA-sASZ^D23->a7&-hO=h$9JFJef;s|4>Ee`{Rc{e0urntC#HbCN!|N8#h z@85lV{o}j$pZ@jS{_-bpe|q`iPuD8^=5N3Fr*%te{mmHpFZd^0y!B5ZyqPiCvh3IU z_22#Kj^4wXyYpIq`0(-NyAR*kbo}t)(^?ZI>_rp(^}6`O$B*y6`SkMkr*B`r`RBJE zzkRp9kZepJX11aKM#G@ zXT9bRA3yvbuRr|o?&G@Sj=g7WP5B?*e)GvL?i6wgZlXw5H zcJy!l@{6y(xVtIt`+xWKU9c3+BjTG-`Em9)eP2A=n{xiDZ`%2*you+p{3f5j;`8g6 zZ|3=HyqPxG=x@&Jk9z+q_pkU|-skhs-k*o|`aG(qH{Ay7;d!E+&2wX`&*d#XL)7^u zoxj@iW;H!`)bOU*VC4=`$}?;UZ^r&Bk7w9?-y+|)P2;&P)%BSvKTovjJWq_{`M21f z4~}=v?C91rdvD5lfH6ZPLwl3Y=r(1~vyB&>2fUf(`71rczG?Tbc!qt`6La>a%=6Qm z^bGMPw)FhMg=d&Hxi0Zq znR{VVZ*t1#A5(vRPA%QP!t+<2&tKuWBi84-7}_&nPh6P!s8*i8Vt)P#*u;m7if^sOPV~9$ePE#^$WzFmJ zYl`9dD?I-eM|=J%cfc5)Vdi?*%3rCRzk27E`s&Ny{N>AsKWy#f^*0~B|Mc<0ci(-+ zSdY*$S^kRCX)By!w;3BV_t2N9c{5sWq4)IVpDl?BU3yN#(V@*=Mcc}C+fGvd9Vj^0NKqI)PY>w(p#G7dekrf$-0YQP#&%SktsUdE_dbTI`XP0=xq=;+*A zEj4PuoJ|*qJX?b98Jaaa`_zF%}z87X;q7>61g4rI!19pEcLk z?ws~9YqMwE0sFAuOT2H?d(S;a-Oz)*a=V{s8??k(^?S7yO8WtOz#4kBg}fJ(+*%L! z4STjv3PW_7A%&SmN81&%X~3BKXqq#dzu9WNtKQ}avFj7tn6u28MBA@3>yum0#TG(0 zv>K*O%%yF@lG`?|*er)~7qR7Oi&C^Gwr_hZ+NgH-G-XD#o%A@09uP_@MRQnfkQ%XZX6r)-m)?;=!V5iH}S zLoIfCHDF;0(zu^kY>(JUxcjbjJ2yqETxg7%!xjD+-vq2rf53`ZjNp2FzgdF zU)jS9oBEL58`(+nt7^P&2FK2l@kiswI(oM0>&!tnMEhS8H%TUNjO`cE#_qZn zF&eKh2GZ|<#@ot_+PHB>JKp0?fo-!fiZ;HTYx`<3V7s;3JWHlTW2kocF1w0$l!Ifq z(d6UonzPu9TSa}5Nq}ZzL5mWb@iTkMy`T>J1}#FYaIfs>^~ri*HD%resRk@22vgU9 zb~tUD=#9gDX4M07wpob!MBCYRy6!5QM76^- zbo62}=GB`%AypGIQEzDbDh2<$@v}A@ZHk3y8ye8m&Dq>4+p)^cO}ecpEL*hkrzEj! z=Qx1sQ(tvB8@5+-*ypxFhm z@q2;I;oSRj)4_IbnfG_oJd9heIo;VUw$6Rx;FR+7Wd#hgBX3ReOzM;v$ z$??8)jrPHl;}e+9s(Z-%m6(V)kA|o5-=Fbl(tmYl_1C0^{~}4%ShO zN4GJC7UrEpJNT^Qoq}c}CMPYLNpahmO|%JW8&h*=%8s3-ao?!fB-`1(pNNib`rTdi zW^ZFs;eN6)rZmqN?E!5Y8FRUxWK!MUNc*tbzOV;O(Z)ez*7Y{Ytqtu%Q--FU-@6Tr z{h8XYeP^#@I%{vDjYH3J-`IAg>BRf`J)rS36Ji?BzCQ=8qU~CnB{!hGzisS0MJ8j7 zWhVEA#^Bm;0|ab>l0;`Ty!*TH1=9#~7hQ}651kZa4Q8llTNndpoi%{Hz}y^s(h zX+YbE#vt{{CId}B%y-U=o!bm{N81OKqzBfH4m?HMn&qOCVlv*gX}oh-n6a*tV;^J( z(|v&n#hJ9NFd9tnZW_>zPIue}O~sUOeWJ}r2<`#4YwfH%+I}6)4QPUPW;cLIDf>pv zAsjdAD4MDUL(~g|JZD}y`WY|;vnsSLmhIZc6kV!4Z-|a|OTQ05V>b?}lVYbXnsSqL zfpN3Ybc5L}X6OXb)%JlF$)vDNc@VcTmA}DW?gb5YpgFZ2Vb+{Pgh@oWooJ*ku7x|G zogJGpeUj;a1E0=A+plw*vxmlL5W6$&(>79fZ)nWKc&IMO&CbQt6xdNTg-@THP40!N z2c!{4sycev__f(Jx&g(c=xCXaJ&e6*fM~0n-ISQ%x6`SOjV0HnwnesW+f&vm2h_`; zU0}N2OvU{kF|Rd;>|l(kRn_PoU`qYcQ7>)gZVE+nm@vh9s=C0gu9`zz z08`hJ9x%|p#+{O6c3R&)i8G*0P|4B+Y?s=(=s~pc?=B8*HcUdBxO9V8G|gdZwo^;j zC$x$m#@$dtOj;CVW-rnllI=?@6AfrWV@9oN;us`P8?$jI#de5^Rh{)@nuYPu>IO9H zyXmmo0%mL{(H-ZJrlfFmbg~%E7`7N}Dt7csbpx6l&sA@PAy>qWY{5-I4f;JBGwDIx zCZP^C?L#weM{}x4Vv$?XoUukVxZi^*4@vycxVagW5=u7Z)8?%1`B-ySr^HiT4S>viVFa_B5ksHud zm6$Y#xJ-I-N6%Cp?8kdSfZ4c{V%nr_e!X$9O&i=NoB3=Ey0`(2n>xX6GUu}g*dBy| z7tzMjw-s<`GyPK2S+IJjBHSvQh_rvvHfczWoaa$un(3pHT4_xJ5t_i0+fCDUU;+nmZlK#P*!(x@;XV)(Y8;W zptoIa+ML_C$@XP&`z-N^ZqCfIvPIRD*py=8YCuz!%rw#}+cr)^QV+*a8^JxGMq73_ zU@;CK9CJw6cHO;U#!%24nV9Q-qa(Gl3~-~D3)2l~Vs8+4Q%wGFTm@Qoyf3l zU~}SDnPnQmU0}*ZaWcieDR-$JagFGNRK)EP-5f@{y*U{XLomT4+V(*ALdov8eW^tZ z_`3YYHp|SIvfjY-?c?ryXfyAo8=xVXgQM%`pA5q-Zq7o5rB_Fzr@H}6AB>K9gkoBK zb7C}@JsF$(Bojf=Z6o^?)j+h(c_{9BQvkQ?{uwYXyFwQj3oXgLp-oC~4AuB+ZT<@a zDxwBN=Gs}~hOlX(9m}({X^hd&Xgm7bOMK{HD(yPUVGr1Cjkgj>`>+z(9F-d&DDKD!qL7A zpF`V8+CuEmwv0PQwdsfUY3l zrX@Lk_X7L=v@N4Uo29oI=%Jb6tm{p=YGG+-;qk$mjv4Qw*g-00?gi1N4;FpmFd;t9 zCoa0$7tN+cA?9wApf|E@4+FZi=?!yhUxzk{lQid}L_GaT1Dal8>!1NMszKKc89O3s zKr;%$)*KF9O)O6Lh6LE_)FYi0Yb28Rn1H? zb6T`9o`xDOn$YZ$F?&FKZA6iD0UDp)$Sh6U`=yD-tux*4#(uNgHaNCVEMQ;I$$S_^ zw9PeE$QB%^Ty)H&7K%{nC{SxIM)!3l`_S#Z4XT}yn6u=@+SV*n2+uTTpro30m%f} z&bKolZXw66T4|=Oxi>b=$h0MWGVE%)Dapp2r~hO`N)d-92kN*{4sA0Ug5G$kQabw$ z|LHl3d%(m$O|4oYr0-S{KTMczfM7={>kT=$=cMfcO)rW524bJJX3^;UQ*&tiFK<`Y zrtSOFwwKRB&?el5thyktTSQ~#NINq%h_nO!UXXjmEeg8U_GO(5 z3aW;?A(6nMH#QC0#DHkCm)l_;C$7iwcXO19Pm5#Myrw{Jm~9G^xQ%I6rUo>(4->h3 zNjKmUbti?as^G+CO|g{b7R9s-8%CPc6PedyMhC= zbe)u92iwctLR74Y``EdfJxUIfk7=rf9?0t#X9XC;wxcI*QcR=lIk+24l2^%L(?3o7 z%kKJMVsYw|N#im_|L&_|@`I?m=!VW)Mb~ERp@}BfuO~MkXn#QJqq65+~Q(+<^EDqK;l6@Hu5&n!0D|pqnF`^%SJ; z*|{@@+4aVSja0K6Fxy!azr))XYIg&m-AQvOc@l!s3)n%dJA8Zw#N|=Mo(OoGso@47 zq%H1KAbNE)iC#|OEIFj=Y&SE;G4FK4ipz;Vl10J1iMCBroq20tSi+F5V*E5P3!+VR z%3@b2#A&(#jWw7`?anfu@8niB)*PLfEHTfSWL%oKSqX-sV7uR9T7??*V-Ju%`|XrhtJ;?NoXm}QU~ZQ7SpmWYPn70?As zrFJ(oEEm1;u!GmKqwT0cX;0)MS61uygqH*dC8aYYX{cc;iWcPa}{@~tl ztNEHU)6z}!YSJ6oh3@a6X+kZ_`(fEYj;l9Y0&jPvO1}kqlsZBmkB}5Afc4e=8Ah` z0?f0y0VAFnci3aIt?gEsU}=+GLcXI}O73^;5`R)ms-2YbbAhd!^L1qs(w&)+@%lu^ zA0t+Q^L=H)70GQIeEH7Fn+bn3X$oeh5EHA8Mov3!W5#dDj{n&j_Tu(kFl#!wjc*#T zx0f+us5o&07Gg-6Bje|$&oxJ<6x~KQ&80=Rh#{_QU^gHs+x`=b-Bl?|M2`t_JDTi} zCVH3_ou!JPOEu^CHrfua<}j@&o-_yh`gSsc4sC`<9e%(Mv*Cudc#iMsvDs9(T4UZ z%*X_@8xVJ#Gr&#DuxEy$3#yq3*$qJAZ*#OMD^5i=8t+$i1Ev+P&;^lK&W^?p?C5~K zUL9@UO@9rSc85JTQUCQ7KJ*mB+VhAYE*ZUC`0i3)Sln+^aHZZrnZTxK6Vt`4RG}C9)QB? zemAjSlM_<*525v(!MBAv`6SH+l-Xrwh3OL>6itY zRCIo9N;}MO(HxOd;B=dmS7DcXV4x_-Jpg}Sb8m>gnH|4NSaxoXkV;khVnT>e{eNj< zmD9~3wxVYa)M`|>%Er%pEC6{jr}RV8afT0nq@|oWmYy)Mlc(!Rf`4c-47JV3ecsuC z&w!bY;@*HNB)3Rt=*}QFI@M6z158N9=Q}b!_pp_+}rAC!s1G3nUv$Y!XsO>VS>S3fG5JG+}Oq$(+^0(pG#;l=0Sa|2ITNh zmtte8fe8vnm-$)7AWqxhvWiSIsLdy%_3>GDFLJszC5e+)WunaIh2mRwX`6#gCzr$6 z>dF(>1?zZd0Fztgvn)&dzT%T4O@He?GYhUATs|F++31qf$iL|>`;D}Oq6Ft?45v+3 zcoZ?mrYb^AB{%lqQVbDHu39YG=`SwlJFbwq&r~%AZF;`T6(d0G(&KC^ldT{+Giff3 z34jGxg@e#Z!R6%SRYR;~i-}y4iim}6j9a-BSPr8~auP&J(Z%&q+M@H51K~w(DwDgCU|+QmUJfb+6?7v%w4IujApFpY8Ae5X{Zt$W6uy4Yb6#UjWlASEl+A1M zlLysP`-azVwvO8`osoleiUvF-Zm^y;pxL*$YRhv0HH354`Ov2HnpWHUrPHc%te4Jx z73SOlO-0w0C})x4{5;V(-cjbX4+G<-*8gYGw%hq$$&r68&kWL@_i%F zXX1w6*`GYg1Pz)){J4a!?giO+)6f8>i%~g#Y37`&>r0zjoq>S3i(>nHNx5?Y-aV{^ zOJkRebQi&NcHm3erEP-oKHmWcLF$p>v&v+4g$=-z_oA7So9f*KtGG9h{LttP;8Yw0 zqLunuDM#HGEK{ZQ4P}%!dt;mBOBXyZwl^Od{D+lcy+N1AA{rET_U8f|*~|5EXfh+f z1GqGv_0mNXWZEZX4>(s`YSiZflc;u>#}sXxAO-ik>33%5U)r`U9On*b0)W)hbf0Jk zuhwxtY2b%IseQfxrvX(r_lt~OZp5s7QoYFWDdV}I@kvw}J~ZjYc>JC@1I=K=Yn?fr zd3HC4#7n90x{F{8yZ3Yl$R&^me&2{(kdnrIAoXhbOu?hhHDbKa1%OE4FuHSO{PNsT z)*Dh?+ZWhZIl7KLK0m-!>?>n7C`app*QC^7v9*WBd$!Ut4^8~Vl-hZ@Qz0j5JahP( zvK`}3&#Jv%rBA77CKc!}edii<90 z`(dD6_GOCISlA-Z#syWPruNWe1g<)uhc@+iIphwF?H4y}-5#*7%BgX8{s;@(qhFd; zt2JEO^tlBFb!lQUT?2w*RBK5Z0N##f$*xVcAZ-3GN zXsAzpve_l%d_VL`D~&qaOV!wmc=Dc1-5K-FVL^8*x`Df~1MZ@jibyT}zL5Xjn?ufuCY^HNlJ6(lK{p03=7C>39!SN#D8{Tv zceodX1pJh^i5=y>mGZU9wuxEzad*WWdEv0_ZDRvWvp;*j+ophuK?2L`(6>~yN47Q| zZiMO-w$Q5EtRUTYX>0Z9HhuZ%o(o2#tTM-k1`wi+wejoO*vpM^H~R8wRGkz%*d+Vj zqZRW?r?_VuThTns1~{gB-PdwE*&*v=_L$D7jV%;2XZ9c13IOgLjzKL zR$e@`W`-;o$kuSrHKr}QlP_x3=$9GY{odnwBp-loAKfkNI z($wvZLb)BRW|L}#Bi060wauw*IC{) zh+;k5eQ4IO>1S)o_CB_eLctXJd_?eTgGE-i>Xi)Q;x7`xaN73AuR(1h9e3 z&3h7Hzja=I*vJ!zqhA`Gc=r1MuvB`u4A%a^>^z{rEq1 zt@{DPQI?)3GM?UerI+Z9C`|xP-0^6*^{9I-Z{_K%vdNU<=8z&tfGwU2?Dt-_&{^BW z&PmBz^=NCO8+Y$vF^j&ff--;zXeMM%YAH(?W^NGIi^12 z*U?Easb%V%PDV!cNY5Ot1Qi=`IDTk`i#sXgiBSlC2gJQNX3+pM?rgP7V+%$dMN{5N z3&GJC@Or~cJcKHnJAkR!HR%oPoF3h0(-aov8TE!XMQK0aWEFveF}psokzg!3ke3=X zhr=!|@y_wOJlCl?%qt#RH0ij-`yGH{+Z>$;0RL(f{Z4`*X`Gka*jdkc-cLfP_Ow`f zJM4>n*&Z4zX_TcOu5GnaFv}Kdua4@`RwBT20p78?cK)K#`OD^ai=KehZ6VektD)!M z#HcZJ+uY)Bc+#7gg`L8RDdSEC$Zeu25YZf>DVQML#^OF&CUwjf)X_`8mPJPc>eYkj z4selUuxU_}H*`T;XHPUDMC^<5yy_GKa6{0`-5Zh*J-a@^&RrM3!;izVX$s8JabLu5 z6i8?eseO&(enK?6W^NsN(=h1b<}k2p%AEoeX)|xJ+g=?GOp(eJLUk^oa<@gHVlbq; z>WS>;)~Z(7<|Hnm)lNo?>4V$U+RBj$TB2>wzRRZYrme*9eMy$+9dLQ#P0^Sd&?FEc z=F7eSsEu2v-uw@ch^zs~qnJtD2GGV4uS|K_u#ib-HxiPbZHn$7zGwiDLqpL~G@W{k z-~_#~mK?-D(Pn3L)@h~)r3W{_ps-tXM6<{m5G8s$9M2nN5D4|g3tk}UchiN;($W{; zgf31MnItlVap#EiW4QdCQ?fy(m<7)LaAGOI@|@sgc$BBH>~4! z2Us;Wqu<|cqocFtJK)&ShPJm2rdORYucNeSc0nrr?mOE;EytvNiOSj@srPybo$NL? z^>j6b%bq~SOIsuy_SQ|m%I%>|+~6&ncR--*$oRed55ITqcL1nYm-LHF_<-6W>Ho~^^)s*K$A&S6U=^J~D;4*N zM7WA{9g2p+>~598Uk&qKFmT0%8J}%o6PD9{VBc@li9)5ljZpHb09hLBR+hTyIsjFO zU7;)Kwjj=VO&`Q`UFrcs1bQqodV#ny&!!r0;wOd+~3CpCx|HG7yH6J=PsuuZfK&Ayy*)cW*sA7xwn=}PMa(0PWeVM+8mX%f?kwA!%>|(P z95t|!OA&uG841w0JBo;6NAt-`2R{Rr1q7)9%EA*(q5&Lq3>dwm#poVD+JhU=-XPDM z-5ZYP>4hET4WH$+kiKZva@rREnM1Z+m4dm7b#u`imioEEnI>i5mm2{qPHoX0aH7-h zK;T+60@!lVQ|osh7TPFm zkLTWp6U^`>mk;|YMA>u$IGnf%#Liajzg$&h5Va~g5zZOzq-4r=9KXW>F_VrKu#?gK zUP+gca)p9lTNJk;t~Z?ZNh!nJp7cXcO7Wxn9jqeRDZu*$|At@>1gB6oxS!Y+!37Yl z^aW#hb9m$Dm*GB{f|2elBU{HI1DlM2*qul~%+GWOBt^Y#uS!4a9Qs|z&mv&e^ld-y zRRn{gh`X#bg{@;B?lV^<5gJ( z;Dk%?lcsi5mnYTDW<5SklLtjHLCj+;XyJO912Z=EK7E)&?{RbFy(rY{ZLxY5 z$#lI`By(2RhHxLqrp7~e2Q>D>q})Xz654XP4`{$kZ`b|UV%H|9j!PpoS236NVIg|j z#jYr7OqVv*akL#s+#B1(#q8ZE`H8``}A$5uKgVX-@sc}u(p zp;J6Nw%p$QkjLeIFECRLeklG}7U=dpYN)rZw~9j#?o}VW+Nb8jOanlLIRWO%EWh zhd1sHSn*tKZm};IfuPalf6dO(iOwGWI7ye&Nn#Uhf8#mJHp`{TTm|w0=eKU?gn!)t zre5Zd^nhVfHM#+V@uyLTf5Y7Kr8AX_%mnP|g4TlK7*Uc7*OUAUN$)4>TjdwtAWRGU$8r zb3RulnHI(PZ`kJP;WmlPtNVaRwb+<4&`oC7tvMWyUPu@mXWOj6Ux~ZvfBbI;6D2-FPdO++>Y__#OTS3aAMS0OOvuh!HLO{ds46w#tfHPkQ+!$TPI}| zDh1sD0#1$hq>v5?%-E$9O%{@96BuL(h#yjGU&NkF4)+BwaB1W3xrknEV)VwDa}bv) z_b^z>xTVhF2VdRV9-6|6F3o}*_ck1z7Cy5Z(4?AYPgFu6moD8_)0Lz-qmar?5%Blr z`fV@<6HX3s7nG;2H(YrSQFCfSiz?_l1%SPzo$x)LXho?dULi%@LfMnPh1SCOnfY$3 zR6&}o51nze@1wf+VKeR$>bMu!xx&lr_N6U(6L$fZee4j^+4v}sU1ymHI{iF#QfTj? zvz+3JflE81IAiJoW}F6!SDm0=9Z+;bqj`l?5nGhD5NRH|V+%${19O(0=0IL-4(@_V z0;4l;$tNuC0jA2dak)>Tozr%5oB=`8pE~>r)x{6EDlNrOSC50~ym^4)cBk7=eAbel zh=(-Brb!2@uOz4I5FnT3g^dz=ln4NWXF+(KRjq(S?c}<>Eoeu#9g^cbu&u6w5BC8u zzpRZvPwpIDykyIfjF)yuXl$i@?!JeI#+t4{1IFcPiee6C_{`&K+9v`3Uy~gIFmasi z9=%94Zgie_u&6?k=CBeUu2#QGA*h0iMtTNBaHBG^ z$}t?b39-<-FLPShP}jDD-`AY3@&wQ&*m8G3JIZ7-Ty1N@DPj@-BfTd`u+vqCBzB#g z<=JmKdO*w>D=sq4{v>chyO*2C?9wX+b)6fM%Su1XPcDR~4bQ z8jdWTdvTLd@2al~WMfW`5L+-pW?C-YXm9L-{aVVsfHdB`Q!MvJ2NYu;y+z~mjz?^+ zgRy|xo%S`UDcUJQhra<5+jaCJkUEZikrh>S^y2EQd?F9kT*_4bJ$lYgC-q7!nD=7ag0Z^vx0OVs$oivTICW?(a|_U3SYT|5Lu%H zmF@s5KEAAgxus$?CA(fzj*|t8y!&vu8@r3sf%ciTu?uc!r##vFQj33oUxCnV6&&qr ztaO=sQb3j>gXN*=la}`!A7c{Fe7q-x{G+n#`}Tkfm^jTlAQ7jToSm}Jnw|Oe!U7 zi~&97gg*{DE04=yaU-+u^RaVGS$g~F!yn&&^YX)w?|%CIhySMD{-mbt|DN*aj;HdkX^@Pk3cAUnWd<%ytaig1Jq<{S z_Nu{DCj+XhagRyR2jg+m)My5^ks!}EHP>yaVLE5^jA{@jDKR#wj+QyE^64At&EluF)vB_=bDYHi^4nH9rzq z1IVH^yUuE4nN8P_4=m_7T}wbzudbFa#%8kb-9`Ya1=rh%$ZJ%WSX?Z{&mmcZifL$HBC$o>cD0!3*UA1mzr)4)8;=8VrQn{ag!4HI1W)K&;eCo zEfGjw-=QS}++Kw2PDpP$kf6ArkOg6e4|%1fJ#<=~!iA$r3~pv2)lGUpY`4*YHlX>j zfCumooRs@bqpt2;z^B8rP3mw^2B2i__|9f$H0rMTK7d@F+QWSS2ea+E*QZ5l;xq}$ z0MAl~p}-LTf3rKeX-Y z1y=CoEmK|j=>3-Ar$M>PGXPc#dBwv43mB`&`2r6#&Tey6_HAb--zs`a<^k8cbgz%9 zv}x1$heIwPNEiDQQo%w^*}>v{LBJ_4WCD`cPn2)dScZAtFY4rH?%KKYh8@5PfiW}-WB zkPzU2>Mp)J7vOjkJEJvaYz~El$mTBdKXd^$#W9D~{;v2ppcYSWyih}86HS-0q!);= zua(zv1`Hs+28VN!^U1DR^lW|gD!+3&L5-VDb4)LdszsqNEo>RFaZ&nGJ}#Vu89E?a zUMK{z=4#ZU&`4-C8-50)K_SU)cU#cbtVYp+iq0u)g$xWpx#$mVxleC(^XeHhX(IjQ zQ|AR1b#j%rRDj2HaZqf=!6&;6miT%*+iq`cT7T?Pi~|Z{OP0iuGaVKj@Cq#z`gUw> znkF;5%Ictw*gkK&26Mxd1TvWFJzA?pY!Fflc`0psFb=E7=O5D9aX8tE}E#|%wi6O-sBgS1O^Ibt-xvW zYMRwAx5+@m@6wG;n_gjd&(xv-M6kU!4-$(_(!6t+=rbAe{hf5je3`?`g77G%Y7WVq z3-f^~St+D+=e+gRWYEVgw+~nYV5mgkoP43cS-!|Dcmn$=(B4PUY}1@1 z_)R5FQNSy4VTg1Atx)?$%>G_LnZ$fJ^bX4PnlCB|IT(3YQ5_r=+al5&i2BhHPpU^^ zpG-Xf%-c{#6}>_NgEP$4b47p^^nCEOaOCC`?Mu??=Eau5 zEi+d#iTI((*qj7yu+CW*kU%Hha)djeeLfMg`#bfJX=ffkNLDnBZ8}=G#ap}FhtfeB zABrBNAc)Q&S(Rs%`3KT^1$9NCaoVcL0Z{^}{XrC38gEDr)`>*y6L5b9BvWs?!`@)H z&AkEbPV~UE+%k>^N^nX9MDpZ%)dl3{Md3iv7`Mc9-x#1n(je{}0zE&b1FHdME((mn zBpA^V!RH{yYZcs1GwZjdyNL99YP%k14`^aFo~o(6EhrAm$l|3&F9Iw8GuEL`H4f2H~Vs z%%18_3Ytrt_aI=F9mSx?)^h`P+F;Lq8SJv}H@|yOmyG=iWQl$&affR6fWWf%p*QMt zrBB~a2H7=?2lHbUc$@i|^?*(X<&ZRBUCo7r`-Ho(Wzk`Eio7&JFpeo2pyacN`;%#p zQZ!(t)o&8?i&^ldN(dJUCvpt>y`IY&6zpg@928Pzig2P*0DdfJBd?az zU6@EDaPDZ#IVqT{UAQQjo>yH+Rb*xKeGiQ;+NF2qk<7`eZoI$+SC*2Hs@S9I}u4kkE;1 zn=mnjou1HBO-Blj#br{l2|A9yj+RE1m>@x>1*PjMBw z3oVge^Q2rpG$_g`Ee-d;>GWlZUHFJfgMRu^ppd6!4KZhhSqwJ ztX98v4G8}&;wIGZlpzL7r_7M*J^PUeQ}FsB-O)?X6KRZ|gS(;AWJV};9P}`g8<3n> z#~j9j#}PB=WCmvquo@3J5KXG|i=x zi?pw~+J3oJGxKs@7!xWp$a@gH4nCREgdk)KgqAGy8&Hx@+U!R-SX-PCEzI<_iXl7kL!Nb!CojBc*or6 zv73RCOccUpu%ubUB6AoJ`_QJi4bapzI#fCkEH*quIhsYt-7y0oH*3^@X;qPWRixP~ zID;D#-RU}{DhJ1X;_}-_JBt8d*5FJtoCprall-AryhTr^A3+D=fb2n7guveCRwYx= zCn^58a|rl$6du_sdhJ37qf1WP0Fisq<^pVVN_(L2KNqbsVEWm0w0`mfu@06fF z>}wvOb@(Aj`SF2|SaKPk!Y$=p9jtE^{yM70qaXO46;h}B+rwa&W2cp!Id_n$<}&dw z-GN6ecjKc$m!az^HA%_wLwkSPIo%uRke#A%qDYu3O-Ip|s7!}NGf0E0Qwrx;PUYfo z@fc42L`pDo6WY!C-VK#{Xu!#m-f+<4W;WeG)!4>W-ZZ>pI3PZH6*NuB!1uKih3iR= zp-L*=0sCr$IPM#e$I+9Zuxu0424`vx(a*9L1?c{;{Wg0MCa`guvjPT4cVJ!=;`VqS zNEt%gAe=}00zjyT`$SR)M|KE8Yzl{!ufuXmCJ$WcerIYKCZtwN<;r1Wjr2?va@7n^vi0VF0GsxFk18T5Z_3)qALBO>NNH<^-} z1~8#rH~!dj0|s@{18k#b$Kfecn?w8%zj?1h_A9%ei~}!3;)oleK8GsY(cDr#Kva)R z>9ktY4V09-0n#9o*a4AJOI$UF3#5J*jUF8v1kI^WppOxLj7tNv62(w~^&`RZ**3&q zrbn1e09F)_WNQ3v$LTf>6rQi(p|WT`;J_JdSA~O_c>;wEs8ol8SE=@uw{Fs>!z2HJ zY$_N~Y+p|M9T30HOj1SYdKgC6QNvbrxS@GL8VUIn$Nt!bXU|!N!v!%|@(Y8&42_$C z)S>|w;DxviU5e~|q>2C#9PXkpK z)MSRKj}Gi`m8EJ5Q0`iE9Gj<~TDY?aco{TDR7j=6;ulRv`_!d<(XF7lIh+f~S)d?2 zUQ6k~hmmGl?=~V|G9+QmfE!brFW4~~Wp;tjpvW8$;dV3&a0V_|!`z_n0%x#eFb-?&Ze+ciL&+4-5X{CF5)gL+$;qZ zheO;l=nRMiiEa+5p>oivkw`&FZjJ$$Na99i)!Dj50h%jTT|kOZEccU)kg4XT52;<1U5B*IjB4dT91$(zToT>-_oaxXU^3@=*tO}K`w$&9|=4)P^JOuR; z=zI1+vaOtb(~zZ_EU(W7S$g=Pou%nOgN?n$DDHz{(|U6HBG`pG%MnProi2C=9P|;A zB^802+|YoBhM`LLN%R!D2)#=+Aq1rXF&P3oKRCerSmMW5U8+172% z;!}@`*?@5h3ad~X zvYEkQcVMb#L8rFeKjEU=7%Lh_71{icc#cQ5qIfw>v9onBvrIGFm^Cl zhTH{v90Ak5X2vS;!GY(_GD!d>Ty1OB#&!1wR6l2du2aod(s0+Cp;n56PQ~8e{=;(t zbqVfKLjwoLdDJ_F(Ey zUe{hE8oq2-)>hJu|Hdhr0`!p`L>p#S+GfE)N34Lm3ZINVlwJ6Z0Bnrmp5C-lZ^}(39&>+EwL|n$=oTGd({Fx89iVw-b4q-NH$*^_XVgp8e6WPMX7axpx-Ap zTw7HD7NoKbhujjE>r2|##49@-_8?jBQ~V87_Ecofnpx3G%9kIay@p*YylIM1x2AFU zp$XN4rLd10EItbDizJ8>X4^+|?aFu`IMDT4(;MOup^3s}s6ahmkT@LYrUE-)(pgt+ zgZzt)n#iC5C)FBxW?eu6WYK^W6=g94n#&*L=ko%+9FV2w4bd!w#X9PW!HbS$77HNF zj($1umBWo1*nV;mH1N)v5G5PvJXzca2$2K*vKPrlv*UZGV0Ay;+0lo6k+%@?y}`~| z3`N$aZ9{-tB&3X2%<1^$%;cE~9dWe{--)xQ-jG)i+7~sRphsUhykQ{{5ZQj}Wh$g`)>tY`#aWW&C}51KVOY%^I*RWl3O% zeKoBf;)e?jw@fLVZRNm=;bNKvj|6QBV-dP6beayR*>0%Ap=C2*Df(n~NuGj<$7P#} zm`SHMX?4tD?dyx$zTA5)&T!wrtmzVhRAzEMPtxe7BOu8m-T{fY=dKG1D(w_NWCpyt z2(K{{18>K-4;R9K;%JJ}U3Jq*jnkqVU z2je~D*^A$mmF0dnI=-r!CC4YZC3g;2UDW7z6<1z^eNppAtJd8^;s| za#z(Qi4j6}1|B;*Kz?Xu5)H;p{&i*S9N z*ytH>#e2oB$lxT!@X{Txj_V#k%dq4`fSvWQTi%>cHnYcc*seL6E8#{mg=n(y8VRw@ zsctKzxc41@Ig3K?BsXV?yofAlX;O;n^>wWf5~v~yIgziu>s1cN2B|MP*gDD-_8V=a zDqFO$-{@2~+l+KyL2hctPNz9?+1Sq`wYDWiN7*VbF{Wu0m@65bCmCg*9I$G#!&OGV zmK?^>Z8E250AN9578Z2@dCx&f7ZAtibm5O~95*#Nen6&f@?)E3hLglGgOxWiMcYy8 z4lTA4Os#sO6(66;-C(BCa03Pef~JI8w7lUKp8ySh7`+im^v7>=L;wx1g@livy#$Az zJ?lI3~CyyDTGu}r?f~E-S?ds zvDq2uHAAQ)WuYcHV1eauOaeT^Qx(z!$+p6BW~&M<5rj&cSHU0`80@1g#fB$|MsWaO z57QCG%h#`7e)Hk`m+wA&^Y*)!uik$A^y($q|03&87tV&I7noN2ArV3X7%$|UFd)Lq z>tPxj;fQK_9T=bGm;N#1rdrx2RXa?LDb>Gy_s#nsKCXxV?uWPEygRR8uO3wKe>zUqH?LU0h(jBA> zR|_6jMwm*qqbUfq=2GP~_30{qr!hl`DnkbMh>kxh-5#sXPSxmOr4N2Q| z4P;oU93Jy2sh)oMBFeng>IEaT2}OZ65WUR%1<1DL2D}COM7DQ1{E4gd-kQ45qy4Ad zQT@5WZr2wesY+6PJ(&kI=+S_LX@Wot01@w1wcn)3&8lj45}8({=T6Crox6&EdWkoE z5(hR0w+Of@JiU57sJcB7cj--Yh*iDZd|G8Zsjl38nIEp2or-|0>UA7Am>bW4;IYOL zZ>_hnb>K?W_MS@Yq#p2vwo^lu*tD^xosR058;!2RZP`xO*0d4);?}ZgP4jeM$BL!& zZ(MpQ^F2HR?#Rx&RMj~<#v(zT05wZEm?tE7UyDdi4G5*`x#UI3=p27(BO zZJ5U#dUCJ$_u8qu}>1x4g?Ne0SZTinsFM4R|qT{U<$D0lE zg9fB^cT_F7@qIwF?*Pnk-CEaywxG%KOb?x4Eju&l?AwdUdb-xzl;Q)rpIla>np@b? ziRVpM_-EoWY}I(r;aoV{9YQAUG43RT?Xk_&gCv1?FZb-m zg$Ctt8PZ(2>cbsg+F1z5q0&_#-m?nC)~LFkLYcH>!UIxJ$mYB}o?c%qB(a-9yIZkz zT8{z8CU(_H-x9}Nfs@h%C_`!k=s;U+ zK9}?LVyYMen#oBugu)bqB)Eo;+ljeMN#>Su?4wxx(xyXAp%oR}nn#N50Vk>H z`eb^~q9i>umn!d92zA3+mwa7AG5lPV)gZ)dFvGAc$QJwkw@8|3Ux zHyH$@!o1vugx6BiV*#w?BbxRBDl3UIX#nG5 z&YtOGv1$j>wvbSTv1aElwj#buA7olai>pmaR~-`qJgYmjEz`i782@s+moCMWHLTsK z#+8!BXTa3~v4{J>)%P3)BRw<*|Z5CFw-WL3vwT>%h~*73vd> z&6@r1c@-|)0Y^HRYtMjGmijlKus=_|A;Neq!ubNg3iNwFQ#zK;<}Mdhq_(Fg{U=Xz<{4ep~GA2XP4pZ5kz z#b}%>npBRWRmJCulx)Fmd0AvsIhUdYucj{m=w*Lk;JX|2_5$ zI^k*gb@&+=<6XW7x+Tmg3^n}B*>T)Rpl~?2L6Z+Lbf<+8Gm?w|R0Ai{rRga#oTf`z z{Or!(LT2$y&WW}_*zV3o^S7Oy?kY9{dt=;5Eu`Drqd=Y)47O?&mI~6uAV~t9L(BkZ zg|wU-hy4K1HS@h7Q-f5)Wk zarX4PskR46^n4L!aMl}E+JNkxzUPG2?PXp%584oE0LuG--MB2CSjqN$Ua3_8rMRmW z$&4L(gTO%%J2D&8w4o}WSh1&N=hllWRFKb{EV~&sQZ#i_bJmAWRH|<6YSUEyruvA% zCYPw)#Y%&c1?$JJ)2ad}gcfW|=!CPH6;xpiC?wRie4M;`zMl=-)J?agC*LDvK zZS}ah0~-4Qpyplx+|HcOs_(QbLcW*Ae3;?VlcU+D)9(hEvGtx+(#unI?&hWINM>Yk zlZ!k9K*ZDGGlu3hbzeGr_jS=fh{P07-G6otAT%5>UDh< z3h-_iW976jklKevB&FkVI+{YILFpZEE~Jul4J7ax=5<7_m{dxsT*stoUZL*Vif0#u zvinQNe;XSLzZ4tFZvuMaOe=q>q13&+4y*GC7ve%1^qBjle+?AMkkN)ybd4VCSOp!z6A-9VSB>W<*5?{`Pk=As_ia@>Ky5w&{*SV^5m36DiYh1it4 zu+z|p4x0~6eZw)qj>S((oNP2YisspzV`#V0yEJ(9!C6Qk`{d{ZJjgi1xn0_Bp?PUK zvql+xG!1Q4FxHW9(7XbkbSpcA-b-RyWt)nh*c3Ng78fYAUA5mZZ1D>edv%a{M9H>) zaUZGWf|ZIv)yHa=`y5G=jpPYlno8_g9!q=`p@GzMHBB5Iwa5Dg6kvc$bss=^{7gFI zaCV#2J0Sjr(bt!N$1p5ZXk~s1Q&h@2{r| zEW6Ukce&HSk|a0(x?xuT@p#(QZ`NOM|HaEyItdj!IrQv9a+-r4uv%@$at8ziW&yU} z0VoI^*AqoDR^QnId!G&<>#MMJ=W1cB0c{i8J}AP@1uS^xB7X}#o8}!5q{f*Q(V?4g zj}G_MI9fdQooSo;Z3P3aqbL!+m@ceF&!rj_a{~BrD!hTkGh34@3((Y1<@;(_`i@>M zqj|$093)%jtO1Gr@ACBHOaPT2T-Ox{F(n8%b{8Q(7^h2>Hg=OAo-t!-qKSJ!!96}`zcrwhXB+x*bA@77!oO&MNnqUpgGd@BPxN@Q5w3kdL5MWiY2 zCOUX&8Wp%+3d0V6tIiQP(h3Y-Wty5{qS~T~Ps=q=gOM~ta&#!!>vcrshZIF*J{&>x ziebw!2t<6AOhCy9C(~koGJ0%xivkw9^ZhR!EjveG#XfQEA?Tc%oSn<6&LLF%PQ8AU zV-Rd}GOaJo3T_|O@hpOi;O4MVfm-BnX_Ojv*X{u~o708qAXQy>qXM^4oHG?{$n5$> zR4Px3VoEiwZn3UggQ>pBd3w(!cDH@Jn+SH6Pyb~*S;_fc8IQvRtzCNYIq`T${G`?2%h6S^l zTtp`UWig9$=SI>7Wsoc!8?7p73KY>wSBZ6j5L_#g9wJ%pkGPt5Hz_y9y@ro5fq?Hj z5yaI2PG6T4|a$#4O`?u6xJf5D^NK+(yP-;1JZbXM>kfwTEG02S95by7q+Qyxg zcO*ZUQ)Rdi5#4dJB!4kQVfWlTh{vD^qzfqudK0k8Tdw}HJ+myY;GD8)b^CNtVOWxO z6Nx@Be{ntP0E$AQraHqFwZB>2R}F`wobMAQVYc0DQtoE;v9VH96ZTmaC30(^MVn;F=$FU}!F0LNYeY`Jw4} zu<~FJP0ycpTOF-p4vbnw#lXhG1NdA31jxMYo}f((RE61=!8YWY2U;bhDA&B{=_Y-A z#D-kmdTES{+(lD!S+As6pp|@dxC7#mEyYC}NO^7U4F?!+^ZI?Fnayc0!qZ>HEXJg8 zFQXl=@OJG3r;}Z~6M7pb-!+Gh+fEc^(sqkWUnR@F4{vy{6mJax3Y-EkfJv|Nl1FwC zQj00wH#EE3_)(T@>KL8ne$wKzJAdLta0nPZW-;P^<@r1rYP$e1hAuPMbUdP)UtYVJ z67G5FvI--D>~0$U%&h1vg=MpsYbS%mOw*W4hXu%We=ju14*eSTd9_Em2^b6FXE&R_ z-Z`SB(Rt^<4Jr2vNDrwa$tYdu4p~+!saJM56p&ddcS<;;10n@$mj;74sd134$;$cu z@)tuyl*+DFa)0(<)1zUmc*&t@H?{W3p)=S7;nEAVcZENWkw|6gSOJxD0Vrol11^5J z^vVO14vbsTfU61Fa0Ak9G_8$zu$L+R$a(ME$ZcTU706z30 znb1KJX_5iN9?XKcQpp4mb(mKMG}@*W1siDElXjNh9&me<;*|j_Go;J6k6%9)z2QQi z+0EuQUCHxH`s7v4oYED8D>bS*K|NN;Sz-?*uh;tkj>X(wxPA1=JrhW5vG;SJz zpCGwQ0rZ?hQjT1W<2v19FaRo9B-Y59-U(*M*Sg?S?|{I{p{ZV}HVS5{3?x``8S(n^ z(`suGudlxn=xYiVjJEPq9m@xK-RB|LNnX8-pCA?nUmr@vpo`e%!09+Qz@%`g8Yu7A zUyUMK7Y@*K0lnYm)BtICYwoK^s9gE{mGNH;4swDj&=T9;9 z0ytNSPOt-)lch=!UKyib)xZR~sRl!moo-33-3P3gKq{gWe!H%ilPwz1##ge_LMwZz z6u?=EE~2w|xHJJ?XK(!DUM44M7l|K1+#AT}varD9R#F}?Z>OB@sBfeZPM_t+(N$J+ zUA1nbXh8hU{SF8>3*LmIA;5+L_?Zw<{G||4L*C})dRKTJu=gpspY1KA!T}RG`KGZ@9W(U7GG1uH`6h%-~%}^gbFcE!hl}7NSc# zCQHdB>`{@IhThQ5CLIIh(IHvmIAk`{Uwyu1nxNpNp*bVFBe;ANkcSt>;#GPnnGP;J zo&>w@auTWgPIADs1+5(Aa9Ig{uFWB3+OO23ZQ|;Ft1B! z=i9|CWll;C^}JI9F4WuY0^ij+V5-HU=o89EO|B4R8k0yjL`{G#pO$?m(7V#lRgF`Z z`lDJH%8`0i@ywu5T(O-M)!p6U&PgE_6UV)QWc$(;{AsB5F(wU2Bt!ABN}^VtsviP= zAjBe;NoD)SX*;gTN%n?#xUF$YHHoKFlu_~>kZR+c)rKqMvW{w;XkT1fZ#R%ZFV1$$ zf!3mcTlp}3_7y&Emw9a}@c{-t`>xZkSkWkgXSumd>cD-Vi z*phEsNa&|OUjRR~A#?Oiuqrjk_kz_cGKQO(0JKz!>WDWM0{6VX)4{K90EMHbFQ`0) zqex~?L2U^;LB|;GfQ>4MqW*M+0OKw&{)OPszo{RpE0!&jHz52}?qd>$BB$$prFJp< zavxf=+xfm1n1mu%R836Tg+*Zk<1Uew_m?iUjO6m|D7z?4DbS!N=Ta|6MW^gtLMPF# zC@7X=bKJX+Lja$OU+`Yg1EG!25T{(zT{!SEP#5A*+6f>f}@GcVxms zfpp#_@@3RMcy}(ZzOrOcwk@|Qbtc^fGUzlm^Z-=U;7e7~%*E$Ol+`xc^|=P`v^u{m z{C6h^9GY;Of=MeMpt{5#epgU&~v3ZgnwJ3N}g48Xu zrNYcoW-=Z9oTLYdxK1@AU!dN@xAsmHn<&p@fy-Bgr@$hOF1C}FoK+ALhg~nOi!`0M zyHg$Loe_fOln(bbXk(KOyo&Yj$r|)NQwWflr`MLq9`XUSNSvaM&(5+PSN$FrPLY%y z`ZADib9IvqnRuN=y`L^I4|gG7uBo1g&^TZvm)n3aw)%fu-2_SRxssEDsKDc4E*(9O0fTCqZ(W3KrGXwM)%) zXQK1rQ0Qf0h2|#%0Z6V!tmev5@MN%gMU&#CU=iA0OKQeTdi0pC*={8>wX1%Jquje1 z7{eK2OUg(9CN8CWeIyww&GZPFf1f?WxP4WpT%`&?hbSeA7QEFZgU}BGKsCv4H1Vtq z8r0Yph7w|EH5Izs3~g1n-rcldPkXqFZ`%*WP{PoRh2C9(5-o(gtC#B-!is29%u{_| zcheZAy!I~(K4>Oa{NI+A;E_qKiORaAh38!ot#N`kjizkXobD zUGuWZWa6^Bn#4g14P_nUV2`^{^n?xA2RlV^dvxYO;d_#L(ac-DG^uuJd%-qMKaA<} z`v8_@TJHsceq}Pz`pPR+24VxUFOB;G7@#;a?|{pJ6lB7I(q%f9OgNm!E`^ciilOKM zs|M`^LS8+-&bC$Gy~=Uvfi7E)e48r0w5|5BcaG_(c7)|Aj5m!WIg|@(`SZ@iJ~SP* zmB;{ORmift$ss+yjWb}RGt-c$A#XcmB`%=*=X_-wu-CEZ0koD0CnfTlaH%-{M?;Dx z!<+(5)S_#plJ=05-)HR7%;=`@6;ayM1VRC_YpPm=2%JN4S)267-a6O$9roe!Od|lm z?gIMZ#I6Lw4&KAYT|IU-o($Q9fEboM{v&t@gBYDFx+Xh2Np&V*m#Z{m>Yc0d<-uR8 zL?+x}T^M#Q!5QEx#jZ_Zz}X?%c*{5r=$mmfTs)r$+ng>X8+hPZT#-W!eY%`)ny{TB zh*yu8Gaj#;Z?Ip7D-7wh`*RN@s+kmeSrNK$UEcc%GiCQiZ8e7%&FOSG;7bEh0s;NK zPStmM;$h5Ea-U2#tm65rNrs|N_Wk4!yLdmCQ!Y|Mw4TCpT|l0RPY{T!cttc0EH?!v z^~Nque$w12Dwytq)k;*0fVtF%rUVaqaf?FMNlxyQBhZLS`-n*Ps$v;%IEW*N20|v@ z>t|h!lw^Jwe~pJh9yvLR&oJz9^<0zKqZxs-88IlwbP0n6+`i=M)XXRyT{dB&!m}4= zXQz$Qe3g4plAUXmCcG#3vspL|w}T5M(=XztG!kkV_4u<7djd(?r8Ll~G!KQR7H(ls ztxE<7=~i%VY*`|omo{!Y`b~CQ?GjcP^IlLX|5oJ0ZotnNG@!|4_lC>zpQC6%yxS#b zz2Q#AxwI+wAe>#=1|LPW&}3-LqYP~ZISA}Ny2y?}7850T z^(Xbq6l^;F^yRa9mKYjbhci(?{`|16M?_a+8=eHlfefQ(bpL}n`k3YQo_}*-% zKRsbC(yGXU36i-Z(t>VxJ->1nUP9UHls0i7s1{h+Es`j!KCbPc@#EeH+Pkk%?=L@O znI51g(k12=Nq|T~;Y8gD>H8r#Qh+PpSl%c2PKK5#8@`SU+zNVN;d!|l#?O4o&po8j z{53B4Yx#5S{F8b~zMj0!pk|T76NaY23?_PB&a9-*pPjCM`z62d5Mz@BesI`)`E(J^ z#P(@yS+9H6Db~?`_Y&|NiCerw@NTB6zOKboTcv$FqGSht<6H&8}?~tng4Jb_#@uR*N2?ES+ZE93& z>}yx1ZxHMKkiLo#P$$)McOl*E>VezUyMtgl66HDft?BxJ5=QCR{kN5KL2gmhbd7~R zw48$XA;#+#^E^HM_P=$UA#0)TLnfv&`Dr`;xBo5w-^{&9&Na!Bo;R;m)KD5E;C-`z zTnIs40R;#wLM%#*e*P~c?>qH z`Hxu)lOwdY>rN3vi-9BXiWsI3h~A|h-Blh2dCjMr@0^*v;2kF|hvv!y9MPViZI15UNtP zthXA5Rs$KV?A>+lLsE?56MeC^wL7XN+-b3aism`o%^orAXz>8wGluYaF0>jETK2oH zh&i4QF`3-DVl9zGPovlrVlhpQ30p_+E?hEDi&{g_j(Vqh1HY!{OGf3PqSjGjFi`Ss z`2N-w*PRDTOkE~lUu~*CL%OgpnlZY77L?NTuKhxw+Fde;KDrQv#kZ@s_~L=JH%dtD zX#`Chbb$B6o*fB;LkMTf|KLD>n89zp4i*!C9pXxSjKJ%7Rl}S`Ek=?UD<|Us*E`jd zR;3hFyb+Y601ehQ{SU&-C4G1oD2pKiekR0hj;)Hp?N{o;{7LGa>dBeI%ZVQ&xW8c# zmzZjBAV)AjWcC{aUwXy{Grf;O_QDILGxLGAMmF``v*^{my=ykLHOf-E#8h+E4%95G z`9$3O4=QUIf_&6o)dkMb;#tyjTt;zWwLyN`F9a(CL~)KCF`n9kW^ zPN&9YShXgX8r^V)+|p2N(J+}EJhW`?x_L~#MD{f6>8@!ue8Z1xOzXJiNdId_Y{LRT zDk2)ehmm}TYX~!|GkVYJZ>#DD+(ySQVOQXd08lH;gf$u|I_yD78==#T`7P*-{0JGJ z2y4!^J=;f;;vfbnAV!U95FnWM=nK!KSr0)cyOYRmsfSjhub&(NvIB|P3Hu6 zQo=0ANUsNn#TPO~<%!W%5haFMY4*`};h8~E6U{YVsOT@Jcc86$?A#n9yS+*Pm@Grv zSUpBplf(5SXBU_&0G$c*plBGw_OnKVy$|I8roA(ScP;)~NNViSs;N}p+zERr?kG)v zd2H(dj-L&hkEAp6pL>)aY+N_nRKaw``^1K=R#G`5o&<1U2TftBHHIcT@2OLmGcg^D zA+P}C>gGfg!vPBkkyQL<_>k~I?9;VW$x)+=C>1?_WG4ReIk8oW7?v@W-PsdUvFdy| zd-)BnBphkomn(Y<&=kqCSU!HCkjNxx;@c5phDoZ$ALM5elX>0~t0aGq8OR%9iGZfO z_A}#h?1R@*BSChS@zW1@{zN_!lQurYy&r9J8MKG<5FP$;-;sL|A(@UwhS{gO zSYpDIrt}!D>=(|5L)If=T>?GWqQ@VUYn_nS-U}5sYnGW_qwbA^)tS4_fh4-??7_}9 zf&|2)g|F?wnbbx+o#bq>HR&k`|3Lj9jF=PcS1vnS+0(ISAp0G1qC)Jf*Wj+Sm1>zf z9C^30GiHh6^ZR1R^0T@AFxPjgKeNDD0a0xB3)wlHo<1ve@LkS;!5+Oo(@LkxGMHXl zpuDjjlXl6BcQOQorubIFyg^0qGcgNf#Y~U+PCa@ClehX zc6K{xK5W-I7IP!2JtP3AK=mH%9hu6IDJ$`fEzCMq3VI;s3y}H{2iETpF&^w-udk-X zaLG9{`+g?KE#6iFY3skGL(e>O=C9{F0UB4()86snu}eRPJ}nnsa7jwWizE}V^RqQ| z(1^lJLIr7(LXRR$hIBT8pgwqyv+@oqAvsVg@Jx|ROX0|X20Uz1`M7)R^dM*N(w;`n z*?wa={c4SYmEtw0{U~Nos+HYG+%?0huqz$$+lJPwyuw5OgK{Jq2z3W<8WmX86^&nh z@irWO>)39)LTn4Gn0i1!8Td&1L!ydCR??Oa=z?Dey>b8rEAitETKx21Tk&){+@&9x zc@F=}5)knu1#lrS>$&_63!d1#fcXG{M5_cOpMylh?uGSugc6EOXU;&swEf!%wrUxx z-+&#m)k{c?=f@1{3^gP!44zF^K&_gm9^jIxK*xo}9(mAmkWH_#9w% z^hQmtQNyvhX~DBaf7(%)-A5q06y+ z8>{a^p3lA?hh3ASvKZFSd}Pn`b2b%BanQWuNd}T_D9Eo7m}*qtq)ofMYp9r?xq-xK zTzBRaF_d!*|1+jJi;!E3Cz*Whh1Dm(ZU{$-n3e;tHu=2H!+qp3o9ZD>ky=b1!=46D zF4P^o5wf+?6kpN*Xa86RdaF4^Bo^}ga06DrCpWTpn31Fy)*FJCyuh9>enTeQ$Ok<0 z&r|9D%95-_n=JpMQ<7^>I*=^y{?U;phN|MlPgWCf--qJmG-UfKE_s5GfjlGPoVXRORP5|%Cp!^S< z_h|%J6N-I;zRWUwE zXE&AN$5jWwl#EGuV_+f?QyS5&)YK91G#1ot1Yf(w5q`%XL>IRrV$$NrEI;f(ra;>_ z26&ELYJOs9aKa1H40;>k_=o|oN!?s0`6=zq)So9o0lk<;M8wX6oH0cW=!;=1M=zcw znTBtHtEmK3i+%o9;K~)%BAw5_7<1EB4M6}ai-81h+E8wf;a|euENj8J^+2gO0_bgi zAzMd!@!V(j82XE6Sv((H@mS*ME+5MJ#o&>!`MXL@x3VelKV&blc5Y=8|3I!De%B+J ze(Kexwo>VYw!1OE^c(Cr?}AGpD?5gi z^=TMI8ik(wYXRevO2)p6;F3=7!zG6>&qKCpT`o9b2onygvr^a z0N(T18GtMW~g9 z?A3%YFiXU;+%V2tj_zWQiSz@eqThvCd8G3OpN9E+vZPGIhbw4SY$_R z=%vNiefFyuM6ef#KL}_Dn#_7`rcm`7Dw;(j=uCr99W(9_BNdz-O&`!=oCT2AvD43u zHSuDGd6nLnfL3GLp6NCsE7*pBboA?)^3X_cCd>X6=UKLj$i3ej2fbOtbGQx@dDp`S%g5S@J6C4O})9C6Y3>)y!X zU(YjBVe|{}ux85M)qgzkos*ft^1B8waRxiZHNQdVo>lu@ot$o|jsjs-s@U&v79~}3 zGb=TVooC%-?2K7wwLc&WWFC#WW3e-XGKF9Fo?CPzSJl~jCchi>OR`?V6T_EyO29lC zDb&%i63s3Tg|i(=*lh+ow|u(KNW~C)N56LRPn`$J2Gp zrD1Zl9523WvQ2EZw_k{tJH^)=cimMaA-|ej0_t>(gg%FX^KKzHn{)B7-~Q8GCsb`% z=7?xjWMoy5ZD`s5;Q3SMy-|*A{&Z*HBj<^gM~c{Kg@kLK@lKiq0x82cA6+u5CMTbF zG+c4<$>+=*@2Qc7KoBrTw~_(Gy0{n;`8FajN0v#AU&y3|3%8kr+~PcHmoR0wKONGy zL+J4_BgVd%LTw8rt%|BRhPoyGAgc*3x;aJvv*E{Tu8)xIB3V(uT&;MY=Usq$AXWS{ zBH$F3DAE6_o}yiEe3^@7fc%OiQ(X~b7hKYvNIx7zky+~;F}f<2@06Zae94vkE5-df zqZ`gw2l;DShUX$MpveL*dU`=6ckX+Hl3CSdiAgf<2Ez%ei!Bt+l&}y&wR_hffhw6C zQ=GanMoc5I8*`Tk_ZwvV@J0$ep|k(zQ9QtJ=3kgm*@nr;q3~(DXmXSgpkF5d2;c7YG`mT(gFoh54)XuJE z$sfweNSx9t2Z9z>B?#|M*a?;xu=@H!E_cH~55e35R3O2%3@yGhtZ~IOz|hBlq6TwD zFutuGt0;hSW)BM!Xq~KB?J;}Xe8h{w{v+a}$xJk=FC$}KT4%mxgB=oaNTZXFclAJ1 zLk0BH+s6Tu`!luv)08vOpaYyW0Xy^YxwiZzVL;ZG{QMY2GQRoVKiOKiH(PUcn_>M2 zUg6BwtfI*qAt{b};OQCHnG=3RV%{GO4#qtEiKGqa7n^xf$35?K`pr!AbJ^M3@V~kO zq|*@)o8fvT*zBa{57n9NqLHmF61(Z?e-N&J0aTeoa1aOFDhIewG2AGF%z@ceNF|;}Yiu=5 zimU#U1z8)9_ifB8f@x7kwl($q#YDerWc@Xaf6 zArJ%jc(Z#9sUK$8`7LCBNrO%h7Bi2zF-po%Q}WY@b`s}qYL2_9Y{A!B?K|*DVX{bg zxQykoCRjQO&v9J?d0geZ6OG^=yl@HYan}t1hmh6LU1$D4|7!IW*QqSQ#%4vsz-Ksn zw7Q~^4tyJyN{hQWBNY{cX1-Q8CKWK;gQ8oh)_~7%ExK!v3qo~2?P%n@%psMtZ|y+e z3hg9-(esVTg9RtaHwLsFr-3I1a!)qv!O6@uo_9jk8*S{TyV&(o zo^Snqp_F2k?}-@58;M8GpTWRW=cgC2OND;lYkx-9R(YoF=MPG&in8I;*KCIn*fpN! zjh!$4Z0=I2(Qw1v0`r#ieDO^?Ur+?kSeLorSERb%$p)`7NC-x3=_Qqx;z@8hO!9+z z8bPuCv;%M|F09lCKQ)mXE83jw`o@r501h?ciScLPc(~r~Dk72dT|^`2A=sM~vpl}B zGY^s~SkEj_$k$S|+|PVQ!3>mkd!FR1ZYVdboujWw5}hfSBHlCcF}Ct`9=kDsX zf>FHdhEcQF9xvyv@C8{K24;|2NbJ)q~aMh9nHh5-D zq#sLu__FlCU`px%z2u0oNJGvC`MnWRfSeJHKv2~}<#K<^^ln1uFrC65AC52iB;WW(VAN=fhVFg5lJ?jID9oZWaHj-L%9B$z>JV}fO<`&F1`fAr%Loj_BbA4DNezfBU=E63{f;>MPB`bX z?v21ki(VbcS>%4TDot!p-wuUmq~q6UIQ zh?$Xf2GuRSCI^wC_<|;Fpz^>soKB@g5rU!;hnvFC#E*eq3!{)8d?)hM`(s94d?%Vr z899ZxZe?*}k`3Y82)Pw3g{N zA}IVk7_|is2vO_6r~xwr8MJD+ddabhdL1=`c*~SMFCfIsVmX^uGFaDJrKW%^(UZI6ZEgneU z?xCEE*CxyHeC&EN#%7ZQRSlREFaYvrbB10Kyt1aG#v?!qUwQ*63yH(CJg~vWFCZEo ztf%PPhb}NA;EwQbe*_!Pr^BHKbE(HukCY>||B(2FeTN`;-;ZAFIiCR{0L0JycuW}#6HKWq6s9*z)_^-c zychoiRrw z^)cy#H=e>C2&4iGA?`XFfe*Xc(?5SuFg0>~HDVRK!4&N-Vs(nuHy#bPv))jc9V16k zg+xjL#LynaJZ=Oe#tw(1Ob!JcwR^u9mJwS17_Xck#ga4qw^v@Sg9k#*`7yPFsSWCO zhX)b#S0o)*e&qSOG!Vg_#BbqnG`2tcmF*K>X}~Co3$b8q82-J2g3ve5Ecr_K4H712 zWd7I>NxYzx_r(wF#CEOo@q{1R7P59cnt^Dwowr%TK?&4~G$~$3`vLa}*4$&&B!#X) zuC6_@hZM@m%>(j093I>>^{k)U2OG+5K*Yv)Vf!uM4LYEZr z$*lMF{6QTWkrRn0X~G#xA2%AIjL8vbKf@J>+?k1cdj$#$66`8YMGW=^Ox*OSNuI4( z2I>Aj3Fm0&MD@{ZtTNlf{OGBsaVs1g=5t*}n}I4;+zgJg=W~}kLo{;Mc&NapD}O&m zxU+*D{C;D~kd#N)hW-DG}b2$P*0%|qSzAU;F$&B2%$prj6%TN8+^g@J+ZGov)RmF63m9&DlkCG zd_FQve<&3`TA2d}b)0*iMkd1&w8*0ZI(0zga6h9Frnt6sFo+A8J*e|PrB&*aMU0EM znFU@F{fZSs9SgKBYUMM8ac)E2xIcFYju%S8%uge1K`7BZ?~VifnR4fPdO_8prd8m1 zlJn&ia{bTjYPAi7(4JX_;S& z1CL-wJKQG3R_w?#M8i!$GipSkSlXoAG+5gn%k3o@fOA-T%pxFm;4}A#aPuwVSq#a} z8&2%v&bB7UuBHomi#zRjeX0=7V+n|DYDeP+b)FIq3)BrjVV3>uG>4LQ;!=BTl1P_f zPdo|vOIbEN+>DN81h~;0-8Fc3Sv;^%9Zpq};Tii z4Yv|HIz6PvPGg;&X97$Yr=?0Mpg_M2&3y`}c)6u#bg{%ViXHiJ#~>jvDXhO%FSv;9Y91}lCjc$a_ECCIej$7eAgd3_ z2PtfTkm>Qj6)!=%&)`Hs8wUzJwkv0A$iW1d@Ke7Fxf%3e>%)m6Nvu6q3hrhFh(4vN z6-gcK?Wz)2-Uwa83Y^PB@)TfX<`I?F5~1~ok~DyB%u=Ezc1ahdfxM2M24L zeB(SX+^NNtb1r)vt13!CY@1hp`04E&$XNI56e2GSMlW>f#$e}DN;sF{K-gw)WY zNJxx>+kUE!#Q0}Eg+p>~a2nV8`R&$+xt=;VL8h7fREL$Y<2;sr8o``wmZwNdY#Yh! ziK%wDOoG)L0R;^adj4EkvAL}IC)TMDl;1zdR%4Cd>##4edf?Lt@RqgTZphhu;(i(i zeSe`!5ySbp{NCW1Wsn~FeUi*3&YUpgLJ~v{iodZ5_^hs<*aAgYe;Wb)p6BnAV3!3d zGswn%XQ(Fn_0d7v7^$aeJpbBE+2>gvDO3Aa<~PYhXB zv%Y>BIsa=f9)}oGTJvWlu>q%k{S!N1DzYR$H&ZE8%+-Gy0ngFXZ`V)=gV*~T)A4%$ z#7NEczJ6mQYaL2{gM8J7TZ;>|6Zq{KR;9DM`n^s%S%1WU^X)x;8v*fr(Lo-=p<(?F z2C!5$jo&B6w_v2-r-L3~?n+N1DBYKzDFmT+Op<=@5Ps>n z##WuqA-J*Aeb>0_X$1X;`8(EGcCnNAjfvd%+X&^mIsdp$_~`OSBN8gu0MV}KU2~tw$7gUk5LF^EB{U_Oh;r8e;YZSy8rAh zkbdcpzDCNct>3|b5li}Av>Nu8tN-!hL9m)_&U4{_8}>U~Vb1OON5kyk{ut__0{yXQ zQ5vfCcM1WmRmUGsB9q_W^`x1nP5UE;i`*aYWa%vY#~(af@A^BfpV2D5`X4bs#DDy@ zQULj52y52;cA?99wUwlITlP9=h>~0%*cOie>R!H`Ws`9kbbvB2=dka$6l-hISLFAeU*PYgV{Gl^~t>z;e4diKH-y`!IQfLc`k_&}Atjm{}P8o>@@U&VTH?V2aH3`|?N^^7emX4WI4t zb2F3+&L;95acGm~T7Mf!(y}an9861*O7t6BW?4FaV&~PB--9Vgiz*o0+sGv4UCYlg zd2%%Rox7-|b3;FOja=P1Hoi}ny4-~F?~_pUTIuH{gS_m*_dKx*T5tZWG3dD=eg5;? zB342AZ3OQ5&OaYnl4|RGw?slXrHk_^$NEBuaA=4PPUqf7kjs&YjN&M0S05h7~2hvqO7#keu73X|>;2QMEMZ zpGNRt;&A$02+ih1-enbVB4$ay*CBV(*W1j-x8R^`2KV=}1UEaA1{4V+K z_TF`8<=(%)m0n<4Ke-kD{u=A|#|Wr^xp=#<0WTjrzui>@A#Lx+2>hsHf&Q-XB;(|c z_I3>#^$0k<-9QnPbLcxjvLq>gP6WsqB3b(L#RF*K9RF?*ii9<4dH20i^^pGX6Pwbj z>GgTyGR{z9`FOXfC_sSaeAjpq#0UgFu>GaN%r5Eu7+C_@=e(;W@Y9C7?YqX4mjwdw zZW{FZP1Fxd5(g^_aRG?*Wv!rAL_E=uVqmUKKZLiqhY_%*Yo119K=yrdhWVnN7>uEX~3@_L0o(W!#P)ShNJ=# zu`J=Z{BxW`-U7kE{ct!~%aN_m&ytJ^8Zx=>P9H#P$G!L29}g^0g=c;m8S*+p^^BxW2@Iv|m&ujzo7w4IchCV#uv*_7 zBoJI=#P+jWL@#3jb$@2&#>xTo=2<(Go!W8+^B9Y&kY?{xe?~$>mG4c~FrkpLTF(%c zy#pA!XD>|dU2eEfHV?Y#29o-&jHqnup!@vzY%HYA`=+O)j4{Y8zf?<(cv6b;*y&YR zl|Y7~5n0H>Jbw~sKv4K5-rXWeT(O~_t!qXl6t>NXcfz2gEIr;tCt!k2HtHF|=kTgG zlAakiN!s@;3eOInw~l`8h?_wt2-5G>%KG?E5csIdeeePJPp~{FwFYS#1PT%*-Rz1l zk$00{g7q6QB*Op$8HD=dKQU7;`S$pQ@Sn~nMrz(;XAU_#0g?8;nD|fZa-ZM+hxkwb z{J;FS|Nf8v@n8Ps|M|y%`Cl&%0sCgD*#c;vR&8WUP~;!(F^QHpgsrN_U`C^(T0~H= zm_$WLQi_r>Z!M3jc%99E3`PQ0+%$E6i)mKmq$F1*i*EPB${%r8`GbTBES}zNrVTB;Vy(0PA~B!^_)sJwwq=HFs-Bv zhY%5g=&mLYD&Y>iVQyl{0et!m0+{J=U$dwi^FjocmMcu9zY9CM8=zy`^zLGak}1I! z{fl9XIGN>Jju>vz=+%`G-Nmedwq;t|FJ$G!9x9o<_PkYL@e;95_Sjiekobd4^~JUn zw@1F3_|^#D5GZ<-0epmN#3oFVBgk5S*l7r?~$#|3Jg z84PGnvY-{m;aXFde^CRiJK7tt`oS61#O=sqq)000RBAtK}0g_vJqdp5+Kv6v1Zl^*l1DKO)jqw))u|eUZicM*a zKrLY)ossExgA!E7y}cBVA^3#FYB5_Ai>ZE28`ZlI9}z+QP2_!CoHQt!EcoJg;hDEn z(zIW_5!>`6=?HoZ%i#o!HhaS;C}j9YwM2KJg#tSYwUqC|(|w%trNH;a;2aeEn|g^M zjF{5dqoada36*$jfV^=qkmEOoX7Bsw~<^FsxJezjX0T?QHH;~+cEO%|1EHe5lTF=V>I=}N2NYh(-c z0f{AEJahjVQnhuz#|%w=064BKVr-`ytb(}iELQM7z|;Kw85ok#1*t*p&@V)1EdH*{WEQxUt&_)e($HDuX#{yQyfDUgm&8nZ4UaT4*D+ftpTXnzSm3IV8_Lb^h65_bCfiIyuD&QfHDn~ie6pwwWZ1$hvXV}~ zrelm~L_YA)9oq0eh%_KbY0{S-BdMaTO?Y)Sju2Zly)Xnt9f2H3w=T4)e#pfuN%PrV zLN`5l2K)4v+@%!-SFA@2?T4}@fbX#dC^<=J&l`bK1PBhS$9ExczjID4QVjgOHNoYh z>yV4zj1+iqUn();mg!u{Z^j$J=wLLt z!U~gQBxwKi+@Z8p5XcP!Jxs<>0A8zwWg}Z0%u(-e?^Mrt5WnX&i#$I?6p2wsBU{d&o9X4dP(6dpb_t6=Xrd5Iat?byQW`*zfSGzsdP*d> zXS@@j|MEq$O>?zv4eWEIShAbtH7OndqaWS~Mg7KMyN1IhBz$PI9A&%_IcQ@dnDgU) zh|TxbT>Qm`I6H{N!~lWl25RJWSUlUzjfP_yDO?hzIgLa_ikHXs3NB8c(S=K_T9i7w zUk92IPoG^M%Rmym09a;vq%F4kfWzlA)(1o}FzDgFXU-o|B=#5*j8heYCpK{+O?Qj+ z(J#7^zh#$@wxF~nm53CL2%#=0^5e)Stu_i9aorS11IYd3$OlK2*u2%mSu;ibGX z7Q(S*o9aIq3viOH&d_u~3y}>=wiCf8FekqlYTseqhtm>bgFDBM>1ud>GfWN7Szuu) znRnze>O4E2>Bz-$Ce2Q*oC8tk4I_FV-PpMgxQ(hlqitc=;%p2&g~UP)|)H(k`B!r5V=HlOE< z!son$6yOSV3R0~SEn0EiRO*px|KrcK1<`Lqym|F@!BELLTk0 znBzErto68lYu~OObS+-P{s%ikl**fi7u1lftOWQT_p8mWOI09`N&B}^PYnGGsATMi z)?>mpB}AdQ-Er#d3o%;7=Eh?~K6#e0b`vTzBajQOui+H_$Ye9(oj|eXaGD+$9&)wd z@V8|`uV)l_K>lcWv1A=t3gwwcb)qK8kLfJ_!1_t%L-_TWNIZj0ZT!KmY*}xQRsh-D zB#yY~9Ji4P@dMaYn6aGc9}RFs4CAgh#%CZ3dZ<$*ou+@)DKg3p>~>yh3qZ#dNycNz zgh#>_St1;ikXVvuW>76)|KJ}9*TrLt0%l5AobjqoK+usgdsxjN0tKO+T#Cmi18=RZ z;g)oUGa%4n)TL`~1lXJePJSGekWkb4J}iO2iJ8EC_(Sn*T_U+PVq&x6e;Dc@?R@E{ zUtwj0kq&6#3b42me=+SX&Yv^J|DN9$qWFFf5poK>qFt`B43S#l2`z7 zC#c~u#1FR&B*QxB+#4#X$$05kKVz_lVx1LQ84DM2b{0DXQLqn2<>VT_q`SDWJW($V zO^w3R$n)jk-N=Rd%%v!K#f7^{IWEN=ZU{~p#m3M%*-BZFeJJZ`7`o2Pru}fAWJ|qv zz4|dyN+n&;!n2F40Mzi6LL>#gJ!(Mgg1oB%`%Lln<4J%SiKEt2ym%&3Q1?BCH7QPU z9QNaW1yZg9(GMXU+#@LUmGMZxG^y5O-x__*rWG41D)j!54W``DfarTH3-vQ<4_O{6 z2@Bwq(ak?D6uTUhc^>VbGkv3}$`bHQnwi5JHk{AQ{Qn;=)Ia{mfBDyc{=fdy|M`#q z?SK5&|NL+N@~{8Z`mj|YvW3I_D_?cAfpHF;&GE&k-WP54$?Dt~fM5_Np!{wOtu>S* zmJU4mikX?SChBi~Au{_YKw>iU#RM?cd79mw#deX0m}DuxSWePFMZ}OB{C0foBfzV0 zPRO6o4DX2weZ(luV=s%S$ro!7LdXzup183AbuY2kZ_&sc((-_K?iV6i4~|RKmwd^E zsN?WXTEsZ8AWEfz*o~3l*leVEQTcOZg=m(LOz=Cz{0#`fE>EoDVh1K<`yZ^QuaToE z$Wq;yDb`C=CK@3Xbk00`tEhD^)Olw~O5}?n({RqxA|iT>2}IhHaovzW7HQlO-G#=+ zZt@TI{x`J+5bJS=0GAe$o6lY2hdnhrbCG#S?00DS?sd#)56wo8 z(J_=AMyVcapc8gB`LG*9l@WEc*`7w=uA@Z(dF{LKeD9!TxcG||NhpwA)C;v(MYs}d z^or{^oQt-sLG$@DmZH3ATYfiuIrv{^lq0^F+SoYTL=1UuxKj{5Z|scALfU-GrS&$_ zD9vp&ONZYLLNAE9G9JFzIeRt9I+W#qP;6(4J`xAacM3lzmPA!N$CF44h*!|}_%38k zPT5j8Ukp9SYCJ)IClJ&)ZIu*_WCVe+E9g2c?eE185xgzMy6wdyAc-7;@);HrM(nH# zoi4mF?4)4bT5ZE(EE75&>D+M}VZ{QtnR@)eEuZ;%vkKc@y!O3gnjEObWQ|3tMu!`V zvFek#%PMW``{Gse+@ej~3pqJpIEG4`#~@4Yg}g=e7)l6Kjm=GZ+io#Q@Ne9|ck6-) z%O#FR$uB%RBvyXO2j7@L0LD1?ZUqgjRGWF4Z`;V7wE#iNty9&$FP`c0yQ@=Mk6ciD?Ch*z=ujYb+P z5n9)K_>U#A*NgCuUkn*Qau+jebXjbZWR}W=-weX0lmQXE^F}1gg&=F~-VIZ};(&OE z-ywV6M2%o6b-L`u4>{lV95)D;Ios(=$d2#DFR4Q86iAq&Sr08E2ShMT?WU7sN=R}t zolUFNerOx~1=_YRetvL+0Sg%AZog1MkvN|0K+!M@HbJiay0ZtPph(I+P&9)w5=x>u zo&=vcsx2T(z6+~pBJi`i<4h3Vpa{}-3&hMs77#F14bY2>na}SH(=hLgZ$b$s)Be1u z7xv$r&x^;{Hzi3;KA;zU+X)Rl?^dac%5G={EN2#QVg+4KziVNxs2KHt+mPR*I3#=C z54gg47?~j}{(cx03bTB(fzHUJpOdnrfgeG}sdJ9(0aB?tas#gkJPNyVd^lQwF3=LI zO2inL;=Xt)(G%K#zz8HR3Xn07Fw~b#vav*r&z-aCir?ZcQb=2wlXJg#X)w8jJ{QPEH)%&i<4@=a?a@AItN+h=E69-M6tVe<`=Pn6biVS*8LA6V28yE zyO|~%#{FKi@4Z)=QJAf0LG$*NRhZ|5e?mV_t zGcQO2<6~y85nu|cN*tVfAOX(I!y8~H7~RF`6Xly``SA;Wz^ZSn{N=H;Bw&+6F6?i| zIh>Jzh|CHI!Wd$%Np1h{z%yWIF0;E2P&$<-j?gYpss{U|85rwhZ()COw zuRdpeZU)1WQYGo{I0sW0-e=3Aq5dHOGIrcDcKt5w2z4-sA3y{&{w;~1hyiJmhG43W z1Q<}VNy-(?XV-m~bk|u5fmZ(Q)qGAO?0bjbA+kEaQ0J}i+l%LLPGTpX1P~Y=2(4+E z_=@yHR3Pd}e|wRB$~y}7gU7Vdgp8OYracb2YR`4}*q@1o)KxSBp{miZ%Zs`?jFtVZ` zTt!>Xs%`xpWpS{r07jy_8X9k8yG+>q*1%D>Cn?(f$AAI{GrP@G^}cxKk4~Q2W9aK) z1(#QJ*JQ`L0OJSvfyy>!N~ltJYyw>al~o*Wuw~+NzMdS20bYE;?Q^zAjh-S13W0q@ zy-&6@GB1jfHM}>_hXxLFJw84$47)vs5;{~ z-kZ5oJ=9lt5>anutpr}Way$tHWfCOkpRgg|iQ#Ln@TpLO8_1I(m2c**;26niW`$n? zIY|&at9sW^xZ?LK&8X=DL}4rT8f3tKM8rCo@Vp=ADEklFa7V2ch>~)UU#*tU1PiUF zjM~J4QB~Mu>?+vm*AmqR zCQ8bk(5-un@=n31;whPSVVlqHqzuF@$)`R4?`(10s{ zG2Dlc_U8NhVp{@HrA>p6+zKZJXG;G$xf&!eTscbF3=N|;7eGJvz6iY9SMt#CQ{!1W2}7;h(c`ti-~B*@q9%#`b;x$ zRlx}PbyB;BNV~O`-)uD8sa7>T{{3ajVC$4@rD@NGvWWn#kRzj3#eH4trc!NkWRl`L ze)5H=U$ZerN5e0K=Dre#j`%T@xyBZ&N5fmJZ#GK)+d_r0s@9slk#nkv>tzI67#mJ}uEgF`twHXtCS*q$O?huK@bGmLK34Ym7Y_T9R z?HUW$z~1SJBe@b5xYT`SnDnf=FdX+<~9(m^+ss`VWk;$VV7fjZw8n6|$?^I4#O z6mu%}R4P7~Abuk^h&&Nsn`C>bn@YtF9VxXM*RdQ=N@q3lg=a^2Zu+b*c||H!w!8I~ zfj*Mr**=2jNkNh;N@bHE$)5Q{b^kPajx8z3Z{XUKXlOM^g)pJdnPb_<_>m8JC(xdp zVTXP=kaZF+Uktt{%Pe-Z-bic8Jp#jvJgn?367_2TF=ZkIa$ur+j8Faa1X<}XhPFRe zlakW;8W|{=p}70>>y-H+rftjL6GNOb_L`AU7N-vyaF3@$-+){tsq1(ri7`_!N{>`( z##wc&3#7X#S1{A?1KN{vg_h8mFFYxkrGqKIJrTG5>5h<;fIM2V{qp@9>2pA}ZW?x-kD^piwcbd@;s7hol)Mos9i{>CG$?y8;OCU)w8u8~c|#1IF9yoKi*-69 zQH&5h72RUIG|R&ZetoujR`IkLhM6St+V-27_{_7{7(wHs5{WF$xG8kofhS7N8x0}v ze{#%#>GpWpbkOEDUI3ou6w`w*Hr0nDceYzw%PS!^Bd$@e3_fqKAlCQ_ux8KNb90jD=NORW_8PNZD16;I?~pC_UG zD$~q9qLH&TVn0t#K61Eh>0mG13vIf<=?CI(^6sL5LBSHWYL7t`#w^HoFqfCc24uod zDnVeIf}tYN>vsrlAM^()Qjcx9Gn}twcn+849R_T%5=Ou431

&Uzyoz{EgiH0~O@ zwe07OnDEgk&%A&I_XyTk*0RN*ebTF(yLi(z(x&`*V9U4vZ@#ulQexP<`|`ESUbPvj zxZS}Z2j^iar<-0qiNt49)Kn{ zdvMS=v=uqT1j7rJPi)G13CbAQtcrPDeu!3+7kvJJL>In%ZKcjpgcSc`lDt$Idiu?f zabt3w#wNNs+_P%inJO}$*oMoJ*C>-Whs&7(U(4pnM&$0;^Ks<#7^;a<{^@q+hQ<7+%`c*fIJa-r;Oau9;hTSMA~BC0pSQHgu0M!~lWDY7nvr@J?DwxeA; zDl6n$3^FLgp+*;uimBFW<)tSfV-Mwp6YzH-ZW|dGuX#RRdJ?q+ToIEej~B&Y@#W=J)Zm^u{IkV6Ga&_=_D+Y}Ga=0Mk>yWCMU)aD9R28v3 zhR=_RSI-}uvcCN0y?kd7l&E{Pvg&6g3zW03TOs?rBFI&JJpT{QNnYkO9{E~ieKJ&n z`6QGPMv>KUefc)5sR?F%B!JO$VYu5l{&H(5IB;fPVI_-y7+KdIq!MWGh#2M56@J1VKGhq<>;c;iAp?Fo(_tFj3*JhF!Rv8J*3g{Po4o zvdC68SF4@h2cOy6zL=y^*SmL(VycLj#^m!kX5S`MNl*6>)+LP$Y#bFas5}A1VwOYQDW0 z4zb8HOtFGe@CfjV;EXa%WbV>lAUol1@?@U73Ukuo_n2I<1VxG%86Mbprn`7EpKKwJ z#xctn%X}hTfi%vVPbyW8Nu{kPm8vXpk&m0FW=X+NvdHGqV&4g(0r-x$czJ`(=*HqY zcmyzu*e}-|L=(PNpo96z$+N5P$UmDM;Dy~n)_|7sbi>(G;xvqtVQ@QS!U20U7!ivE zB(%rJp%;)}Ix_}Rm%&m26~lSotjaECSIl6Un0t)MG-tUHS!=XXQ1=xB-#^eK$n=>f z!?sjjqG!Z_X!zS*DLY#R^f|+whfxi(dh``BW+T#^VS0oSL&e*A=CCb=BrVbKvcvik zBZ7fPa@aSq^0JrW02eWQc}P_}H$zFIi0D6_MsSjW$Q@>@nXSo^Tx~pE0SVV}>wb)K zS)S;{7oSKckQR#1b;Ev%OEUNlF4QdY@#89BDMN?@54n zkyn`I?FKp)6XBok0*Tbic)N8$aB2Bzq)1r#dJ;R0qhcPCULRlpmF!E*IpcfrQy>Df zw)qCgl16L~Kd3X1=3=j8=F#8i!h@3ZW%sVx+Z+qhd{|nD+v9n(Vo3m-4!o|^{;;{E zB8V7Mm`5|lH-PJ>8g@<-^k4)2=drH*J?_^2O)PnEV4oiKCkh9^j{#H17mw%&sk#(j zE$6O|1*qAh+$rP?N)e&@!?2?c%F!x}sLt+Vfh)x>J?5_SQ+Q>4K9#gW#<57o%wtHE zq2E_yW&l17=DoZzGS;}%?WbG^ahI$WfbzHgRLq?1al4}a1ez_L>&D!2zx)9s}W{m27_;D1=|ZN1rtcYqxtLCqa(2 zQ~F{zCcz&*P|gWAh8Q|$Uu^!q7)W~w=#Jryz=uW^u{d+UAuBdC8#Al%rPTR=vg@ho<_6V9}3s zG1A3iy;vi%#U7BptGqWG9r_aC1%;>?*Hc~gH9^h(xXqtoKuk&15U4j4)6d-049 zv(pg82whK-+i-e%_ZTKN6@pA}9s}|QIH`R!GE$So9=ms6z6ss4*GE zNP?~aN&u@yj6xdl@$ylTq?3!P0y5ppV*sa4FJNIDjVzQ%IZ1+vvJ1iLonM#gyr{pV z+e7-ElZVI1aFi+rgU8NrW`mc85x3OHIbx7{V5Rpv1X4h@M-F3O3}s*xdsPs=u`OzS zwBSG>*J@23hi z{J|oL;|$~5ZxHGm0_(%dNc+BcsF0+ZKWM>;DXq&~6OE9h;Im8j4(-K*43m7F$2j`t zs#0zBMsUpB00f+o#fwK`0T@DbA-oWjR8GTw-B8Vp6YTOv28OtzGa5V0UOZqdSu4ba zEKaM7N9j+(@drrMFmR*wKYC5l&}p~!&c`kN_%q`6M^F08jOE4rTFEc0$`){#nI1#N zS6lPCJ=PIeP2}{t$0k@#@JcC1Bb%h%c`5s2bMfLgyFi3pn#Zb?OU~x5dBXymPSR-2 z8zHR-;;35HdEFO(-qMuhmOnC%dsIiu-2P(*G_p45OufF?>0?%ydL`N{hTH^h)YBm# zC%9nQ4pcz=Nu-v7rumM(?%1vup+dZ2WN`Ts%Z?`=h;RTNZ=-o5NZw}gymJ071OyF= z6*S`)+oG!q_8ad`IAQ7p%0AEg;s^NGepQI?i&q&=y5@c%2Iw5VT$)%fo@#Oj&+M@w z5(qQy^4Qq}FUnH(N!&&#PmmpMA7$(>fTUp40dRW5qy*04o`k3WLCw==zjroSMw*p1 z`c===g^aAmb@c;8{3TIX3_jC{KRDzwg2He#41TXlE@VY_O+a*ueMj{R@tVkzZ!G?F z8(D)S@NK+gQi!BO$Gk;)DVR&c|Freh&-LPQu!Xl#{laR=Q(Jy-?3}Xjgkf{&F;cTo ze(Q*su)Pb6+>A!x?(>#L@7A;9*6#8 z35H>fVC-PU(Eejnnr8MVK3fugiP!P)Mqt)qJ5U@e!i$$9AP$V)h`9?WhrGQ1rCd!N zF5QZ?UOda9I9-2RY5OnPv1f7v{UcEE;?GX5zzt5#V-3Ww%XM=KyTgotlbx1lZ;N+%zj}NF`lzl!~o`P^yWW$lI%3je3A2ZK~uf>b7mX+ z0xWJLyF-lHXnube0<1|0U8Ijx#fv}dCyuwPMy!j8fxSfW7{J5MnM?zz-4~BaLIn`v zjZpi-q$iiSYl$HPP%LpBrtA1o0iyC)n^Jg31j-vhpS)nn(>}NXFCHxPhO6t{(3L2L z!m!&HW98ned?vq{iMck!>tQH@`{DtxQB;h(mQXZ&pgFx8wyLdY8AKzh=HTL#K3$#W2*QuDgbgN@?EO(|RK+ts6u zNH(SVg)ll38@Z3+rQ_Vh4rcWdv5pBD0yAHMU&lEFvq(nuXoR7G7Lw7uZ|3eSv}d`y zh?$$YCsvM8$94KXVFp|UE z@>Y&5jf*M*J^&sQ0&T+tju;%u(-5n=$55#wExFRu$Y3uEXnSVAa3bcrA0&Ww|5Uce zt{+#;5!QMgU~Aq8GJ^y1 ziWlS=U06vX@Lc`JkiA*pP*(Ana(TScoc z_z46M+e(jZNwv;ojwsni>wtf}m&vN%9HazZ*mh)Z1Qjwg?J%l}*trd+g%VF^34LnR z%|{%=U~+sg&yd@Q^viH>9DX;_$Oj5z7B~0l*b;$`j3=g^a?S*}e)`RH<8rW%?D0-u z>7W+WQ;eDn{s2$B@(f|I+S*lZwwHX?Mdtd^f;dWTZp&$N2LuENHUyhoU!q~c3Jznb z;18ZRcQ&bV-1%Z3mXwb)Ko@{Zu?gA_jZY<`$`bcb@nG=C7Alx?@Jm@Nd(_H{;6*^; zLx+!v3utw_6}F4V0w=yn6-8}{T_y#l6jd^kVyqL8WuvHt{u!zHASnVX!=bI4!_~jb zf%=OoBc~}czB96yLvj?=(ngl-$|?<&3-z-YGK(@KOmSU>wJ6D&Nae8yKzOj2>ifQX zA7fq28W}b6Qd-~3@E8YavQss#lK~Fqk9{w1gn1BUys{HIkRgBXPzP7Vc&~NfJ;u7|Wl8tpSITKDz%H**o?JPs(&c9llA{q=bF30`M81~PHU@jkJ{*gIR?O(uc7Hlvu>eP@7jNXu2SdIjhN`#B z=lL8a(k8R{T_gTHsDAf&x||GRvew5OQpy{hd-w}a=97&p-{D+wAs)LT4volY3hn~? zVR_n)R1>_O{-pA#oUbW=trd-+{v+YW9T#q@&8v|;44zVuV{te?L+{|ZI z@>eOo@508fz>bW_&2kVv`%};XeqBe08Ca8Ls4Yf?QKah<-GyioyyTp>cY~xHIUXBkr1H*EQw5Qp(yk^kC9h`ZB@z`g*YjqVpigac(gs)F7Kl9Us}zu7%s zTgAG7oIO0&q-rIp8&66$ZG!8kNMtdLDH>VL6peH6~$KE{*i+VtPC43CZT~!X-PIqN3s#+i0&&`MUUZAl@?ja&zjr z=~Z@E8LQV%{pm09@0rrdERiCunr4u$h}z)Cl3de7W& zSg|C)u zt*t8W-f)$AeU|w57i*lPA$eIs?WR|!SXK+u!0$rnDacW*=MTb$NHQ>un;Ei*q~0A_ zYqZ87+IE}j$G2~#!oZ#Tk4dLd+u->2#W?z4Q)SY&H|5$T4pRm7^OUO&>>y%4moY{I zrSbL0@I=V|3$t41S0Vo)77M>o50W9Ea< zU-f(~F9BVmlJQF#q`yuylJ%KgK3D$GCa_zt^XGIPdTXVFZ&}s2l z2S5WKB6%ZJdhq+gY1SJ7gI>UGwd&nK#(U$)w5$J^xrlu^d_j+K4rDiK+n;_112(vT z%;QN0cv|Jew*Po?+YD>E5=Q+uCHBS_G4ql|BSC1Gjg(#%v*}Rc~ca;^% z{6f-5oTbN#J0x?4teHV=ZW+nhHQWQ|4@;jeM#(&i6*~<((B^zPNW1O%|JH&H{Odtbeyu2di zN*Rbr&Q1x|h_(T&Cb>io_e^|e>22BAboI^*Na7-I;7Q4|WJ5WiZst$I$rltOT6o@w z)Y&P?jO>lzthh+hSyJ9|v!aFb`E_rEG!XgY-m^b3?4U}8#SB}lk#hkMah5{=g9wfc zvXCRXkPUs4^iec2p+(ZqEz;mHR`|5h$?!(d6QVjlp4|8rSbl(#iWi!a>bd6|@bn(V zt%PKZ>5SeSE`s!uum6ZvI*Z@}-K(+bZoW1N#MfqzA9EHdtf9&Cg_*PJ6iqi`a2$|G zuKmg3lAVwj-SDI&5*cWBb>rDuOpaOP?WW(1>bs-?OC&S}$Orp(Q?oaRd%oJF&6jsW zmFM+@0~&eVvn3jM1I+6A+B4LE>Q(&KzF5m5_K^;)-bmvcJCD0f#?vlDMtdjlss3X` z2iP6M2lg0JjG8SX8;t}WUw27QcOe1?rC~m)Y-Oxfq=`n(puu$uDwF4H0o`i*QnSCi zEsa-HGfE`yL4)H|TUzvMmVYKt%{Q-W``cD?#Kbxxt&*R-E|VU zV2Ui;*}jlOByRu>f+}iYznETp6309LZw=znhGBBmWDm zhQrOxWZ%;-I8wf+A9Kr2S{Ws5=Sr!_B_6BN}4C zp5)BH_@OWfMNIV&Ky7i|X5HYl`I$`#;oLI7$4zEx+(g03DB?KAsqWkW95SZsx2B zRe+G^=_XrTF-XFsmev>$8h`B@U0FyLQmrvuaXgcgN_-P&O0aS8(u4rSC=pU` z@`lmcnjC8{i}ikto8>bF-IcGl$V~}%()i*V+`)>7Sxg~4n+wu0P*F*x z&gg$K*IUHa;*Bt@L`vu@3R*0)4SH{m)sj>yD9bt?ug5~xLZ@FZR87{fJq<^w9k zzaX+LQeqc5<SBbc=YyEf1`nkL=U0Lq117dlxix3x&|vkhcm?@=9+FGyxuUY=%C<=;=|yW@7G2 zNJWgS0J3X!gxt3LPykZo8h3~}+%$I=k0}R(4*Un?y1psOhlJ=%qcQ>i@D-goFGVoM ziygEJ@mJyKS3@I)4G6`|DleNGQV8h|^5*KF?R1LL3O1NJ2~4 z{0Odvc%s$^>NX^BFa;p5+*b@u79C9g@(R%(p%ldKjweP2tB8*BJjpgcr6j)hcOk10 zn<}GDTv;4&_9#?-=ktFyFPk&BuN}HE9C%o0vz3-U6_spFI1mCXY_fI> z`5bEQXX)<0ZtXx!DtMq0ji9@WE_!}`+?tS5*$#-;!kzLv5*?4#JNh!6vR&vVu_Zxw zc3pw@JJoZJ*%~H(AwEQ^%6@o4X_P>S(0=8MRf*n7)%cOL$6WOMIh#SQt-Ew8>bPp+ zc43t_4z3Up1BIIM3rYzo#z+f@3xtiy;3p+{9g-o$Y8Qw-%4p5~x z2_lnPgD?Mf4GRfE38o%+V;g)1 zg{~2epl!fJoSr9vgfwvIYbjzw_32rj7@FwRC=4xmW7tkIiKh_EqG*Y;1?te>g@t4x zpKO10!?Fx`&Z^w}W|SmF9jJv;7d%ZC%Vj#fw-KDe*af(>&}OD)%wBik}|SOr0^e zj7Ic2kU}-XBD)YVhfNY8wA`>V(^p>~r8E-2=Q~R?^u;&}ciW&vcVRl9*F58ea=xZ0 z+YCNss%YFv;=7oB*G=QKqIm2#Lvb0-*fO2!YpFp}nPl;Zj|>mBj+s-d@#6t-Yheo$ z5^bc85QEE2v4LhkhVU``Wtg~S zi5TCBRNKh58<@`Y-KeMF$eCl*n3+SH7j$H?&Y#z2J#1ZVt7!2r9>OsDz5WQ$0TV>0IvM8i3d^x@oNg>-csDFC7-p^D-LNDw2wEhj z73rvwT`BQ&V71Az?(_^{P#k~^SB@zhtt`zoBSw-^7t#}W1nBU|;9$8Q2a<#WFK4&) z;iEOxbIe7wEPgDA*4gUFLOE1~1l2Z{%1ud}xrVB#RYGqJnr4@0T{MEM`IKP)N#&F#u z`Is~ z@Cv1`mHmav&#(Z|2su0?T0m;o5%PuwZPg;n>gP#dV#9h&H5#GhoX~gf4!ACIs@tu% zaEjrOyUndItY`8N7J8-;?}V%q?hFW>_=RUc4{(AbbofBV6m3qRGa#!%;Q2P5U`3w-w1c#Us9 zWxpGJi4?ngnBy=olw5q?o%FZ{g{2sA(wIix&A89`PW9whC+Ro;gZPu5brB0yziSp> z_7)tyJvP{yh&Aj_0=N!33^MQD2&V~h3af=H(tr!cMy`kQBblHxMx>19F)L((_y{|o zg*k=XSi`C3?ARa`UT5$N=jY&;C<4a#KRZ??q%od%2VfT>5@(MuhKVk8x+@KORUQio zbLf%T`*mSk*5OP>cOgwykzBEjwB>On@CI#ccq3q;&#FzPIfn4oCOqZKH@nj{zSK<* z=p+POdH|?C5dX6WB=gV8|9BH|-~%?+Lof@J6{(Ec$|_jccv!1Q#d6-dqDi_)wM*PAz?SWo<^8a z3NIl1g`f?X6Gnbw7^%y4B9u4bS3?0j4<4}%FqmQda648vm{otei?Z87Q6m%uDKu{7 zghKkO@OsG+rI2ldfnTX^>=gQ9loa_c_TyzEz5>j?7I#?W!? z&$~xnI~rldOLEu^M#}k;$*-0XT5b}Dfj|DdC$Urz^`0ThNI?ZPHXuP!B_LJ9chTa7 z){-f>;usjpo5lx1|IzOnhbx3V&Vz?vlw24oSie*lKKauH83VBILQDxs6OHzmNG*hM zkv9p-3_Q9s8UPG>jI#(}hw^w1VHO2|nVp?%L(J5qjBNKO`B-K^FYi)i=gyk@xqK<-;gcLO2#tFg@!0zVl0a_Cem}9 z%F@hs$<=?41BK@v3f|YF<3i1FKcgFGuO<)q9<#2_0}hu#l0SPs-vr0s|yB(OgJ%n#4Tfryk}a{QC#blEh0THV6E z;gYv%nb9yZi%>@QgN1`Ofna5Ouv1x|*!lj;1AJ>FTEtop^6c4EKuA3M=0N6Q1PTYW z%o4H9v8_F4Zo%{!L9m|UZYbqcp#y@NJ<*I==w!yzksG2UYbCsk%;RUPU-;99%+oJR zafeC4{wX+M<>z-@YS^JMQQ-ccVJsO5|u{fT@ z04ZQb@y6Ltcfo!wNF=X7;nk$W$r**qyW#AQHk$Uu$(vvjm`>Pa4u2BfCFlQXj;-aN zKIB8HD&_}35z>DW9V5VvY~P`;l1Wfz%!5-eQ`Ks5nBg+OrbW5NR+eE*Ry)ocyg9{jFl#*T=r09IO zf>Bd0qqevX6^+Wq%l!znCa?_k`CxGg$aBRCD)}x6IM*U1A7TJWcLN_Xu%PVyDLF*4 zMN}AUMVTVw58^V2dF`x@J4B{}#PC_apBOU_w#Z*bff!|`Owlc9^%yts0#keLMg(}E zYu|yL7#u$6WdWA~Cb%%Le)#0rr=5PF`t<-A&!ma#TrCftmZ8AuHHW$Ytf)%bd5-vl zLvq;=TmoXt@KRaIEqF!hL7wfr((k}1j3IJO>#C~U7++2L&>9zai{4Bn*Z;&I+oPwj zgYhmgG`96E1R7XRDc98;JpE!OC8!!dm|gU5@$wGzaS`}{4o~q;3NSFL%e{Fw@O}a7 zZS(E8vB{D=XMMoEEWeQPR=hjl8z5C@c@V5{>;cZ59fo&TvGg>a+R+GQl8qB)ykuZH zFxto)elb*;&{=P`(q3f*K%A>m8QqRvUkofErhRM0 zi?7Pt*xc?HGP7DHDgGd(eu=O?Fy#feTXlSY@f9p?M`rewIyjS-nIQyPm^?<7VsPN2 z0Z_8JYh!!2o{xIS2t6%tq)9jg+3FIa4GjP`q>U>^q8O|GImCd}@fh`VO?2_?G-w@L zrlHnL6!5&6)%`Oc5a(>hzB)bNxp~Mgd zoy!5X&v;}cdeJrL`H6vNEg;Yy!3`urNKUzzheS9QaynO3>#B8tx;>wh4lLh=U?MR! z+3|r=G%g?;OU%M->`*6%Hs-NnDTTA_KS*yRwIQ>Y7{W*~f-^u7*<;d#I}>h??`fhC zBK~L03`h@^A_3xrT>0a7eLCJDg{6NeBuma)! z1=Zv8(`2RPjQ~vNgfjz+3p7#XG^r%vQ)1u6OUp9mto}hsOMuK`kHzRr(@G{M z6E3xwNMvh_9p4VK077`x&i3E5a*kPOT&LLFX^}uYv^>leDJ?=Ih(Fj-WLgpk^N+D( zo1|0F{9R8_*T7QvS>0BYV3YnB9DQKA@qwZO@+OKic4?$s zdW+;el#3xVlrzBsQH+=p@a&MIYs`Xlq!Kp+&3|Le)*c_IOx}1R z)YG2s+H0G3cvJ|eJ5n89;SF{6omEWs7MW~TjSZ`;v84?islW7W-t5fBLQus4Gn1LdNmP(*{14O?t#rgb@HB~u4>P_6=RI%V+(G8TiX+X~G@#56PnPHNnYlKB==Swt zxo1WZ^>ZnD$XSH5Hs)?GF@j`5Vq9s`pg~YPfFRqpN>yrQ)+!k zJ%R);zS_6DhLmIX!@BEq0^dOF&m<;=mu2p8T^eG8UYDhhD@fLQW5eT(pdpl5x?eUU zAN=NY6pdiEo|bwd&L^^y!4d8y?t%ki7Jm^J0<2@Q8fXpVg9a4-y=zSWpc6?FrWf#n zkS`kEuc#dK9V&`5NIek!lxND$H8AtkO}5P>H#-crAY0KoZ~+x2pLvm zRLD@(MYt+O46k1f6KVaJ9bsy6PCBDkM*u*J+wQvJ*zh|NW<2?!T?>W7|$ z=m6B&QAbSm$OYpo%SQgGKam7ZjK!b&Q=2~qRR6L1)BhI-N{Tq=6Q8!%yf)yZj}y8& z-D7C(ZLor$>a|cXrx%nnaGz|nfmv$tAN$)a#LrYiRw0?8yj_UG3w%0LzqA-az!LE< z(J*ZEN;iaeId4>!hFgTWPN)D9?QrPBBt@Fn9J5$#IG~w`ja4ixphodD)5@254JFv zu%-Ah%3@$gOgG7l&y%D=fRB5_Y}h12Uc0|f(ES5d93%f&BPgp-&*^){k0FzifyiN6 zf0hD#%IDP*vlx=UN!sTAo~BfPu~{|E9~;;FrHQ&kb9Z&gi*W=nAa%F#ipcb=pXice zs7(L@Gk0%`;ifH{T6;Q!&}f}iq0H}a;|d}M@(f$|E?71)oBjvok%xnq3pNSxs1!`K zI^(rMxUHj~>_Eh6q@9=oS(|N#dmZ4)6A*=+VLdSp{ zO_MLtMK+RpP4rXV@yYzdCPC?YY;Bog_Q6TlFd#f|Lrvp!ee0}cjbumT5Q3>u2=@LK)rf8I?ZQwTu)a@P{ zAWCq0lWDz)h{3$w(Ajel2ttgm8ZWfy)H&jmN5ul-xKGyx(m^~x(wpXYR@FcT^cxtR%{Ac(#|@qJD6TB@ zT;d+2<$q}vu!{thD-f?|_k%V%q0bJrxC|HCXn{pff-5xfe(;@P6;HwO+u-hRwr0R?R4tG`f0xHL1}GeN-1&^BBwM z)I_i*43Z4EsV63UZ}_PcbRI-o2D9ldf<_(jJl`2HJgWww)a$|#3|Z-e+uFx6a|wY8 z-5}Z9XqxOvugf5mNE{A*_yMwsP;u8qKuZH9s#D_`V*g-&7&Y%P_@R&mQ`3hh*9tl& z1-1WaBL&cI4Tf|(7;=4TsF~(`M=-r=>>~I^^ky@W4z)7aN;Bmx@NoD}kWZlbdM2t_ zg`2R8j=|=n)g*U}28S_P@=R27t^v>MXsoE{+4@*qP3Au{N1nPFV(`-p#oRIEsiN(* zbdj=I&aF&UxRx-yguYdq4-?g}SYy!9Qr0~H9;JnudNaV(V{PMu-qvfUJaQ(uMcf+I|}UA&GR&_!x&-M~mlN zY-u=w!`wTp2x|pa1bQ_VUG2!#hzV)&WAfOJ7H+^uWI*>8<1kTCQ8FfzI@DTyubDam zS-lrwdr*w&AMO*kZ2L{qGrz~o697Nrp?=cfE)>u^^}c@_XAG1UJv-Gfusy29txf~` zdre8|v~VNM>-TWkA7DJgEjqDcqDC0MNNrXf!|V?nK+qEpW*0~9pZS{si@MS4(g~)WHC&>?ty^V3cexRlWq=tui()_ znx1Y+f(DJZki|MB%m8aLIx?vl`yotM+(p((4hllsJvlzZdfJMA;%WlYWcd`85I)Ie z0B4S!YBXiw?8>GAUqGiM`OI0hAtdFQbP+H}KzxG;i99Y>CCaB`n6W^8zinsY3RZg*>NwUDK>AfNwc=D(rEb6K;~;Ql>;1*!{YE2jIw-=f#(r=m2p= z)N(`|O)LX5`%uS3MW49>f7X*QW+IPQhuFc1k4{c;yNAUytivy&@8~>04baP+QW^=e zhBRdx`X-n)U_76ilJp6iJ1CM}33+CSY>{TQIMR4X<)e?NV-S~DOE?*xv#Jm2fH6c8 z4K{4%=)MyJXfqSA7<6nB@yeFD(XrJAEr3?sMTTiokeJkoYf^xM(yO~ew8RKri@ymD z4uQiun|tCw*p9F4zR6m=qMr#?PT!;&MjgRoePje!1NaqnP^K5coHO6I06^EQSjNBU z@$6$-7D=@3lvV&(`}P5L113opcDfSM1FU@mG$stat$rFytR!R^TXxWmGb^`e9xIm5 zkq;NJ_y_|w3gE)Z4%bzaJiPci^!vz<24Un-{va}M(ElgVm{>rr$+cIXkc8pfk}`HEJ5O=+gJn)Cn{H1`wwGx+}Kn>uC{J3#d|Do73bC674n82Y6586^XW+8t=ovU*-?e; z48e9}MWbQ*CbKl0iXmbm4TXLKQ%}4wq2!Jpcy__Y0eF+Vs$}mf#+$1h6$Qnh_4aA& zWBnG>Jk!}4in1~8bf8015oIv4xC$iqop6z>mSWb^u}NL;&pZk4F_ZBnaOb`Wyc*=! z<4_u++x@|%X)f3Z423x%DJV(uV}Q4i!dxqkilgDErY;RB(hLI02AxjDjoE|Fl zahq;G@_2~s01VT6P4@BDdOj)+vNk5rPuel$d;*Yb-~qQk-7y$sYcsxm%O80>W2+${ zq39*H>X7c7wipvE+8iw_ytlT;1_7u=Esn2gqKsPt{gKCuW?GSxVos|s;*kgRM4?o= z5}~-M$PbK(X+dj+W;0urfEQYDK}p;EG%`byy@Tz+3}5vMiAXYtR(BEnTGu+Fivs&{ z?9GhD3+8>&U2F=0r-Jjqwm!*E{>gapYaM)F%^Kgz4o#^szyMrN zhxL_?0YsmWq!lQx#TeM_P|HqGk|~t+{8S5p$b!`Cbo~Uw#R3FBsWCu{BDfS?)EePq z#=W}NO(!VH;>VPZb%zbyK6~z|xOxM)AGcA*a|}%;F2h^9$DkTaSaMz8q?_hGOc)pC z>?nPcpHL_pTtHwcSM+KI=+Xv0Nphd$>tX901F)mPN0}D-Mot0hylL3>U zY)##Ltg!0<&#%D$#1hY}v#UBIl9p^7%8<4pl$mB|F&BBm`+A!GlLC;)Fyoyvs^W#w zM4hnwla3YC?uds*?=E`DYR>@CPFpXSC~Hm81uxB#2furT{LDTEjGmcf9)@%x|rX9^OPxyQ6q0wh2SxA=LxLZ@QYxs5$d?pvF zV-tkXS`LJJ*DQrGw+EqhkKt^F`DyWLf(2P6l1mD2^H$6_G)~24O;aL+Dv)v@Oe@%= zLEjS{ce)P9K3$|^ZnNf&=x9Y{bw-#hpoYS9QiR`@nn z&o)f<+C`&RQ?&@zLp^Zg3Fg1_o^w}SPZ0)G^`L^0+&6Va%R~Jj?hDP$8eRMqy+SI z1WyQaX7_YV@vwlmiOUsVM2IRKv%7oZhAFsX*~BVQK=Yw-KwQ8$+=UVL59SN$p2P$U zV1`SjFRQsoYm=cscb&=W zSrT@*)@5n#nS2@oU^IO(eOEErx^{PGru!TX>wSNRWBUakVHD$9m08#5w6Qp&j z-Ju)1hK+;4q;Br`16deL6U~gNm^&_VI!+0d$U5N`r#%`>Ru5+vH=m5Wt>j$($-Fm< zx%_A%GXq$n=q`napV&04l;Y|b58&3gXVtT~gAHW<#!f{W?5&(S0)LNj8R!gS>x8%Ew-eS6*;1lp5LX6+_aj6l+XO0sUa zCyoJnptd1XFbul`nVY+iz?#n7Xc#XfeL*}2UC?mHE_5!~@7NOW(pj2ud(Auez8VtZ z6FHqA1r~l55Z$X%&mrspOM0zLB{Kq@jgfUNfn-~T;0(*-AQcG``FZSk!#!r^FNuAh zBrRZvqW>DA{L+SDV90=%`^cD}fwc)imUF0_v!aol- zjI)V>@$L2D5!J2Onco|Pq8UvzC=J)T0RGXw^y3VVBbYa?xNaoSXwJ8CwR|~&swSt;sF^H(6V6JsUVmxXN1waOs(I-{S)5bJ5hf59N z^h82GYgkc23k7myD2mI%CCiJ}w3kjNLjY2hl zQRTI1SGsO=3;(90DSDzr?8yl8OFxtVI^6D~y?b&U>ob|Bo^A%_V8BbliVYSaF_Y^}B2c(dJ&m#HAz7?2=qW=1H|EleXFr%T{#N z+&4k|eppgm=~9c`w?NMGIc9jFftsck=D^3`MTPMARTzy796PBJFC_-N$HauaLn1AB zHIXMZ2k9Et5#kHw=BXelupzEaUuKX`gkMmdZU$ar7|m8^?1hzI<6Q@NsIhZOHWnu3 zsfeKrU=Ge+E|{>tnNYd>Q!uGZ^!0rH3883fAuj*KE68)y|6Km*KlFh@T-LOAtqqU; z@eCY?I7ht4$mF+1Tgvws0xYssh%zHpq>$TV;1LS+A(V$)?umEVsgJ_AxD- z!D}DOrsFf_UJUPJOkopfyshB(Mc7FrD&2QG9D8NX-nRgeGw8`>l47%yiZciw-a=ByHA45E^ccluWiQ~`b7;4Sh-JvFAD&)v<)l9 zNe{s*VA|4aU`NW-+O`t&K4#vaVAXUH0#*qBkf^!G$erR3ovkO2Cv$^+DS6rYoX9?D z9^}M2*7q^CrE3MWLlXN~B-(}aw>xG$cGIP^V<)LH$@8MYn(v8>)hvi}*RcYVx{`SA z_ZSi*MnbkRX&+m&5MZ{vrN7Qay2ZWo$s_eM8}Yg)vEX}b!m1=LJnyk&8fjqPY@FK1 z$SxCV*b-s=q#~xxGI3M9`k9Rqyw0&3p9NH$o187pDu&$hkQ79eY*(* zsj0x>YDXbgMPR-h<6p)(6pU0`q_7{(E+EoJ<047 zG5gKz<@0?tIoVH!Gn%VF*+FZKqgytU>`$aoQz7besV5?rrcyd7**lKH9jMZnVw^W zBzmXFc`5Jv7dF`340{!90+5dt=^ z;BEc0j{)^v-zsdzWIGWA)UnuQ+tS=lH1RX!AH#@mjgoOM#_U+b)xsnq!hJf( z+6AqP9n^1Us2?=2e1>K_k##g$^>GjXc5DPoCfB(WDEk;8`3hro-V0CU=Z)=Pv+BMG zjmSdgQ+G{LC1Xkw+a>eHz*?KH1KcNO1_nUL zSwAKf*Gb7Foma_BkdQ2w0=v34aJIFG&!W4MPsD0w?AdLf2)iADn5H{K!_0zeRh(M( z9o>A%%e^q4mwiGBj<}mhR(11DzpsX{1Gu%h?KAc<@UZ3%C7x{p8f2T4=_uua#2#w6 z>0V^LQn*O?4c!$7!_aQ{8l={?=R|M%Ez$bqdHSZ{&)*VNzQ4ly0ZHr|mVSUBXK zh}HPoS;j3acUasVXA6><_em;(>S%l9sADESheAOUV;jEwb`BC(*+_SEfT{~ajp=yI z6i1xS=E{jk?R~mFX#K-hk@q5O5y&TuJtu5Jw85jpHhF$H%`j3B+|Fv&Mv+ECeglk7 zQ@0!j3sn&k*JcyI5x78+blJi}{c&tYHY+BjA7ng9$OzWTiF6)jG0IAvkx3{fQ2OR7 zvvHb-MvP+%8BKwX_~sE-Z4|%=Lmwmu_`iD$1_+y!>Da+Qe+mrfDiqo3hIkqROLk;l za>N*)iF}B8Q83GPkwiC|pB-@4lK|b1dmk!lYcRi+FoIqeGgv{|uj|zi+BLi7=qzM$ zzs4wOFD@>84GtfIZWmKkj6P)=jyjg1$9G%t++%phuwXA$s5FwB?0riWd<~Eqp#R|B zKhljG{2

L4P%gY89z-fJe04-#^So`)wj;n?O#q6JQ}0W$^qGBzQq zL^C;9j!n{R-GrDa!(x~L|AOaOHMKL)M6%1QhHzj*=Zq&i0Ds8i)pSBneo;|sp>g#kkSeyR)vIN_etaW z3`+-z&rF#e=z>X=eS*}rH++zVFlmB&BFWMQuGKNO00*Hc;8Nf~3J@w<9bQlco{N}E zbsQ*A1#BhjbSE~#J(qNEmj>bnCf<8Zd)*rF%K@(GY z6p3oQ>f#2$9|!`Gkebd0Y9H&SAPU+*RG5T1KM|7XvY7!L^3+aj{bc=XFxi+ODiSTI zn1Q(x!mAM>4~$K*Ljp|90&ppI_I@mR4ZWg#AN(D&dhrf@-4f+k=G>>l3W4<=#?$vA zs9B?a0XOrW$YKiEbr7kifzQH2Fa;e0s9?i|Zl)RVvzs~Hy+}7xcm$i23bjpSHHnk^ zx={OPKapHc7eoRWqm*RVxQ1zBawzHP!{arGm{{?IM7TxGyy+CwX9*7lxheW=3M_pq zX5C{Lf`O+?&e4h`4SeeC6u8LKg0f$`2^ZT%ZZ#u4=D0N&6JbCSZbaJTpONFqo^LY< z%_Df}=t(R}rV;kVhzKx6%s@gBY1TArur7`zfrc|pDby?B%}`Gq7Lh$MA`&VZWZ6T$ zc?{TR*jvmZmJn%7h=+B!xIBRoQ=l$-lC=j%X^1s~#QxS~MbfQ14pe3@0O~i0vPArZ zWk^lpK!K79?1`o1%(BLGD6J{o6G7OS3zc3WKssb$Ta=<2F}02kdKSZoR2uo*X+v>qgvF``K*dslrE$i~^+MWh!B&Xu)UaHed-U}<=qIc>zj?Lk;}-gFZS0ZVF$ zTQj#WLp_AtLv$lyRB6akekAjVukVZ!F+=GL55n3d$A*LT8YC;4L6ZC|^shncN0OhU zh%pqBdk+y;fEX}!oxEp;>AY4L(dkv9z{hYSf1zzjjxx23r7SEAXeLb=P?2B`5NLx_ z-ZWeHVbSz^VrJHcit6M&t3kF5(|nI1#t;pWqTdcgW2>9q`eDG=xH zGN6J@Y9e3q@InEBg(@~>_t*mmTHBF(5%8sWLJ*+3(sw9Ap)Xm3yrI^>4>lerfU9!1 zzApGk%r@^a7KJ9Y5cMR8pr9^4VwRT^vJC^+SM+jt!vw|WxD}f1d_c)o;;|hk#9;do ziT#nJLC$v^p=xW^Op_A|iSBwBbCWqH-wR{dk^wF{N2S@#jAJcqcjlE165A<=B&rO!}La0`{5d5?jlwx61Ywe;gmljD-lI7VK`C}X?Ua47&rg5VJG(EE7b7zD1F_P@no=gE4 zsBEx}yF|^>mbrmOreI6j5;^s(ed_5rCb)ze+dWocRzsw z=OTO|!=AfHjR|u$g(3z0GloIU0Oq?+AYly;tKp)r*DR#~M*GJT;S! zfgU#X#d^OdxN#KFTek`3(cm+OCiJVF-X0(alKgW0%kFA~zQz0;a~6u_@SM9TOzW6bH&Q)d`_Z7y2>$ zabhYG2MWU8KpU&;JjQ5rT6W^`gpGi)8y8)15M=b=Ew$kkoOlClTC#MkK=-rY>pN@q z2+e^+2g>3?N!SkNwL&WjQJCK%l4C%cYG(hiJoB@DMl(P(~f;XWNB8J}+k9b2szv>1Rtu_KdhE>PQ2L@0E^_k%JlKrG9}krV?)25bE3^*#w?OLn-35#Ece&QPYg(JR0s>h%|gRva(uDWB4Ek>g3s=3xGfF+e&U9 zquzKvh^k4z43Gi(`auyjUOqwUIYnHAdxknc@J6*RluK97 z0od?Xaj2Zx)kXziuxe$R9XV)YpTI9wa`rmLU9jaVj-CXD5wjN)+P!foWCv-T)iLa7 z)Cit9^(`_Qoogsw!nhyJmDJPtu%k8e2B&@oUytb0wvRcnDZ(x2dn!Z$UIiA-EaD2< zj+C)9J3=CgnQSkRSG^~aD<#A~73D!I5yKFOH22sT)~rKz)G`xz$CSY9SP?r2Mm3Q> z6*TO|U{w^G0=>OfO=|-zY8j3-)r|KfF@^1NgDU6(V8xIv^w6mw7Esk}`6toCm?e;@ z9(sk9OrmM&yJPfF974Kd4%wp_#7FTZ6Cwn-86?8gfOT)arN~#^T=wP(-tX8H49C1C zqU3^-CVdBzho_Z2|+j;k8+cE8U71qh%EuvZ`!oFzjwe1l1Xz<}lZIaK5 zL$M+%rVb=5G$Ae2_>*G^0S}^oe@0INGYu-O3do4K5~KAPVl_YlW(#w0&j*+d#3z#z z6juuLJWTlJV_3ngO2^JtKS*!FOA~swo`iwN2wjrIVGwNK%e%M*YXL!!n)$@Z83AF3 zzIgG`h7-(d&?Ram%zDK?Ha)82Phe{tBTH2{kom)p(gWky1-hllod}Sn?*e#Qryvvz z#2bd5gw1wg!59?1!HS~;U<;12vA&4OUG22$BLW1O9j%lsvO?W?oX|vt0bVk<2a>?0 zpvF-S7~-l`(?ukylyni38z(K86)9s6$Y|~9F{mD)`O~VRp)At@A%!sR)0wm~>V4A( zz>KQ~vQiOEvI92U2B~k2Vhw$?uHdCPYF1)LO#v|288C92dlFI@knz^mL-8ei;7SFs z=OD4Hu7+t$>DaWf3<}mg#;XUo8?U1k{lv7W@)+F(z@Q(j4$++!Okrh?t*_IJF^wVE zL%{{bU<|`SsO};-RW)-UP}pv;@?^m=RUw9ujD*=iGBKSoiB92jEwR9Eeb0=K77PQ6 zksc)^gI^$Vwl)<#W4Qp8Gzz+j?ruYBD+pW)>SPU?sU3^>6Fsnf73mE@UD^KA`HBOV zBE>+gH_H0mm>wao(MxXuKMgZQtw}*iWNBb#*Iw_d0kF;@Cc0Ns0N$=Aek5^reBY zP}Tkc+W~X-IBJB%12~`HL}*C1O}p{nLKN^NH`>+trkEhnbfyPvmcZVk=B{WQ0{*Bw zD{Mq8AG!k4Lb^z{&}xg$Q-GX}jsID;3~L9q-U_ycGD0wrD{PbGLwQgTP-Mv7sRu*{ zQXWkwnq0q$%{l9tb;LMXQ6~1oX5QwF&~fE$rd{g7MgX)3{3DWj!*PMp8oAM_5FJC| zc0raa57-ulG;hE|>p~Q?IwK0Bp%UVBMmXelR>wo1RzC)Zi#_p>4-VL0SP5*wbZkf8 zaZA-jEMWAj>t$G{n+$VrSz9`Y*a4uSRYDZ|=N`pCM}ygNZs({(Qlr`suJa6`zg^ib zSs~#^Zp~U3p%0T)f_{Ea4Df1%Nj*$JB{XaxDL+yIw02 zOa5j(am76ebls598QU|HhA7oNNruS21!nXbz?{%<^co7GF695Oi4pV|0-v3D)ctnM zP61GUu6h!4N}IS;%4-uWL^bWXb}23lhJce{~ojjU()b>Qh}BoSs-b`#gaZuEBLq_+7H zk}y+a92(u6l-%GN2*D$M(cLKAkjf?CtLYc-oJq*LRqy#^36Rp2$wb18Alkg0mfRKF z3B>)~P;cI3$<$-+q-AJ1hN`I53Zr)=|BV;-bF5nchqiuia5C>eBJc|d6HW(b2w46O zkj>IpEV7krGIu(zpIQ^;rE8iM!p0d=D%tY$9iujql<;Dis0E-X64@6JuL48N)qR zw*__I5xMb1+Sm-Tt#%}kwKSL=EWjm@AQYO(+s7y>QZn=iQC6J?Fm4!_OH`P(w?I1= zGfPpCATA{#? zzSFRU^$Dl;v$)RDT&x{)$ebrDdN4^p2E2er@m9w^e5Ya<@xzihd?#dV5Z<5nNiYU6 zhrS(KIUFc_f>EB{qF0CSWJ4kOg!>AaRx2V6Q*5q^cI1{O72zT$A809-($ zzmV)9I?!|xds?Q!DpDKpM1$4$bQ{Qq*P;-w?}<*!AmY0P01pRhjmcm^Ll&tGMl#|V z=os8%lRXUEM%M~);!ft4Eang~aOC}WH2dK|L9xK|J6}3W1W^JyCJb?#kjLOll_H`E zqBv-}Mln~+z!#9tR`xg-;pSKlY+=#EcUogdXU*0e-^s$7_O7X2%;5?V4D9T^+3ck$BHfAb@)!;K-tWPTVY{0 zwnmW1(H~D1KHWNK_?k>kC_1*@b-R>P4h*ASe|u^2pX4ZMHeAw ziQ#O?0!h#f!PkK#yT<_Nl46U(G@u{~5hgq43NjOj(2t$CKlCJHdc!Ok7sf#lgn;46 zfgHXQfp6Zvun)%NLVY$nqE+Ad&Ab!*=OQGMaBJ?eS4@^V0Rt-zPBH?m#gqkHA+HU! zZxcuNF;tvjgQn&+ z*~{U%y5X;u;c+Gim+b z4gi>4oj^9g4hGEG1iFA{05uai`FjyI*E1M!%bBu`E%f5pM22r1bTn0nUfqVfPeOJOO=t#w zmTaL}II^Ln%z0m0B5)ZE6B9;iq|`e=PQ_gg@yjJiiW^9=PBC=oy~K|rhl z=9-VAh!0izO7`-k= z6{L$|)g1z93c#vOs3&;StAImmyku9zl3Qj+wt%D) zh`+{i9{%7F(taQy8P#%>=>_8e4&53a3qof^M2-x;qGL!>lL(q(uEcCnnbmZ>mr4PY zmRN*K6>W6~DA&=U16b7$^QCqu4uU1DHj3j#5Z7E$k#N)?F5u}& z1^@xtkSj#E?lC_)38bs0X{K*2KX{m`#yj+wN6|17#XX z^C+G_5@9H)1jse_A_V`jKn+3fIzy*r2{Pm_1dPjM(NC6a5C7~Z8o5GIn*bJLs^sO^ z0I{O97@Y!|C3713v-(aZBi7Ap^WHUSgA5~UIAjOH6-4=idlEvLV0}gsWem$KIAoAXJ;6u2Yg->lC% zj}62|JW?m}<~!&NhcmHOjVEw+Pt45I%V)1EnQG)}nbCa{+pj{;R)qk2q1;bp_*YXP z2WXJV+b0M|L&xYME+*hc@CA?M*-qKn!j6U%ZpzwL40G-9uN@ZBxF{}7LX0J8mWs2Hz?M=hzHp0BbI- z%AX^=Y(q^xNv${LOw9tEPkN7)Z6Ay1%{|tE46G5YJ-I3qDusJ8O1GQ-qa3I=h9Ouh z19q1u97pCC0F#B|bc{GOrfgdUqHV3#WXia0K1xG)YYm&j<_6cbFOK>vpv+!#zZD`! zH?e`*=(>Fj=(u6vbu&bm3H-n^y~j)}m#HMAdl3|OKn&*??uo4YOzLtAh_)wrn+Qql z{A=CE5KNjD`M$@{%z#sW;wAedv2JCEtTEja3B)l;?^wn@hS6ZyV1Rp!08|86{6yp4 z7$zh|vl$<{2$m_t3wL~Dp9ln!lW)9=ug=;GrHYX6F?%S4Oy=%ZN=b%h21@Iz`DhSvDN1o zV-ZRAoX0&cn>AN~?RK9en`td-CMDd9WYYpi$ZF_Blj>%}Qtw4dfP-fO2s#Fcl<|5` zsrwkgE25-3T)r=Yq#2pB-1>dj>k80v;IQ2a*(l*fQ@0WHKDOR6wA-;QP4+PcI2^K0 z$nT3S49axEz9HZDYH?@Q>O~bcJk@|M%b{hYkgF79{W! zy?JBsOI9>&0CbF@ngr}a>Y+c;dYk!D>mud`$q@IrjB#vYt_4B2-(%I1Kqa;(uK30z zz5+(&z3akse_~ke^3tqBVab41c)cg$BZLdWY`4M$2p(^j_Q>Q|e~P?UBs%Z0jUVeJ zU8Ny96i^m3XTNt%On{hh>_HbH*kwN6MdwW$Z;6B7w_q_X-pz@c?tYS(C0K1f3PN1Oa(MMNxZ$IyKd7Dxbb=Vds8T{9!yaNLvju>#Ok42I2QIuPuws2DnIhMCI8fGiAdStQq)Ut`J>$huSUbmH;-Rg2*<99nKo`L=8uvur zD>UCZ^kY~rYY>IPaE~>Fh8vQp`fW4LsqMXVkv@q|!?Th^N!D_`KZeMH9$ISk zJ_#CqqzX%XEa&Juv{Y8FaomeoGHmtHHuV}3=0fb2;?R#94#5rF&wZ^#K@FDCo(SC= z%a)>5Q#W%cAB^E@{_KgbDI2gd_U}eDxvz^RREh!f?uFL~OkRR0Kzfc9BXg1Uy-_wM z9$X@bOtyQG^-_tP0oJ~+3msFOxyE(AGN>6YlV)Cdk7Z~I=A07lMJf}Cky6x>hzW!2 z=%d}&KqdycCIyd8oS%Gn$=e)c8&O0vKVe;@iy$vz$m%-oH?bg6CxPAXlQ5x9+cnmE z*MqzQN^v#a7B|gA8uF-b!lbnkvulsw495&ahl{!#Fi0E{2Mmw;4adkgLtcCg>uq68 zz^{gREt;&K;0Cwegd8iP3I4Dae!QW~?v?B*Dh5%<$nTPJh`KNuR&Y4BIPkd$EhIB} zN8JrRDjgjgxmZA22MJ{Rw&$3sUvA~3d(055!!}X(B1ZZuHYCc-fIu9A9aYX2Wa=1! zVsNGhpi3Cr%cDrd9K(#y`uzeK=_j~vK*Y@Vk@JCN99`CZ4Eb_Y2fBQD$XJ8WbzTz5XlX6%B+I@?wWKUY zc1Z>kz_%gTB$YCg*$v` zWE|_s(ADu;Rc{G;G%V|M6(T(cm8d*~xV`5tW|v%4A?j2lJ9@eM^=OvoO!H~zBIGsK z@m{7XWHpK!ety_=rgKj$v}7m5&ysbk5mucyku(EGJ>$Iyd0Q-PiOxJHLU9?U?VRq9 z$v$IqHR_|SwEI{#HIjIv4A>S}m@@>uF6%ky?$4o%AZG~?qmKI;F!_w2?W$fO?gS<+ zd?Rnx?@%2e;@9p)Oxc5tZm9AjDBC|djBxKTH{)0kSi3hvj)n0nU2_WSj5r0(vp-3&(v#rfbs}7-aTHAa%Q(iIDZ0TdQK$X zWPVQ9u%4A+H^q&k;=GU1M~v{K8?5BviT(D4Xnj&P5WFCeCn z-FZm7LW+&Lss){hJVWF4I*32s5`%r@^yd+GPC5GX&>BM`X1I&+ z-OxsHJOWnrl@Rib?&%o28ZLoH}EgcO?V zj1w(1K$sd<@JnajSQ~}g{!M|;;^0x^)Px|$R!~F8`VsbBxSMKlC6fgc{-m1De1hJ! zX-TNZGw)+87#`;_gXEw%fKP-|J6J7=rP37L6-jRvU6AqK-ux5dZh*F28qRbeSq{X{ zQbXX;SjOCtH&6&`0(8o(P})+SBD?F9O6)`oykN6@F#o1sC*EwRh%!&6`l z=M5d(B~+N-{&;h2?C0Ss*!)Yto$>W*p zA)|G7Y`VHrTG8=0gN52?aiYTD%R)MS>PZq{d{o-ki@g^?c50Y|vMvITrVxPaqVW-4 zLN1ss&OJtWd>9PrrZCXxMTNM`rYEsfKa05{x-qcGHKNrMlt0HXV_Lg$C)s8euBJ}g zbrIW!(|dxu2;q%p8luwHgQ`HPBRE~YH8hY)V8tVrPy*Fni|2lZ^(7;inXcDGK7{~l zIGL|=Vj=$Db95EjzTOm?bm5KWWY@1_q}F)RQTeAdnz>DzZP|S_0CCwpI9?`CVXk(L zf@!9vyj3N>2o+Z{G$APelq?YmpU4rXSsoL?FOniO{ZNtzMPy#6?HEGjEHZC5iyBkN za%pXxO3)3M8eOw-1CZzUvmmsBjykG_|B+G9T^G^h26~Tiz7{v1pf#2O9}aN^N%upF z!s6!UpG=m?#87UosT0~W10-F9bnal8KWDrb0lNc3j{o@l6W|sW1)t}ifIWu(pUXeJ z{oyw+AAbAt^LL-#{q+9R7cXCZ`49i=tN;G?gunm#um0k%fBEv~zxvacpVE&8#QU4K z|M;`NdU^Ttm#^MZeEa1$zxoBmmzR>0p}$_<|NVbm#T?i2Ys{Cg|K$r#{N}H}dHXl^ zyFYestKPr+n{U4U(kin5{RRK|!%y#D{_y>$kMDl^@Y_!>Uw!rR-#GQJ|L&K+{@K?$ zHQ1>?{PgX|_wRrB)0gn(`|o~uiEn=R@B{xy>mU5;>#x52*{_~o@hbTL>+wH*_wM_b zZ$Er||MKzOZ@&A(Pn`SJuYU36uYYalMtg04_VPdf{>ydy`{(WX`S0KT^wZ0`_45Dk zyYJus@UM26b&8SPrv{0)2Ekj|M2OlXri3`SQQmNBHG0zWhh~$?B*3cGscx;W(7{q4ibl z-MQQ2f6T%!-+%aay@MY=e0u)_Z^J$Z@5-I`4gXnh>EruvKfS#B!|z_c{ik;yfA`)V z;&0X`{ded7`0k(A2ir~L@BVWCd5!Nl8gcOFs~O$jyoNond~J`h4-+o#ra`L*<->-*yM^^Ubryu|6{m1wAv!B2H z>cziy{^72{Ki3=i-N)~KV^8?EKl{6H&iQXDAN9{({`N1w{KYvGt@&rACsU(tB%Ix2i|8~D@YUQ*_s(|%+2H#SLs z^l$Os|8Cv8`&;|te@p&%FWvsO>wNq1BX5?G;{Sa2!~0L)ef#o$HO$}r%NjC%_Xl3} z%b&dedux=x{P~yPe0f_%+`s?zH}}P-a4xalUgeLm<=1m^3(vpmy#H$VU*-NQKL0A? z{;R!GSxL`)r&Si~J#eoW?iIsxsX1Q9`B!~S=U?kF_rFGa zC7(X>^QS&u^Z8ePt><6iwd{Yj`Z~|Q;%nRgs{Q$E&94l{Wj=pekA1GQp8OnJPkt_t z>-|@Hsz~Fxzho|hzxL;KJXOT-TwuHwNNjzr8PBc0j&pi> z?ay7TjqmfXc#f?bJICVd2+zMVm8~XnPC_*2{AqZ=3w_tm+dw8n3-UMJ8pMTwI`jdBfZI3|R>(==q)c?ATitJ!`{#@Gq zS2)>{*Zg4LU(@3paUS0Ob)6&F_}zoy`PY-@c#S8!^!ArOXKi8&i#OkX_~FyX58r?P z+2DAlpEVVKvHD&Dn6h?kWT{}_KYI-TUM7H?o^om?bo`Xp*3h6&x16g1vz~G$GeG&N z&=N)N1lDA(0`{cI{T)*mQ?z-?WZZFuMoNF>F%hJQ*?J!p%A(XAU$%rwS39HKmes z0yGkT0T{#G-7(59$vranZ?Z#Ag@}z5_ej{sblssT!ng|{Lr{Y5m~eA7l-J{Pfcaj~9U8JU-BtkuHT0&h3?>Qqu1;93dh4T{vPm9Jl?_hfDg=Zwv#SvC z&u|}+Brei>Dz_50Z1^dYZmq5it~99Gkf!A>$^`-ArgAbvYgO3j z7e!ZO=U&u|A`$5=k#Wiirx91CFBg3jcFXH4>W z!qmt^R|G#XyB-mwL#_9#BYs))bY(F6&3%-d44`vQK)*U=eIx>eGgg(siVWRxiY8sJ z3Zsb|=@I#Bi>eTT+7b1L=1HyrIT~OkYJg>5jyar8Ag0k&0n%o<-V4xcpv=5IN*_j0 z3)T^KK)@`yoi6?~_HVqh_Jf>9>i6%6?YB8@g#($Qo>U>-f{4I#LMKYN11!6|+F;%a zL*aPN><4mq1!A?OeY3HO8qIKE!V6|z+`=$)dSR=b`6Cdr&m-=z$| z15GEu58v%-m#ZbC7 z=R-OyS&y6{UHLo2EWQ_4j%t>U!9*U`B9HfLK+AE7wGBTxF9}y&nw}+}QG2r$T(mlAJlnIM$t>+GUhkN~$X3 z0T^_LZJT?j!pd4G+>Zi~X`QbMs~PU70y5qyx^gq^J5{(^A;_?M0*TT*vdU{(>+X(_ zm)UfWT?W+@qPs(&e<`cNM6+~vXgX*~7XTxd1 zv9EGOd_iJQM5t5Mc({fJGJi!U0CdzN!y8CbUwJK67@uUD0(K`y-QgO~QC?96NRBr3 z1c)SPwW+*bdDj#Gh9;dUWLJprcXwAr$Gv7(A(j&PzSG!DghC=(BzSVtM_CIU85rgquDoiTPL->oM&%zFl5(1Q zWKc=H=#DUWabFoQWOO|Xe0ts#riYqGvRe%sbK#j>1=zGi_t8ot#pJwf$N|pbDrCSO z?gTu|+(!av7+kw65w~`C0kUR$^f{|9oTjI9)ES{(CW#SrFoaeG02NYn<#OBYsSxw8 zDbJq_rYY(UQI*|^^;0%{rOLQI_2eEIbIVqBNA^a7D+Bb>2p!>!RoAl;WQ>wrg_wSJ zH4E(LhvpE(%}lQAmbLut%SVvc3fGV4v zml7BSr%z|n&06~)9?-k{D1qH}b=q}^D_70SXeu2++*5`t?M#`l02$57eij|Z3K|Uv}cgh&8a=^Rj-Vq?C;9i00 zyY1!Rt`Mu9G^CM?My09cUHQXqx^5~PO6)!XM9Q|8E~i2?%}Tl1>a{UNqEQvlhO!dP zqnNX@ZU8;~=yLDC(O9D16VOa^Ms9c-q0y%@2n}f^Ba9B4Nfky@vAIcOi~_>mJf3nk zeCAW`aQ}n2o(L55J(wJOGc-$@pavb(!bta#SPPyF`Yr=YZxRHCEDoeo6;?pX@_ zf&}-DF^~*NWJMg@($G5wZ%U3@6_QBK%J_G1f==WT62!V^Jz~VfLEOwW1GhutI~CH- zoIM}**a*hlGOYdPWI5OFA7znSUTZ}F2Dd_UtZ3@H4X~us?ry7J%qYTVGaCZuPgenH zWyx`(w%wezC+KpJ1uC0br2cMBExugf9tjH2Sal~+N!KO`u^+kNnQo3Rht=xvL2I;OEUe8vl3A}!+4326DY(A_qIX?yox9qyKnWn*o2#(m3s-c9Yfr;+@IFx` zM<1L3yX}Xa26|-@mTI9A^Bn&Q1xx> zL!v_k;eN30S`8cPGE{Hx30Sbz&{QUp72V%q#RyVVjWu80N5LXG3&d1WnQ9vEXcKL? zcSguJYec7?^fQU=3e7-9G-psY(G9RDO4OtZS*^yV!J(kk;D@ix4beMciV9xKw{t+A zk!uHlx2pR)I~_MKuO&JVl>5$5%S%~8zyP9<@mD$EH%UE|yWplfu0 z0k{wj!)5wEZhSONm%U+s+(eB~q<4n$SC@%GF(y%Q6%eaZ&nhsSlJhh`xGFXGP9js5 zCU&$BOZIZNyy&oOu-1Tasa)}G*E?jV3EoU6;D7C)W(cx4>x{K0A<7^tfq}e`cT*SzH%#4; zsa|(i#+5-&0BfuG^AYD7uBWUwU|b8G00wWkGIEYpj|fORITHgYjm7n4v(2psN*anTfx8U?DGI_!Ai3G+1Ckl#6CX)GeR}s0I+&0>lHW%DKuVJVOs0e z>ehRRgkdMGGV;;IRfv0wx?;jQCw+#Z1x~7u!U}&5%^3+Bv*<9WNJ$TO18YtlekYYI z&h0B;aL}Z*{z$f0cZdOlM=j&_9NY>PkKN`xiW1WAGrMvP@iUhb8*g-nJ(;C~s}QcF zbNFr((LM*WMH5!d2DVLhYw)$JVGi+d=VBBXoj?L6=@D7A*XAljI3v0WgHc&jVa4>? zeYI*YML(!US#=;_0OszFt1TrQ_!quybKXM;Z|+FaDMRITIBK}hUDGPEmCuxL;@ETR z7(XXK21^q7Nl1-Wjh6{?4{vHj`0rSroC<4|6$#~4L)U0y*zf27?^qeQ%_GVc&ra-A zh{CF~SU0hZ?yO`(X&0D zZl|Jhh&zD&e6dzif0Lb(%IY-!QHwk)%_l|?c=Q*AR0X1^nxr@}z$Qd0n| zHNPK5<=3+djBlOY9U@G1EOj36385o*0**&oa3&(2K?}@nM((hNFFS9&ekOcIR!ieuBxCNPZ_#v5hx@yEo;g7@^c~$UU~StV*^1`@iOa=l z$f~VdbQi$D%F&oGeaoNGm4K&s2{wM>A31LAfLmsXt!7280rHwE?1-m0)(L(hLmO`L zc;>LHGP1MIWenXAH#oq_o~^hFjO6O>pfqoIXY9V_Udeji-n@oehsEUY5a^h*RK%=v zHg|_ad0fxId|`SUMFSnUmyRoe7vsZpBzP_vv+D3=R(P&q8`ssbd75EST!q#Aj9q!P zLdSkX12j8VqiDviPJ^)F)vDnOL1nfQDklOz?gC6>Zu1zK#dCI&fe|}QUuHOTW#kE6 zD=-tH=01wK#VOqpF$_!1mzh*lK?P8xd7FqrX)gT{F%on1xQMj(be@*1?V9V$)r4o0 zE2C55+F@lpj_!&T9~xJILEYR1S;9LZL!1Yi9}l6Axs6V&mQr_jxaxDUE+d$_Ime_8 z{pyQ!FEXP#!RT7<0`P5}yC(6z>^>6f!|b*dcpt&)z9%4NQQaf4)pL>c2wAW>Wkl{T zM%Po&^+>Lnn8fhsY|P>Kid^8Ukh^LjD3IqCGst}X*;rjAgp_=IYEgMU6xH6h{?kgjW z7pkj}t<-Q8pnvB^=*(WvX^pNG?cA^~r)fD|S3~D-xLFM}x3kh*Y5dfBSqT`yx>arQ-B4=9YL39V)L)STQpjEZO@1MyBTo0X*5S; z|GN`N1-deRx~?H-mWRccw;H4>gdC}zQ8W`)Hwh7N2-={p^5rJ)GB!(ov;lISw8}TX z?&j13L_ior_qFpr0Xg8 zF1XN?nbNt8H#mpxJpOQpn@2zQRERWxbngr|6xaFLs0`Om6Z-! zqCH-$Dnp(xu0rBKuBRZfv{449!U!|T?&wefhKH9IKz{8mcW` zJhiTPruB15BG<1v;3*OmrvY&uo4JAzath7!IQ| z4G&u~%2l{ltliuH;`1eNiKVaSbQRVN#l)4#$oM-fXq~x7u)LY85Gb5m`>e%iaNrZe zz-Nad;3GX;@m)?Pmg~wUS?kJaerCqbj@qwn0yYnBNDl_-bQRJ!+^n}6Me~yuF_Y?| z#N^kb-zJ20M%2E9)ocz~O634}wjAy$n@)lB*YT%GH8^SW^$nZEs3!oNKC{Z(XiH_( zuu@Tl-F&2U#l96~RVLS(U3u;Qon^r6CfPVu;hLjrp8A2gZg<_GDX2uw zYpSpyY}4HjkQCUC(|8Pgc{XT42+l6716%MSxgmT*I8W!SeE6aJ1iubrmGO$ z8+~;UsD0}Mp9=G^ZGcW7t}^sa&9~5fG=yuab9^9qdfMfwFk;rEW&k%WY4kxr1!EDF zk*e*wL&VV}+;4co)ibL5K{lUYl`$Xie@C}H>4FhszUnGO+cju(8BjU8{8bRgE5kLT zi1J@`=c8=W+&jd3wa7GNpb*?#g+y(t#!Do}QPolzHeYwm1|{91uZnLQN)@iJ63TQHAY`n;0$-x( z8a{?RGsp%7?BZz7VFZg1EXH*L3FM>;z*3r;<$5zAFja^_*Kl(R#%$@T08+-7#3^R2 zzB{^XVtO@zx!z&Lyt2A?xb`TiYD5MU8k2^2a;>F_{deC!w(48v<;`#2|M1gypZ>+}sU7j4w+F>e zq{%!_Z<(!@fco$_>rM^sGEN3#icL{FV#OjqRA!kh%1cFbZisZlaJUwX`n#=;npi!n z*`d(uSdHw-Mb7{*SP!Mo$`I+Jfc``ek-NMVn(NyXJ#F1xB{Xu&(e}402V)+Ip||e7 zZ!emMLpTAeiBPxpZlR0pkjZg1kt5ialqgmtk)XIi>zDsVcwhXswFs_V484R|;fCAo zGCS-hUJ@DRTph(FnQ@XhGs!lnj*fwJTXr-d@HTt%waa+k?zr(KGO-MGyrYIlnb;I2 zjH!1>$PoqQTL!?gWg0Id1yx1SEr>aKMhbGLS(FyMw4&QPP3%vSLwc<-+^l+@6V?Yb z!`!Fb89=iFfQ`tyOJ3qxR)$LeLj+yBH3#-3>8;FO#T~^Z-tg$dDEF4PIGlEO00NUo za;pZF{kX}lVI zsN1&rx4drQvrHeK{j=?5!X8|45Yw35wzX#_MzqnD4cFhD*dr?Tnzqb6qXf+&1z+%? zX~LR5+HDrn?-P*coxl1T5Ik2H0HuYAR(b8rJ*)u%Ew13&X>>(1ftZ^ zVZEnqoVWG$r_Fp<;v0{gQYG(gqS#KIn?O_DJC&nd-66<1Rdk%5n$$WY)>u;#q4+bd zEv}@c8Gg1S#F6|oQ?=l zCS6gb-)`H-8p8c3gJ~^%rcPcg&ig2s!$0ov%GR3#Z;z5fZxwk~*KCrx@JeT$q*)pF z4sg(lyInpa?nt&?0e9M1+3)yKh{u~!12jiCxcx2(~9r|g5uxK0(UnPG81Wh69U zgT0k`1TOaSYQX%gIG+Z{8+AO+wg^YFKb93W)xnE=``CL=0yE{YdttCx53oI!w*PKI z7WZ+RVBTKi?R@+;4Ef4TEsNr8-b6Bx1>hahV?V+aQOttzmT_R-eoMQ&H`LBw7w4e) z=s;Q7B!X4m!F5##q`KcbWV@ZWM(4Rh;>tA--C+U)bSucFs+v?r@}cK@1EjCZ9)ORR z@dSq-rh7+&l*TQuW>u>5IbQqeHGat;ncQdX^;U=-Q7YwDfLgG@;ICga7K(aArj(Pq~s!2#+(oIii6Xbhbt4k~X9&7=Qnc8-3l5ndOW&xClHp@p!s5)TUKlYdzF=pE451waeoL?b8}> zv)P^oh@##THYBpBoH29vWz0*1J0I)C;|HM&m_KTZdS^furyT7Q1mu#VdxsfDvECszXk*-WgvE7_ zDz7;&j;-vz%hlX(^vG-019Wq*NY1CZ3e%?ti;a>G;Ww36F*G2rPV4wZ?G%P$U3#kRfOAM-gjPD2$E0yr;umxEcw zszQiK?tDTwCA$g(0}+*IOU{6%fAj_IL>&a9OUw&Wl^={*2Hu z9QFD=IN+HY({&GAtG~6gDY7SA!x`MrJLzELz3%9GAFf75uJZof%mSx8ERo?bM&I?I zL@h8qCZh!BL5y4ct?kWXGvl(S-I;dPwppvEtCFR8Of8MLS?6A%?uOgJ%C`FhOf}PW z#UVx-hAMsW&;VN9iO3MU}Hf-y5mUDEB z(R2b4g;G@k-XhIi0HOc*^dws!BBrOVH_d>xj(dlgGHqYHUB-C6KJJ!0;_9kl+$ZYU z0s`q)*v!vTCqU;z^ya?PYH^)=fx-jssO&BSojvZCdvIWbJ~f9VrsdY}E5OAl>{b4r zV=@a;eI!O_e1P6QcCw8q=bk3JHPm&ru{}`t=mYjFblIB1XesjT1o+YSV(ZwHA^_85 z;t9RD1^H+e1Nk^>(zP`kdr~`YqwAS-l_hD#XMImX$7Yn^lU!OWMAE4X;HlF`z2jvg z@whFV>a(La!%3a6-uf7>yvE->{_P4Un~WsyQ&y)txPR`jfl5#J9pS~2r#e4*KXiod zBaU^6s5>mxj11GQu$axrxbFmOi?kirb{Ug5XRo`KA?UtoDYC}z+J|?+1%^3gW@^@# z^Zoz?4GGx$3Q&^T`Uw~Z_B;OK^hIQ6)mPW}TixJ5grg5%;ksg&LlUk%X_D5iVyv@jh!su6N#AY-!MD=q* zfKnIkJ6boK+73mv{R9x9)GAi(n=-ftm$SwWkf*K_Hd=fpPw+TiH)I{>HMYi_n#7W3 zJs5HK9d4_%m}P#9%17JVgxwP$A%&{pD#O3kT4?nY+?~|*-~i@3z%uXR=y5~a-9d*oGA(#R0W({?#&FOx?7~XY31RnZy<<<448ypbJJ1OU9WiV>;BQoSQ z`F0z>FITx*C+KQ!eP}{(SytE}7UMQO+GW6et-7U0HFc<4UNs^vdMjL?6ekn;oma*? z_tnv18&5N_cg)0n%LtoT;Cwe58Y&c;*`9V)V1uO@@949(hG7SF&)Nrluhj2ogq6x! zJe@^*Ay1~BfO=oeYUm~ek~Cbc7skY>;R^s_)XD)^Xxj4LXC4M^(eDosDj6H>ak?VW zL^p5Ku|`wZ1L)e_fCKMm=_LKw8&l(TSUbVUt*vPeh2UMm=GWmMM zYED^t1sQ2jRcQ2#R@^(RxYys|Dw?dXHa=UhA!_y2NI={9?WFk&A{2KtL9nrIz4-mr zGdAM+e$~~EOWz-*?bR4a2K&nWv_oLz_R{-qXJ!_C*EWSAe5zeG=y3avce}-(YzK^Pal48 zKzK+`1V|vHq6$gj#Gnd|WfQeKT~l5kTAE;UoA-8if0VTjfVFo&O55U2_oJYj95?o? z?VS|1h~a*9NZL4=-jB#wG^5&KgjcoW)O|N>lr-DjNwLp4=I(peTkULald?VQtKEMa)&dPPV=mQ&mEHaQ)CGl^qRFYK%8%F_Vjne zP3mNLZ-&J7i4nTFY#te@?n%{G_WZL&~XI zFM>X9Zm$Ovwhx6(CbDy_7QMsTvim5VAa&G7BYt=`O8cV#`Rp5Yxkr~~&Zl?nvN}3z z?z^Hzj0@H6`%#+ZJM@(?F9l@%j5ceNG|C42^|N-t&;7PbV5w<4H0*Yot>J34DWF2* zGv1MD>}$xJnnu|w?ycD#zSaU3JA*k{2*rbY70Zg>Q-N%2e&J0+g;DJ z;ctZ?W#_i-JL4fS=Af>HS7VyRjgQuuUEdBE$=<;Mw=Rq-RbfXDD<)kLf8tbhN9%UC zGswAPC^7o`fDG1>D(ussV0tHr?B1?Mw$^|cDznsZQ$($M9@R$~5wW@Z6-k|jofUh& zB1!)Hk=FaH{sNF?MEePN7AGsyf)>S>5;uVq0C2X}&~_j|dpf9nEVGbgUi|VhB>vpt>FJcy-N=a%**!9J?|9l((M_f z_s7|~G`7FM`9=>+H$>f6<{ zLG=WcjhTM}G<=62u{+irQ5zY6{To-m%c=CT<2Yw&!ageAJH*hnZs_fKhl$SA^-%`n zuZFW^>1-{I5=v1+<0tf!aW+N=iD8tKdk26>$A)(7X2KWS4d2Smf_v5#$BsdeR;${Y z!E9I!J>7N(@hHYS`jF;CH(U)FNe1=hWNy6eSCY`FThy^^e zih33%l2xNkMnXGGP3)cRbH9Ce?Kzqm@7yxxmqBGLSvC^(REYb0o&E$w9(6}(Oy=S$ z43>q`4X~HY(cd9nn)(4Sirdg%%n_i*rgE@U>GtQhNBF#~^7 zc~v*mRe3|?5>;V?&7tKQXyh663W%Hc9;$o9oZSGMHilG-C32}_r!LQ0B^plsmK#8? zeusRR_Oplk4x{0CKU>=nDhnEIR`uYI@91K{v+kD6>l?OoM808on|SN-d^P$3JPj z(^Fb7ADVjt0n<6}XtNehtl|}#vPF1uv3%IyFK^q(FO6g*eyuJXGOYo|zz_-Vx)29+_Rr=(N6wli(JRPzuSbZaM>X_y`|X&}@6}f`5y^5Z zgu9BT$?Zx&Al<|cD73kih0*2Q&I{F|w&U8*M33Hp>#G?BhUCg{6jS)DoM!Onw>F}$ zu!Iua9pEwTevp8b4wY^Fs-;TgBa}Ny8Kj6?(g|=7r-pda!DnLM?-2RIq$#6Ui%KZD z(BLwRcwc%&WN3#>_g5qVp4xoM>xI^|!+rgX=-AJ>kJ6B6i1(`kp{hGbu@^&tR+G&k zdo)5gemg+!c1VJVoNn2$H5*m1D{LmHAEU;% z^~OuQ7wCp)*XnH8SI+nR0mUY`NIQD5XlFhrz|c-LsSFlwV?lPA+u3pM=kL?BqBOwv z+&8FmUvYwe&blL8Uk?4f5K>j}4aW8}MeGG#LpcugvQfs-k8en+=y@+ zeL7C}J1jGHPcuUD^Of0(nH1A)*r}mksL^D#pnhPfySx^MxUSrW58QgBc`IaTWX3s9 zPa$4f+wBRM%7ncS*=3yErsic*8+ngLr|V($(YwY&U>HGNi_~q}Q@|;kEus7SYR5aI z@bu+CaPIb1@<}vZbw!h?)k-1&DbfhO)>RL4^o-c+g_z&SePq(pdSqV7A$C4Xk+nJ; zdZ$JZ-Xr?nn&H-&+I`7us7QWFU?sC!>Mi3DZ^jch9GGoLz7?VyQZ{RQHxmNwyRYui zg;{D323E!qAZ{z$^LO;L#&d@+CUkV4}BSn=M&V&tadHd(t940W9n7R+#bU z3+l_jw?pr@f;IH4m!{#ZAUiaN{$AN9gmfz`VBbd52{-~YjXuP_Fgdv82>>@h$iH|l zXyPAiUX$(+?fBX?T(O-EZarAoVDH%0E+a-7+yIO~&4zWI3WHH2+yZkAz`b-04mHH2 z3ue@C}%u*s$^<}(4M%8%7EZ*nTV9{)4 zqKys#(3A0gcBgCA?V@w*2~wNd53kWP?GV8(M-Z5L$HS~0ZSQAadG%AUE9vdC0Vla~ zVyt`gz#?#C+O53mZ*>PK$6h(4YR)}(v{|F^S!tYIKt;;^_7pOYI1#F$uQxEXG@;|e z%e>`k2@y@Bw4>_Ma0&KbDz~p%#y<>|Q#N7BTPDr8sbOdMBF*Lo1HdiFVBB(DV|32G z+-GWjA%H`bTh5_X5Z&%GTa>l9I|`(P+#QqG(<4vx`iC1FNKbtBP8eTwhbh}~&jl7dsb2nr% zrTLB~wJ}BYJBcAebV96qv_UH?xSdpFL7T^IxCm$Z(T4O!?C~xH(AUmgAp;ss-i(?v z+SIigyP+wDqXv$`b;ULK#B_%*@Hz0zZ<&T&n|1+fb;TZEgFzZ-8@bNE=H20juMAzU zb)DabiTJn*fuU+VL;^9m(F6=! z%N^!vjqaoL_-qUI-i|!rycJ9ml_T60?OHjlvvYaM42P{+yWOLW;mdb)Zd${Q=5KdL z6F|3ZBZT%O#w!1=g$%%B^j|e>)cW@3aX0Ku9@8{B!2C>&Hfv?G>bM;t0oiZuw8K;o zOenxPLMG%t>dQA@y!`UR4=>+;`1alRFJHa;`00z6@RD94QL<#wM{KIs7`1k@(d_OB z%1(eopn%u0in0-av(9v|KEfY8_9pOwvEqRAx$0QM^!(!G>-XP&_v1&q_^*F__wD<0 z3%1HKLq>V*MiU)z<+W|h!8jY5F~N{ymj4y*y`&6 z2?5=5+YUQos~56Q&cxEpuI0wM8V|NZR}o+>N@2juoomPuZRbcq>?V=PGg#H?G~&S` zIOl-1%U&Jq(K}il1o^gbB}$m^@vM9#jSXiAlsi7Zg|qsF^8 zKtzMeqbtZ3ElpZE#&~`DiKL3Xw$aBWC>oz0F50a#c8UmZT>afJgjj z=-Ca#IrJdsh9@2iQo147mI@_RH`>46d^Q<-?Q>Gq4H#{p8~9Q{ zp!s=#o3OC;_Mkv_=7ZvZ>-c*JZ&ezYy!08WOL^n{sYRt?-c&_wJp z*DE(urcduHg9OUYTmH$kA+xV~d%~!FwlIbh_U@O{$?&acnRsS!m_6VE<3EC)PabpcM_(hZ5(t?tF;h)vhIbVKSxbJAMQ;Iq0epdM;D1Dzp*_G-_* z85n6oe!n^^$;ADv68k)10aB5@Iz5}M-c;y^1C`#=ZG$g>Zz%8IAW{2zZ}`9c_I=10 zrWa;wX7(L*pozwQd;X^4br>_@{hKNbqoKKf7sU7M?;Gu1X4d!x6d^AoWjPi3WJ%g9 z^iBcQdUOc=V!T-EaRw6#Raz7A4ciHl6|era#jr|VF9(a&nLJOP{`cOY7hDv6LnJT8 zs(!(P*2;JlYcXvtoh5#dgj*dskqdPqQNbJP3mv@B#N;IA9CE(TlJ@hqnIMf5bq^@# zK0c^Q#uEg$hw=PNlpL#YRME&#fc8w0wg4tA zSz^+7XekF47yxbHhW&{aCQ)`v0M)#8c=pfV5MMO$*mRRos*Aja}XBi$=OghLT23_K9 z9JOFNP)Xf}UU_z-NSD^B&9bOF*Nf$wL>mL^b6~&4BMSmLds6Mci^wzf+MnW9Wa;E} zNeC|625gZ!<}gGJ9s2$~pnNNSY$7NzmQxg4FoJUJ@Plo8jhCn9V1)0|OLu?U+eh|u zmx9-qhURV#D6tebUcfVyzO(_NO0ue-qt)cHt9D>yMAi&v0%yvp+BiR0R*&QxU@;ca z?5rE#Rg*&;;uhL`Au7n)89P*Kh* zmQFhq06?cq)zVA+Q4F8r13{iFi|A%Q@!nI1^Mgzi>6n-3;otXX_Hse)!&ewF5Ox`D zGROP#zZt42KCzDLdc=Xx&~~aShxS=mPFl{9(QG_N`RDE_7@m)>(Auf3eMIL4d1^kY zGiT4(d)!mR7nVDC?-ba$sIMtO&K>4~cti3*PBmp7KMaOiFbP0T^P`6q$a(hu4I@yy zN7FS3Fd@d{haIN-(BVjcAsvZ=bCw~Ec@+B2-^&u}y5auIBH@0z!rL2uK#Ui{J^!0P zyB|%z7+cp>mwPuMj+X8}*z0xAjp8?)MhN?EllC{Dfbj2$s`D0ZNN%F(0^_GHZa`4O zG-h*qfOL6lQ*VHwI))4iRJdm!dSy@m`8`cZf*~Q;-9Eq_*<&gLgW~8TTybt_$%Hli zl~K<`nauxwsC!yfU)9v#^p*D>v8}4&H{A0WxV9`57}Kh5$ev1A#HZDE`9@m4FIOub zS=xjUV_!WeF2j&pMIsIt167Rg-;2X=twH= zPlUCH^i0gaYEBAiR8s3bZtbHOda(KFnPDHD-48#s;f6~MS+UzbT3kI2TTw zxf@)N^YAAch{FM@~{xw$cNkX*hBz~ zj@V_sRvcWy{XU^pOjD`pKS0{;1`^NTsBE{cf1i*#w(fs#Gr6ahbVFhr>#6#|B7d^N z4fgKPi#jkp5naDep)1C5Z^$e@$`j`Tv>}goaLqiz8PorrL}EE1tak`HRgHc_3%}It zuLz?263W`&%iw}T<`{(vY5ABV;Wh4-{?m19^9a@v5h92&{iDES{4B*j?DC;{K0uSZXm$rn6si|pZpTGMyjL2a<>#uB?ABhwWcB|U)1pKr-Pg2EX= zQ98`(zJZc3T5?zRMLl{Q;oLMm zl%N$vSy2!>ryvlqA2%(=nzuUSWpD0?oVZJdvQR!TtZRg`!}j2DVY=uHfrqmnDuEk; zDpu_86p!25G62l`_p)?tOY&z34HORpE-N-Z42{3f4L$!}Zm3(t5(%I5z!y_``uUe) zyzbdZIT+Yd{+-4L%E0-+#X%GToWp;~mr7!TPIq@880%kw3YeOuJT^=-PvSy&faODg z=`pOA>@U>KPu%Z1%1~g0#k@aTKhiw+s}Nr*3ON}wN(xlRtkoQ-lD8FHg12W(&RyXY zvenz(in*coTx;cC03=dG#FX4TSS)Y`f+ffR<~hIlm!XRKwl3YTe>ve7_TK#K!B)D?H1ce27RJ{4&jcR z#axVo%?i~GDB}^meH(+wr{^^~&ecgU-~9^ym@NGdBCRV&?FvAp5^dSfi^yM)P=Vw- zq;mG8O6f!R<}pXW|7PhvA1X1ZJ8I8IOzsqyxjqP=MO4T@JZlgkKvrf3@@B(Fi#iz! zBO)6b!@b+hA+BW@9%s`J3e4|C+7@6{Okd7Vsm!sf8}dmmnbb9Arj?AmTk?MYg#F4J#;enhJdQ3azT`i z%^Jv>E3usHkx5YSyt5x7(Dt?*c!H7JT*Y~U5vsjhq4{-G;AMMD8J6dMU^j$r^!*z?!aC~oTo47^sW<-{gYM8N{KMSP?+=+lCTIm+Eim#=+(7%b zf=dj!8y}VLXJj==EW8)MVVR#0u!EQG5u%|%|95!N?^*=E(nADra*AZ-DKh_i{077b zkUf?SyDZcp6BGv7tTO>E%k5+90)p;ChYa!YmLK1;x1C@`*Z%jS>b&Y0obX@uVDwH3 z{Dg3r#?%>Z*bkwB|BYV3v*h}~f;)~=e_z4kcY1=vsU|-Dz0zwd%7cK=0S)XoB%sHh zr7?u}SD~BzNqSTW*!EUcjM8?G?Qw>46}|RnD!m0c*E6DW1p#QCVr}4R>6D`kefE&b zK}f7M*&<|#@!xzJfguSh3y?7Yp!2^eyl++0hH|)l4l2$I6exHq zEIc$Bzv&}Hq$_qswv5LE*mQ zHg@`lIw^Bt}%T_h7h8zz#WfFMNI-}5C9m5 zU-jH@Zw_N*<&JQ;d-XGeD04c*a@TzvIQhCElA--@A)hkxayJ|uACaPHhwZNKn= zg`O?Ez*=@Wx6eESjaxl+(|6jJ;i3P#Hy|=x zJy+C0X&!{b>5#B&Uqy$^c1mg%PNg87)>rm}dr$0qtf>=3fO)tIkg)cVP!9pke=#@o zebj)xuR+C<7=7;&>0Krg9Q3nc8^5uK3;Y7q8&Wgm%vVV7PDuBPkYq^N7m3sC_okjQ zB>DH@-cNw}&R;_@%iVxgwJSXG80X219h$6USmMaSDZ`CLu}3-xtH4jGvkOM6I^?;- zKw9SvE*#1(F2Bn3g!eBX#Rwk_0l%o|rFi@O8?EPY!pE--1fsus_#+#%L%@k_%JxcA zY~KdbQICeec(<;8&xvlJH#U?^qA)w9@B_+)*5j$0yEHGY{Qw|BOW}s_qlXS*1nA)j_l84E#V??$qAOx#5|?u-g0#&_W0H9P?u8_Pl1&+g zfZ0OG33O_RSZkU zEbhYbgz)q?cRwhA=t+qa9CI)?zBEzKn$qhj$VlCQ(AhIk<7tw-t?-4m5n>aB8kC74 zd)KCXMB<3K2d}lV)~cLF-VdKiPgL;v{E4jk#)LAEfx@ARX&}rpK4s-d0!5LNvlGj-~5=Bf>s~xy+`VkithX&0b+Dvk9TJ zxVF)48{w z$uljWq*iW9C;0_o4$=Y|}B zEIs)tgld3H3G%Xg>ZW)G;64eE(2Pkoij2e1T%>DJoJ@4wgTJyrGLZq{2XP;=94aWEp85nA4)3HW)>;#JRXOSf z?(r^sAeP5$a_osk&wH?+S02W^uh=T!;Wm8GVX5g=sL%!wC@Ip(PLj{&@J7^E%0)1E zK(Tvu3LJdA4?n2)WFF1^c|d8sYY5%=6j&EJ0e``>>0d7tq=C&01hNbMO<=ldM{>7UxK zIqf<1&p-cH{`=|YKm6N&_`iSq%isTiPUsZ^{oBv~^q2j|-~Q#dfBo}zp8olUJdw4| zXo1P{X~1mv7CV(s0}PNJ!-mNDCbF1NjV>xd`1?0BU%ewl==Ur;Uck{jddOVCh#{f5 zy&<9S3U!}r9TC`vKCT6FO4QR41b_J)!E-4JX{)RO=3JgU8cK0GhPUnt_N( zhG|&$)=oj|J{IfpPPSzN4IiqAx*=RNg9zS~SQ-`2^nO^U>p7L7_BQ?4=4}Ozbz&`9 z;!Az|;9wobe6@TGz78KgVHvdEGAy!GG+Ycz-=6OtT!}DE zH0|~)9{h5>wud3IR#|?-NdcMJuKF#GF+^(5DXXeCQ-!u6tj*nTxQ>3}b{I8W+d^9~ zE~cZ|ciK?d!t#2gytVhz1UXPWnVPGN2Z|Rl<41aY`{bc2gBoSe0hxMRsi-|vwKZlJ zp~Y|=iD$T^&3(F^ke=BN(q$XHl6!+AAAE$`2omi@@|=X;ZR-{tlq4UtGvInk5_iN4+r7_pc>HfToA4P) zMu|AWo(pF%d#tw+=dP3(O3%-uCV|YT?(HDI*C5S_DIa{Q zwDt-*x-0iW9($m%sOs2kwn@7Zg|}_&^#ylw(sjk;dq*!`Hfr1T;ZHwYviWY;Amso> zsAI^(5Xs6_8JudcD;9Fd>g-(@wZIG6xX407@)+37FWh$1>M*!gbppRlBV)Q$qeKP8 zG+|M9At>*qJm`5^7%mDg_eF*ZcrRQ9e6exszHNj8D`ezP0F^*JLCH|n8xv34vlSG) z-h{N}f(zlQci-)rbRA4F{?tUmEywvN!DV#~dkT+3J9Is%z0=}rpE9r83AMS+09Se% z+b}6Pp8i20?ngi`1t>?RusQ?V)^I_@2Kz{BLm!?PM72^6O;;jtC_?9>JA2c3g{;6R zOZC`rRUn+Vw---9!du4btVc5Tc47g$X2pqqVLw_IWogD0G7*^YNgp1F3uKYkj?QPd zHibkJKle_U(#gV^nwpj9WVW-+hoK(2w{6*IxGILkwlvE~KGfR~;6PnhuJ?t|q-UKQLG~D~)mpg3@y>U!&aR)<`7Iy zPYoZwTVX2mPHD=0FJRuRJHO%HWJtCm(&H0^h-k9VsAe4XFvN}48reHRG$pe+9OmtF zA?k=gt-FBD;I^UWuT4WZ!NHOMOxgt|XugU8Gu6qYj(8$ArRe-hrfA*nVRYJX<=~2M znhY=@4=Pr(I$0(!i4J_IO2sU(EcOuM+#qO$6E_+9bq}l zwvg-31Pfq=584ElaYTIv5vJ=)UwIM@REm;!)1X0Qrh2+~=Y zB0M2nxO|rYkJx*bN%yuV2QVFQYC9W+wI@4`HdUH}>5&>GSe9$k5Q2SXZm#gg+Y+cK zdMr^@p*=x%gtWRkfq((8YE5MofW7Ur7ubi|D6MA*Rr+HPscFQ}x^6GcY?>6KdMDd_ z*(U%1!tP@Ybu*DaymW5^#)*tvQvFc2ln{KhOPvs{0+!RW-UJi8BbVz;QF(C>q-+x{WD*G};IM-T@e9HIWMiZAVJHS_hgPHtd;=XHQMHx?uz|=MDW_V5 z=R}gh{OhHnYTyf$kM$KQi@*kDgQlrWgh&}%eJZ*R9%oX%2RD0*viAt=Pr47S zWn|%?)EeHlKMsKNbn?VkQFP%MW5F0y<;pZqYKt;1nYRs#fh2SuysaDdA+fgAmXPX( zMz5(89518;XY;2qf~_@PF!yN#G)oOmYkC;;`+)8okoXm1t;Ogn=M0?y?$5A(OdlFZ zJSgt zgV)~<7J@{P*?~=7%|$k%WITQ9#N>@;Gg}wvkQP6P|q9 z&LoG5vr%ttAL^!TV2%bhXt0`-+5t?xhpZg7vg)=Fh{{9sbn{0jc2syxr+30;f|#-8 z>h6WxKJPetr2M@Nye8oMZn%k?3EQ`P2q6x&?R8o>Ob_DYrq(D5KyLg{$lSb~iG_0( z_!BmchV8?Yq>eenAKQ1bUspTXyX^>`3YVKC#EGVO>al|Sn{}kNk%N2r_!I6!U%4MH zf;Y8^Xf(z_^0vK0K~4xOfOi4~E6|5J)ydv!CZe(^>3ADgK{oJo|0YJ!&HqmIz)ku# z3J7pF^-ah(kmoZ&=X)VW7;9>V@dp4$(aB{*t9J|8iwBNJy$M2iSkd`Tr0eh{YROig z`tao05(eBUN;z#t6l*m0KK|53V{H-o@wT%|5h~CWhG>|S4PpfEh1BDc>Rv-rn9^kk zfod54ZLN)B==HwTwig*H$fp+Sc0v#WGK-nj3Hpu;lA%YP?D>aNitvoL5yr!3PPM4* zv6>AIPjv!bAG!Ghi#!(s0fD9OAhl1MMNuaPsh&C;#(f$`7;_zagK=(NFDJ|Ox?enV)< zs^wqDdfSW_&=>`rf#e9C7%pq6la5SgF*&;AZI%gGgnGx@24xNBIeBq!gS7z*vzzI7 z6H*Ny6??b)Qyb_GgLh0H8gK@4Z(UE*aKZDv>~tIcFx3JHi^S0IPAW8k)HolP=%&`F zzolk>`Y^!u3QZK^?%qZa!~g}uhY*gV{izTsc)XKxD6TN`y%U62QI{q{S{+FOthy{&slQXj_lN z&T(_E3AwOsxD|DhfzlF7P5O9w7-JrcQ2vD3^3U6WZ2C@_l~CP|sc%;scK^wfc$*i~eiuK0I0|K_%fAVQc*Z;KtUl(LH#F^u zZhIT-gD53GkA{mQfu%j10*DQg+PytI$4tF#oG?7Kwx7pHT_{m4`YreYRL!c{0_9B- zB8s)oz%X3kTgkHKtf%I1qMGBtn{ONV5Vo`MfXQ?q8_uRS$i7S;X`jAMV*{er=rj&r z+KJrnaUzTq$z^b~L4TTX#M?$q#j>`A8$WY^v*nlr^x zcuEeLh{p>rx3sij0MjX!yvdJRN$m8?V0yDDK$Q21eCm@=)@8rN-fbz#^*1pC(9l_R zdK(LDk}N$Bb2dm|288!=_Y3PZYP*Kks<%NMXCjlupSqgi1w~T!QD8h#wXVkrx~Vlj z0Lv~le-kq9RG+pJgt~b-?6YR{gx*HF0k+>$CUV*=m|xnZQM{Q*<2BocEk=`6R4&L6J>&)JXF=fK?Q^f0vGDZVQu%Nt{!~6snRT2EtV$4*s@* zig}K&6oBCb_tI5Ze$8nOH9TfP5=MDK!P>q%GGfomTLS0Lwwi!8*7bIRG#I3y zAly_}0QL?&uBT>|ixE)45S(Jug0h*4fRRJx$=B>nT>PmET)9v`mhMkYE(M6$Q(j&x3gYlYEI6*;P9#?+ z<&M)k0fWMhVf3yq6B$9WX{0D(C#%q`G~8GpRupPUK&7&r<*e?nyEoEKX@)vM8x|D( z(zv$A>J%Y?^kHZu4#~I8rM5lF;8Aeo)gjK zeRPKp4^jzU-*)(uPa9HjXalF^L$jI@?;Bjw+n62{gIxMH>ttI*`<*8*?!)ld{s_7v z5Ev$&ciEg%8^#J#B+>%1w5cvT*3Vh-$;3v8C+k8WNMM)8Yw#TwcS6MDRPWw4cB%+IR8qGSgVJI%R$T~qnB>VRV19`XCu|oQ} z2IJX5M<$Fv(1s4fVGBdZrABlXhMLe6iQg5!Ndhx{6-Dland(mlW5th5s;|YTE(tAd z46+d>O+)R~pdXrDq@_s-PCa!-Z*&j#$B)Th_x*ornAV{DjJ7RIYl^c-iOlffO;^QO zfWnUx6smjE4$~T0RIA(%Z-U1IN#$x`F%rvrj2A5|Mv{|Hx=d*ILgI~tE<(q!;~E?= zg{@{;rS!AHw}Yt@4AD%XlSE16AabM|;!F(FS<#y$5IS(qYjzQgrfjJ|MDYBDA|(LpRrK8}Y3kNGhSk+KP7qxE%4hbSqGQ z`uUH4{ny`a+0`$9`t2`&`}5!b^Kmjje&b0V%tSkpnLbHz)u(vdIPhzV_ma0kakH%U zXuNHp4)*P+mnH3f0`64CbGvk^nNDyWp8w2IYxGn%;Eqd`S~{Y1H!u%s5c-el6(G-Z z*kb{6{rZcC-%w35{ywjLfZu(TBlP2K`zYcGDT(kl6tyjJ^LQ-7mP8|qbkONHBnq8UqJ~yC#8E1yU*q*H*SP#xs5gA7u7ef`qv)0mT}C(bK61q%OQb?=hRc z$(|S)`uKTd_-?`@<5D9ssgfR}zJ;12t12fA_!$Y$s@SI8P;s1HR93WPwY7djWIRy` zNJqHx1Z|%;!=T!*b*T5|d{jgOBO=tkJgCq)HU>?YJu9AkDk99ImN!4ki z_i_^6T|QWhc5mtRd`GpmKwBB=0FsD zujQ)Jll^%U5%UXhzES;34iPY|Dhmu6ZOkXdpKw-_cX|N2zHRH&%5ZS00-+bM;0DIk z?1KNV82}+v77#8tNYGmdfJ*>mKr$ePRa%#y-Qn|C0{GZZ(A^^aIIQYI zr3%3D_aw%R@-_+*R;{46yv?c)D2D4ow(pgMKfvn=#lEeswLj@4?6}x_BzzXxRb7Ys zxfeVc4{zJU*Ovj2^d^L&u_AL5Iz5v&K$Ex$DvZH~yh90yX%GXP@}+C2vAVz$&RY&~ zfi_4Yj{`e-FQnv%lDII0^)bQgHkYarKpIW7tw#1vU`R8(^?kq#I$vP3z`_MEImt_? zI8;7@!Hn~ekJj#qYEtpV*c_beX)^_La4|*0Md)B+vghu@fbj?l1cnW78+@WlZbMLQ zEP*skkHOo>k~Ox%N5vVCap&Wq3)4*u5-so|j6Ti;$X=j%FCdT{ps8NfAjX3pOogZ+ zNCse<1B{{Y*Dowq_eq7AP}Jyt9V!s*$5;eUyCT3DA_RohRX0z})UXdv zRR1A80o_s)9vSDEFh|55QxXd#{uu$_%uo$pSgbgiI!MSx#v{Oo0?4A#Kn zchDztvSM68zX^4`3#Iv*1QjMEff7&`ZoE>Iv#0d6yDnmv zIAUSn6L7X7*?7c?1h54kWqDrVVJ&zAn4;^$V;*!WY)2D|EddFFgU=(5ADrQ411Jgy z@X5=3SUn8kn`v=14J+LC1|>ho#LG*9$p*`_(9y(%`Y5RvfobussR1cPA0GeMfd9E@ z7N!D|3zSy@f(rZ&pjj0L4D+2}!#ct;FD#WBU9{=Mv0AW@NeRD1Z3YNh_SBbD>u&Y? z68|Na znbfv7A9xqb6&kq+m-3c0h{DC9EjXM41X3s&`^ZJu<81~EP}L)4b;6v4BW+aSA}#)CnS&t9Gudk?m{%vL&*IrX zRcPyN>4Uy9flbY>bTln`7t;{RLzMcZ6==_q-2_A2mAWxLGh?C(ZPdaceVBs?GVwEL zF>{p?*+Zb&pn>8{f+G(3x>CeX3@*Uxg(GofGt@tItWhfv`{J<(mtSby#sE3Q;7+ki1V8BI-yYbVB!{TB(T(WBzRXjwF^!l7?CaQ=gKNVXJL_jBMe0wPj1o&R)d9 zlo4Vm#(gVlDKrw>_62jaDG6-2*8;`wWO+FZvurso#LB>uC}*5#FG{Vy9l+iS^AACeD4HCsQqIo2h<7d0CkvPvbUiw zfye2Rpq!SbCeNAWZ;TT}I(QFkP@Oc9N~lUj{#&L|<36VJ`nHkpOb-AG(H2{rGntjE zHXb+|2ak6G4AqLYtLUjHZ-;!JT&1_=$8u9t%&U#y2F0Y(C19q5z8*Pt0%osr`sl-3 zp%aL`5y+Mc7#gZT#C=-L3Zc$9h3oi2GxfuVcRQh$uo+dN*qqJ4E$9qr7(o3d6B`iY z7mwDgazfV`>|(+|sl~X*u(Rf$8fM7e^T0=@rMIIPwi5wf;W|^%!Os;v8@}AK1Vhpk zX2rtMKnhDUDP^W%TB1BB#$1h~Q+(FNa3MGuK|}U|m&1hW!is07-d5LB1Mlo4@=SC} zgmKxp1z-XXe6_W0?T1m9F`n?MPglS>7PKfpqA`EXr-2+sp zOgcZHjQ)$tY#p`xPwHav`rWwL6TwjWL@d1xY(Jz8EfmZ&YOW0QRa7@Ytx`i0rTdQw zj}YWbfp^p;&MQSQINrCK1*d2Gt`apUi?a<`z+@nn3pUQSy-K^cX?b{zzS; zfIe2Tfb^0{1a2*pXzW4Uf&>}kl9wvlm>`(?O^y+P1001OjP>pMZg1EQN7Z~4HU(13 zE4lffiH$c)J4BTq!derMqujm)X(>jtN=_3n4mclEkm!JbmTLW^YUu4b5ypb-(W}wx zp2L*AJcn!I1`wDV_IxV*X9_~Ky+-6eNJf#g|8FQj-e-BmZj&A>!5rXl#b zC>8Gxq18#fam|4s1}GS_Jt;~DGy8-l=UE;DvwA&Pj#}}^DS1mGwCivkT);LZfYjs; zQ9|K%!?t+Y)NeunX9?6y3(QP&&#mo}WeaMyGlWzs6OOic%Pr9$W(O9@TkfBwsFfB*9zfBx++zy0ff_|G5777GsG0EQwj3cwA=H$tgf*`F1)%&8Kp zhdp4Tt3JbT7s)Bq90EHUY#%1>EhmMY)go&LDRJ9~j_pHb1sSb+h{N_03f|VZ5^2izN^37Pc7;D)FV@oj{W8Pe@t)QuoTqDXo+d8`kCZ^~a3F~GujKw1|~hGIK3vtftgD4ky%PdYptWMr z(>CSHaX6p%^q1i8pa*b|kKvPFrvTOx2P6Beo}t{fIS z?IZOtTx@Y@7*Ss77xKIlJ`_b8Ol`X3hHCqPcL6Y23i@!6Xo0DiM;`mt;wn@L7$uBf zXab6K9yUJ2Hz&qn(2IjBYg;jB?a6Q>W-^U(PL?3+hLFpO>L!i21XaSa`q)R0>O*MT z&p{1rP-U~KQ(Wk?)x72={BwZDW^mj|#7>K)d0S@}sNkxCkKS!E^k+sN9qKfypXD)` z0u+QZ}nL-^;NkUv4E zIVbrPAmU&S*q=b6Mtg^v#MY|Bqq=EFAVZSfM;U;wK~v74M$7gy;XcWF>H+d=f4Lgm zvT4yzY~&@l@-+Jie5}~D3&a!!avObk0Pf&zpCVlI18#ycg(a%)$8zJ8F_+NBnFVjn z%d>95u?CksiZH)AYMXQ<%&hgLh&S8Gs8Ar}_O?nf7!oa6H*8RYqUM|&yG|;ifsa2Q z{&vC$Q0<$A|9>#e45b&^wjH+jDDX{^&9&nHg2Cb_dBYT zMIf)G=$k;w-#GSL_8;T!nmh6gwNVR3Y2hQdKG3afDV*-3fN8t!Hsm$MDi7&fu}Vi3 z8Gr&{smu%gvNqz2MoiazxB!+_cyE(Lmlw>ZfM2ed^$jAUodwdahWZz%vSG9hl|c_- z{7$X5%8Hm?nL_eVJ43`0^2f1Wc;)pwShp?fhPV#>kgR)K1M^DHRRubo;z=lFRT4&Q zm?Z2xN5}01h}a~&9EzbXc4C`jUcpE)%;KxB<~PhHl}aKbRBJ)tTEWN+b%NKoAnzHf zg3CmdAk(WVnlc#%m_n^%O`o~7uM|$ue0X8jf!sy7_&<8iBgkrdWK58;rB0=)1NB4 ze{hOmr8-FZi(SNK17g-ypFGVpL@QpM+#$!5yv=CHpjXlCLLQK0KIuhuVtkr# zsOf`}9yJ%`cwe^-&^&nVq_$>gFp_V2Kq{!gAwO9k9`FgFnig0h&;W+=F!vmOT)@}0 z)dDX=Gdy&^gdA_jjUx(jm+&T&G+RawUQdmYkAwIGqK5}dac_m8<6qnMuQlHpF7J$X!o~UDvSo`-Imz`I^76y zvX>qU{+yP4;*2BNbxZ>XNVZw~K}Ie1GB(w~w?IvLh05d1>l-&`*XvewD9ePi62dK2 zT0L|P9XXU}lX9A1cLAt?U9pyEEmm*|uw(dX$(aN4XsXf|$VGmT z3n+3Ox{VEptKv2;<~J-=*ZVzIJqjAUNiS}MQxUU_pDz^Qk_}#DiKc3n5%27o0EaAd zvam$5OHw&E&Tt1JJmjB{R)ShF1;^CnLld$FA?4jDrv&N~1f~pYkNj(o5edk#K)x%l zyQetc6RypW@>}@bIj89T4vT&cg5w!276TcdH>=dlc_--t3ATXXq?V#AML0l-29>v5Hvmzu-XkgAFjd{#` z(xW9vw;J!mV~7gnp&&fpg8&nvr<^J*AjZTejOj2LYL2&b`OW|3Z;?366biEq;IXcX zw~-qd?}WZ>C?Gi%!P~Yt<3HLM__6A1E#F4!0PAZl-!^z%=gVX8w$0p5Qe17+xv%os zNj0*?{@DpCd#74f7j7E~TllkWS@!ay4F&NNkXIXgNZq+5-bT#CuUDQ>V6@L0PUsVJ z{%C`-<4K>t#W_yy@SVoFzgd6M$M{cnsX3m{HYgA4#|B>Fy|dRSil^X*14 zEs4)I_ycnO>;!@DW8H=eNr}(Tw^YMVoum$ULoh+kvdgkYaFaUnH z?Z<05eYRCjlJ?nVrFY}26U?~p8(QL}ezq;MDL>i>MD;a3+rY|xZIBd1Jgt<^3mL`U zKil?tk2S;A2FdJqC$03-zJ`kfE6??LVK?XNvkjh@&-G-&t0{lI9bdHOuTG5m_wxyX zwzjX~!Y)allY!V=E}y#v$#irlK05&(cO2<(VF8!+^^K;*`PS&d5oe(nl{Zp^}-7y6f z-)~ZT|J@K$37@_@d5Y6$`8P4E?W+xQdwhT7JioRdHlX}eC^EZ&5p$la+<#L*N%&q@U`PYTK0J|E=!(&+RVmhn7_=_MT)R|ZP&=FJYUll zNxf9QPDa#6>Q~$G;(vGij`3v$F3Wd*wGo4=U$y}5;rg-#SUc^@kRT#oo-b>q)?20$ z+7Qe5{3a-xtoHeKfaL0>4-Cc~@$&jcmn3vwU7?;mc2t zm{8v8pC&1jgTVDiTZRYmYwt3~{r>4=kpBkO5!+z32F3T$##nvrX9*gv8?y6G5-Nb7 zvkPJOlGn$kNpc4t@#8uO2h!(IlS-su_+!PJL0Za(E&PB(p^zcAp}}0&$1d;~EAssK z@Elmg8$YHn8zv=GacVwM2%eSJ1)R;CmkJ!xc9ngmFExx08M3AYSru{3888 zeD34NR9w#fF&Ppu&pzUeBTceB?AhXZV*FICuRu@JvdMj{6}NxRu>tv1ydg>>G_}}9 zT&DCIw-pnb!U?MJ!ULI$Pn}V#BLGxl8{wPYqbt5Q0puL+;(j~XZ<|TN#UFRWIJFg@ zn$HFrD95%6;9|x@3+o+*#E(OZ>X?O?S$t|xs#cB{+o*pAkrvu=Hz~8Y)u1JlPzLzu zgcvgvC0_zne4eaV+CP4uNZ%{P2EB=%zsf13*M=>rvoYR${2blK|+k(u6 zT_AEw!I@+gdPPG>A*3mp)o`BF{bJOz^ssj!Jzq^sI=o4@W41mmwr!IE>cMcTf-X$h z{waJDia_A17-604m$htq4Hi6fs1LBFNG4V-t~go<7QhDvZ1dW2w-eBv2~c+!>r5;k z%xxGN+o_1>2ZFJLE+$n^;Y|`Y7eZ!XgCy@^q(ouWmTC4aMTu$yBMVM7SoP3v?f+?cGtWbd)NWx%gUnZiVwj)eeM=%T#fJJ-tRLMDU7_8L$D+I?B zgNS@c4j&Xa6WNOBi;((&hOz`p2Y3lIeoy=+CXNojXE5ZlRYw?$qqkA2Q}%ul<1Oed z5{rt41Vz$>K5vBSbYhoLEET3ERUk+vjCgYq zZ-4q{%gdzj->)~r^xv}WM<+iz`O(RbPJVRqqmv(<{OIIICqFv*(aDcaesuDqlOLV@ z=;TKyKRWr*$&XHcbn>H5(JsqCot{+dpGSk=?ybbyWNb2$k>Jp~TT}Cy5 zl$QpeCKG&J)1MkR6p7LnIw__(0pCTGp=cwKORhnN0(}Cwqt^|ql z>ahIefFjM?P;gz<7!te_WUfKhff{-*G!l$cZ|!5!T zn!=P4ClhooKK>o1=0?d<_qXeXB28EzG_AW)wIvhP_O=129iU&3Yk|?f8Qr#qX2AKH zhTX&4>XC7x&ehvGtX2hz&LGB7!4;JcO&C-EGLlj~&D^U5R$WRcMU_}9+T~U~<*FTk zLnlZ$A1*6xG2*hR;ex2LqW_XK)(e8mjzziq><384JwO9L2(na zBqhd;@_k8% zOHfjwJcS|*lo$QNjFc9bjxyA?Cl>XmdzyJ$Y13GQ({MUc2=_gP(=57)j15?t}n!dng6D^GnBHh(B}bM8KCSW6IHRpR`%qI11$vBW=$$N>xPbX3 z?Nh6ONdi%*?E;7(6dy>yc-t~^M|dQ|&J1@?1O06^*=Jixd`^UVg2)WRoRd)yd)wY0 zO%^W&?HGszGr)1lg_z1UI+mk~so2yTA4*ZXL}s8X0qm5Amy!c9rh))r1+~H4$}mXk z1z6t0>?-!1ZYSuV?5SQ`*3+OP-QW$WRc-A22E}FoC3Il@ zt5yW)7cv`CN1j_9Pb*3QL99-u)fCK+H{Mf&ssxN6?*tuC7B>5e%lLdm^XGF!JF^o?1>`CXsj+<8CkCR-{Fsi7>TK# z^?(gRXXs(tqjl1tRRUyKbwfzof#0vAzIobUxk7q7hz21Z0vHhnEpOw)QH=N)0r!

rCr|~vSkO3FVdc$XIMrG=4puvZ!p-burp-U<{j|kvpq=cLcgnH1VLVWz0 zr+aTRHNr#W>uppr+i9yd$ksq~Z`(BFR_hTN3`MXRBIb&`x%nZnyD?WBSV za%^#2p^SIIRo<97wuBnju#*NP?gR+TTe63>`N0W$Z)V z27M%wO-ZcN8NB+oD`yW6h!W+RROTpXMUfAJiI}GEg$1g$xfe+b3K1a7E4)!6u1EB_ z?hORn&D$!)Hrvuq&xf8>heRa>PWi&Jga7?t#82Dklq3@t)59=*jh$Bn_Za>K!pA2l zb5-E(dr|C@M_L!~D6&aakwhb8TZi$Qi;#Pp&`8g=@Fr9d!Ghecg4F3`qE`)rtv+Z) z3ew+aK7HtTUaMZcpQ+p#@f`hk)B!N{%^3Vv13k6 zSLj)qG5>YH4k~p%Fsi8D2~u4!T3V#-y^x}UJs04A^EN6jpy|tcn0-W`xz{NW^EO1( zskUiFog6FNN`%A&&O)YeG<>Il#4It6Df<2i&lo}(foFaegbyJp3+n{xGS2C-B&#-u zIqej2h*})O6PqfFmVZHqj@DzCaSNk~x!nTK{DM3Q4%MZn-v6&jwvHxov&ZN%Cdzrz zj-m1u<&4||J96i9a`Fe^8GLTSXH|+%M+@EPK1D%}k`U*46q&JVvt@i{YJ*O`nIf4w zL7`@_vxqy3vO^@EZ`syuD+CAkCk=Gt7-yzQThs~4k1$cE8s3Du=Y~>J;56TMC)!uf zp~P|Gbo}P4Pyf0T+k!5vsBm31MFvbNb+X+>N@vGmIKCHd0|+Z{210cB5n-<_Vho2u zlSPqA_$KU0ka(W*#VGg+Ym!PvuH@YRJG*0SRwXP)&uiDt1Eo zc7-rFJauXnE#nkq+7L^ILw`I$NRD#M1uK6PmqTd~Qzv}*40YeOEKAdypzsU%Uke}p zLF14Txs<|;Lsoiy{x;=|hWF*De;w1kQxVvVGI^N2%Y;$iHpm&16_#l;T#!6d@zkY& z0ErCrYV9gjoE6VjVXXP{?lph-?K{iz%eEi4r9uf)%Qu$#%l{1f_26;l8${o29K3dP zzcMzvtzoM}7C)P}9imR6L9ej%FFYTSPprQBUPu7A!OQ$C?|4D|-b~2eZ@51>o4|yX z{&@RVa5P~#+wb?rT&-MbFT8@fL-PyGI7Tb5=*JkXFrYqfu+i$Sl96Hdmb{HFQ))=u|4k^kYmbbZ|@3a8bbpx%ylh zu4SSKg9)d$j<;wM^WF(H=iL~{yFU%&spvnI@y3^S+xBTHw*M%8L$tQx&Lb1yZB!^z z#@mX93q=+at1sC8Cx<2Cd=~C|TMnuey&XXe#5~hUxt&h1RQP_BgZhPgUuEU3JiL>=rDq$N zp*2yEbz-5d=EJqk!AuTt9$Bc{$$n@8)XmCZA^mUq)TtXV>1cG?L|$0Y7S@g=TO^x+ZH)Ji&|8F<7I&(>c<~{z(qivpj}$( zgtL>wmZVnLuA!75ta-x>znG#paXVrzYJ(;Z{SbF(%sMlfN8*^p1rh=QWN%$tjE!pf-YTgM60@P5)L06nM)6^v3Ue$(t_4fY>NPAl) z#csR$qfS~jmk2oxzYwKMLO)C65Bt8UDYWDtzOWIpGt@_IdwrnDLh#=^VI?wW($F-l zxS$zz#pdI0bQfqS*6!b_8aV*k@0x{ZDR92E1BSSrn80dprp)(VNPYkn-l=ucEJ=dk zX!nOP785ibyQV)oI6>-ulDwxA{CxA-Z%FxU;rml27ZIT=(?fB1N>FrOc`2oe+yK zsgFE-xbW;7si2hn!xIBx@9N|6@t%ARz$^=9hM>y<6HZJjYi z0z_?lzAYGuSFUR7)#9kFcXjfR3fpg!U+q()Sb%Q1LCvQ&xH>p(d-67u#lGxjh#13qLwz0XHfr-(8-<}r6BZPG_K3^(uoA>hU66xTF%XH z2)B1e4sz(55W?M?5-M8yCQ#%c&U2ZN&V|I8p~iajggG0c!?b3-ZSTL3t4pPkHW-E= zTM8c@RZ12R*ZYO2x5EZoo4*Mkd{2+XzUFP+xQ1aW*Td{pYZB+r)6@wJX=qK4u1;_@ zO9wNfACr`Wb0fbxp0pvSIS@_qHqwy$7{tTW>|zT=Y-`T!AHLvz5<^VsQQHLb0C$d0 zhQdh)NXR3~oF@c@i8l@nSAkL$yxExQ1WiTc`-X-PO=R}^?N+GG^ci8r$-c(OQ^U}M zn43CT%mw7;hOgub>p$u4Ge4{0oEH?eWrOs3s3z1~I^h|uNgk9We(-@0MJd}xfk zgS19oKGyZ%7+D7Dq;t+D=Pg;y1Lc zg|fa$1pqTiVORfcL8gKL)04Fr3wGCD;JEkNldzZ3>D3K^XC)weOKS%%%#P4VsoGo* z_2uq4>Cl1#lIc;h#u}zWvWK-aUlZG+Bp;7=qw5|cx5oMQjuAuaHVL0#ra}q_j5x_a zV~=8iwV=kpmH<^8Ja@moIq^NKkW8s9z-nNl>lpAYWQh0fYJ7f4+Vq5F2MCT9B;tYJ zLCTkclzcLp+}({bWB~5aMqfvzF1?_+y{~5DAAK)`ajIHuU1^)`=vR}Y&B_|1OPDMr zHKf9ELd$t6VKT&p zTaaSj=1WJu;|ZC^WlD?e&Oy@~qvkQKQDpEO^^rTjc3rih4eT<02h)S@S%~p=`F|WfOm~U80mSXJpl)K!O#i(*{I8e zWD`a(0luD}_$DBZ_Hh!kEY;$dhxG1UCkIP(s5F&j*;d!OvZtP9sSi5D>od!evT@P= z`aejP!~Owv;Nxvbh7+Wi28ycJ z87~93J7+`hoC}d^GB$jJH`ZgCkPHBSZ?U6#Pc6*AW@h-?Rt@p8O>T=P)t}r%Se$OQ z9i9uP$wQcq#oLC%19@LNp`OzQZQw+nP@UkZ;>+Myc_-Z<%H|nNzi|JwBIdrbKQ&n; zm;=*6h@Q5Bq}iUvwdgw3WC!p7i$$GIhQ)pwoTC0Fle{6Rn`sf3(^g8gc<dT!0;T@ z?rozq2`4>=PKFh2AoQpk4)AMxuj}DWOpL7$6R3ULpd;-D;R|g*r(i-2Z;}Zh6z~)p zu8bpz>TnrNZCI3;C&|AF2)Eje^jdBE^o1+8pILZ2fmD^_^2t6!!1yntqs{(7k=jNX zE}aPSX@i6|TLw%I!vTt^Q<@UE89iRKt>TXtVZRQrzN>9-3kaNgam_C#-eqy+ntc|Q z<4OSQ$=(TDFw?cJ?!#3OOf$-?Z0Hu;aou+pJCXJO>PMySQ+nyFWT~D@jLb=&5TVMOF)d_hC*y~4a>SUf= z0w%%RMnTUs>DkApf3x&xP2<*wT_*$5aXb$V!`{j8qVULltnqlTkO4(|8#$0^1yA1A znFZVG-D9EI)ky|0O%5jfTu7jkU3hA^fPrPKmeMIl|CP@-~KaEq+7l zet>eJi|K8;X0w99zHv{3TL!E2`gvz7j)oQj~nFl~q03v>iDh2aEY(M@_n7W_UHN6DTF&8ACinLuUpacd0> zR|8gou>9VMd)AwPDX?!`lvLl_HNprenpU-8ZCZjtosfyx9^)PvpET&jlbhQ1p7Pxp zz1n3`ZMxwgu-RF*0y^x&3ge)R5^xE7kjWIU9&iclk7%`)01v>yBcHRfa0D5iXl&mA zYOn&~1d2u&gbLj|5(3$W3mr&;UhO17ZYR_x!Nh#3WiMEvnTGC7%;vjW4+Il?5>^CU zYqeT#4Oe}Pu6dZ^nPU(rvZLs+4gI(p>c5ap^)@_nzy))u4Wu__cuVR8D`|lX@9Ko? zJoZ@)kc|doGtx0jE4dXDh+qQ~R-v&RGqREXoroUb4}y$RCuGX00?hjH-mYi0GgxoZ ziC_VmtOBX*iLe0fr!JfiI9vy(?E0j%)w$+0`8uboj0N!?W#$ZoxkWW~@d z#J6VapZ9)e7e@AUZ<%|8_9xsEx*LM~dHl!N2E#I@TJi9%gVmn_+F{_*N|>)|@4|wB zJ78ozHFzBSiS2_49mc7RHMW!yeh$k$u`ng%(S)ZKzn3~B%E8#WLEvlO-M zjSN8C*{3cBfx;C_b_x7I5gzK?rwH)HAfRn-Wx0C7LS~#|_9ZC5KCZ^V66v}Q3^(P^ zbEy-8ex1Xzg*R#7M)zqxl%;Z9p()6oPZLcH z0ER{hIq#PPE`icffVYoNkTPsRaB?Y}I?YTSFT&#HjBtu^ZHF)joW`J-a`N%7NPaxY z3QxVQn4-hpSF*0d6$Un1!#BZg#vRz7UO%45#84Qnq&iD(n-`q4f)TKwDut99LaP^J z7k!o%BSNa^b&aO^-%uOnhE-3Eu||>?v-xf76w>U~je@eb?Nx&XN_neyV!#;4IF8YF zE^G$f>A;u0jld@rDO1~une)gWS3#S==m6&&E9;wphXUoevOe~k_+3<5_ex|2otDa6D&w=5b4lXN7r@d!{Ep~=>YlInO3mT(%%@RRmJ0{KxYlu+uE@3-?#ND>1I9W7jl5IHNODhWbPeI!dL zt8IIC`vAOm~#ckGZ>11_P1CfyTC`6e`8 zxQL*EIx#gdJhuo|m{`|L9M1)T7}z@%#ey0_lGvvD*&=>{Qi?WXMv`hZL|0l!3?4Kh z&oTrBz?*J3Yat1h2yUcQmL`bt_SB;Xr^FP8_pq<$8A)o8iK5^?sErkcffsJbsYPxs z6`x)C_zwFelimc5lCez8Y3f2?nvLjuR@-)Bwn>#+cstHX)GpfU@wXI*q*Hg{osd%j z3YNmtpki5>vwG?Yx{i9H_{JbC%oWvetwc!Q*c`l*gfwL)nHoM`vl!p3C54Y%O_sNG zeRvL4G{NGB-<#nYHd@L^GOvpPV3%eW0R+(JD8tT>F@=%y9j#)-4L<% z680{u5rurJY2&kuMO}tg`}Iu%?$f0KREq`7gmqa?O9kY7HR5@_7S$0GGTP5m+X{83 z5E#JQ5vn?~6)2%Y-@N>a-J9vb9PwnKIlkz)CZ*U4f{@#7+()Yl{;&bjbxEoPLksVL z-5{wVx8oQ-q?lET+NUWT;%X^bX!wZI2~2n=+iM2Iy2hg-Kx6!23ooIL)fN-rjIIhQ zG;DAQW)I~*WRroGrRS!^eqYb>v&mi&2j}g6eW`p58$fhh{98|dj8$l_rl~fPF~hWo zy^ZI$%w-p^)85Ms7yF#V#!ERy#VI1G>cm8KO1l&#r){6*FpNA?oKUb}fW;bz*W(g; zfoF!eqz!)>BQP^ue)mrHG6vPk5*=zIlMjM?`U4XGvxWG05b>}goC@%wry**z=O%n$ zYJ={ClCw89epnHj88BU(XoFNH!OIhrKb`Cqj80Dt%v0?8+w7(8OH5*^8hYwEj3TFv zijw{5%TUJ!Z16VM_Wc5D7_P;%JcKyR$d?)7botu>*=pEqkC?0gMO70CnrfRQZ1%a8 zlZK0^Ao=tXc(wNAEf(OL>I88AV@z1f-_AH}P)w}ZzY`objVklQO>n8nItf&(m57vM zgfub##dWqa!Ms$Tz%I7;yNAs&XYUx@JiwbbzI0i`7(Dc+YoH+`*J__n-^7@tFf2TW zWQ=1Ita59CNsQOcMqLtE!z{C(DdzJxF?1IAkw{mDv(gPcsOvx%velfjl9zGJux})J zypsV)2c@NS}k2id=>om@aVCzB4GCx6S{jZ#L*>C_DtO{qbs+Yml&$3z$}DZ4|m{g zqx1w#&LyrbbmZ7Xw(aE{Lf}(~7MRZI+h&!#70jtRri=-_#@_T>NLiM-zM@<*m;uB3 zykQ=8W}=ddiXwGFbPBU8@IRSRxHtM)vpShnVjE~6@SmX@4veyj(TJ)Luwd)aQ*)MZ zL$u7ijcC=jGvN$U8&C>3BCCcg8`QhC*h!{>klLQEu{LPM{)aRlF@)h907pNyFsF?u zyHz$+anhN9eSr@{d|805Fq){G^tSymt+KL-e+vOp;MRN7^^W&BYz&XJ2TnQytLJ20 zPH)Ae8Hgc{E`~6Y5Cl%cw<{FgR$DwiT!o5G;JvemHLO@n6W?R_o4|@dpj5XRHXT7=P&U;UX&p45rpVgN1_(re_5OnD z_r1n$MD2D0h8jyTX}ZF~)6B@K{w4-I-bc?kEIX%d+v6nqNR@aS%oEt;CF@NZMma`D z4Gdwx)++M7BJV;>bK-NSa9zy+L8$CXX%KwEn9gtHQGtPWgA|gP-oyjvyg?!UyJMPaCrd;)eX0^n2ne#+>qczDwHw! zC}jNdy>FIP!kZA;qc|sgc=9QPL-(mHt}}QH2dpmQe*%vHqrzH`cT&LOCrZXf^G*u6 zNPa!!4`Y}?ExbQ~n8fy6d$2H?I>G!PSIrUXZDdW_w8V%y**oE$b^9pny5XKy=&+VR zvQ`i##+PWK@FQeLnmrc{HMn>(mwR8+Hz5HBoc!@xNVb1igy0biTxWYo>#42Lby$np z+$tZg{akzbSOLGLFoadqDs%Gtg_b+vhzmbn&8iPq?*7yu4ymkx<;dH}#E>RDBmtNI z3_9sOe&lrh!fFRzzvszmGY`h9E(8A=qPGN#wN3!Ab2!!!`Oipd@H|zkwwtRoDeV^j zSuvLd>Op_Ij)Q=yR01bjH`w#uGQ;em00icuv_x{p+U!{7FLVuG-^_s`><5XJ_ie7Oxy+cNM6Klk05$`R;b+F^6JVV-S%?>W6^ z`tVN7;Wp9X={JPc6(_cb6+bN%k0+^36Orp-!K3WIU65a-PKrV+9;>N>aBj^%@+t*v z5ljRAgdka9Fq>7>aMafANw>!}`NNP^g@8Cc;XGlvTMlmog2-fK3?#NgNQd0K?H5&T znHV(;8-d-eko@3T1gM2tj1{%lS-7FWWVe4Ge@semSz&01B|&Rp9OI#F7|y5ECv*b! zAGog^E}WfeK`=a_jgpzYJqw`D(Vh61Gj;;-uNzfK>|{^~Ng-9Zu%LB}Jom>FT2`^f zH=)#oI=T49iTFlV6^IQN_8P}o=!7gD9%hPg`FTRIk#R4AI)Qp={=|iyJWk`Ue1t6;I!v-^JHu6Aah(VGVYgkAx8)-E$ z%{e{Gh`k1rImyhojX3)>pilJ&1mL;1C1U2P%wa)MP%(0-8Gay~q2T5TWxw!7kfJ*9x~OOll4~u_O-)>)X8UncQcD*^LC!8sX^1d!67~ zgWW}s=1=y5o;CO@+ahrn0%SkQEvi+I@7%0#s zZa)Mpv)61}mSu0(K!#Pw^xu1y<=@k1!M#fcKd~<`kI4aI4*0j(kf&`yO|Tuel)a7F zfyaWMzT3umoPsCLuEDN3-mgd648n9>XdpV6-^^Y-ZBUeA*&MLhX#+psfQ6f_dD@6- zfuKJTgxd+i3~YyoTkBjnETRnft$Q1^3fs2fsCnD=u1S=?V<&qXIg7nlk@WUXtYEc3 z`TXd|5Ddc1IP`>ee3E5o7BoC<13nYTi7eoI+8~cArXurrCrnmC%9j|*E-d7II+R_> zJ1*n|2_h_we}RG(KlDJo$600DUneQJEK6`Y!3`o?T@Tj&T-YhUGU%Z{HT8qjtds5! z1GyVOzo*(6dfLdHP_cY8Lry1qYi5CBM*35Ci~*_?Pjch5QMJB6=5%i(^tqQFY-ZjG z90UNz$sKqnlNuLBx=(-V$;J+`Vwpa>mYp&{j*7nt!Es`c^T6fDoz~Fjrhfc{{?nb; za0}UE(|D)#Lbr%ntG0cLkvw=T{L}BWra%BNM)Ecae@#BfeC*pvGYg2JZGK@lbTmaS z%iD&T5d4dNaY8UBH{G1CR%w-=qj(5M)8hYS)p^W`b zYb()MRS%ePHQ*{Ct^X~22V_)>{R0qW@SQ$bpl!aPV0rLKs^Z2(+OVSF!rPB zKc?J%Z)F_n{$tLKm9vq(c-zF(r>K4Tu$m@}0px79_IoH4i{qAKUiUMtsqw;1nQ9v* z9s?%IhY%DHDh1c^J8j_8>p>oBcELr(F>{g|?M`c86VEuTMyHMHCce@El;5_6fd!f< zd0QdDOyJu>tnCI80r9~RZ!@XgXcDvJ>s&`WG z!#l~aLt?v~9k<|J+KSO>a)Nj##p>^kEkwgb)PhQtddd{rnbwf3S;2SrHmo+-0#o%) z2!Aaji++5#z)-{MmrlU_bkYn*w>w&T6X+c%?tV@n@w8b+Y+7#QZR=L{n=Jd|ZPO?p zh-m0d2qA*RNC)}Z&a~c!m~}J!O(rR*{WOG-ybaG|7<03a!lK5jSdDMd>_Ts$gCK6V z2-c=Gl`w`1^fuda!B4I1ZA9-;R-1XLZEdIEAwK(7dfL3+?jg9ssUL&-r$%dqA2*oW zFy^wZ>u7A@Ha4~G&yk_=Kahdj$;3w=klFeTGZq`z|HB_x@3cn9Y{WOA5|N5pSV_FC zQeMU~S<^c)+ZsShZ|Ve=LFzdAXx_F+@&G5VK7>>SE(#=1=(^r%eb9pkCth!G7yq2D zhJO=s^hCy$PG zcV64gv}W{D8HbqSbg~Fu8!=<^3kko0yugM2^+gyZ0_26#389XjL%01z2oyv#rgAU? z1|c7=<5UAK3X!QjCr$vSCb_73Ui z?7*{3;_P-{y^!Jsb2<;_&!{P$`dD@=v8>JC=|$BNqTnZ!N051zyMc;Eo$LpUklyi&y&%N==?s@MD?{ikUM$D&2eMBZPHKQgdRFG7VtKS3mPr#cgYHRm=QPfu3+D6k zP6i4b*=cwuXTK-gsuV~iP^#bvnD?xP^`z(l_1W4KuXVPE&r&JsBfzY?bF%2b^E$1HhaQdBeD zW)-rvDq7RqauQmAqpH`t6QpPC30A1wvqENL6l$hgg|Ji{vFxwV3AuV%8!p-`H+OSt z0h>kP=n)x1hQw^MYN*I#KtWN=L#+fP63mvW)rYVIBtNEwysvT{dHAPZEG*=bD61`$ zqKiD1wNkP+%rz#2faPsx=(4<6%Zs`YOeuS=yuE;1uyoA0>xL?^oQ`2wlu&lYi2w^~ zuYtqWI5T9$*UQ?LsC{LRkS*0<%H!5Gy!t4+2_9h45v-x!sxTnsi&z`QAzrEyN}(ihqQ{ukA3Or4iRdo`xB*%) zUySC10nxksodO|(j7U_@WrvC+4!DcbeG8Fw*a0IfG&eVu&M3XWNAxzH#zI6A+F*Sm zNl%_ggY^_iT;-)SeLO=x-|QSbRS8Ze9N!(PUofPZ=9*jlFoxJE)z$sCl)5(=NG((( z7a`FIMPmpO8wx&1J0Qro$3mxYdn}Bxs1T*;;4Y3GP4eC0;4a(_Rn%%94nG6^Cz)DX z8hgFfEaG7v zwGdC#&eSoWF}32g)uu9>9$<(GIxEdHFj<9L8@u``H%fcRn7>wi(fz?gZRxObN_JTT z`w|viWq3K09RenPE1>#p_#`O`dWwP2P}yrg8*((~Y5hr=xmi>$0 z7IAI!-T&|FhQOMH5syj1i9k7_sfISJ5eDA3;kV~>>)pA9PC(!IXzp+}tZdFZxnrCV zn@cEc;j9bB{bfW$HccL2uHB8+Hm@dC+>k8=gpS@}#tfD? zoMiA10kI(Ei4V9?kMXQTptJE&xk^LzDxDNfF&z%^+k=NsD3x4u9DG&^O%QF1oy-)#18GTE#&|2{1}~C@oISk7mCakW{@OO1 zeXJm|mkrLGbDkbJLH2qD5an2kqxfm~9&Y6LZ8gVIGkZIP;cFORhy=1JOSkxOxZzJA z#~dJPO!Lml`l|Roh#Ef^Sd+>BAx2h!wzK;`1l~(ocJ;r7wuex_nyZ;UUNf;M1 zz}8(r@tC*%cRPVDD)-*(B?8R7_;%(iguiVpm(Rv9U!~h^Th}oA<(l^QN}xL$<(h)r zPDWQ;AONzJ4Tiq7cqjRfCv-0igLbv6JMR`|^GycXA8gHcjStzyH~Ird;J#u%>WKbX zuI*R$@uCP72i*D1Jc#M(FAd>N4p{34LvSF@S$x=x3he6M*!p`$$-|c6;S;w(p>y9#` z*d_G4CkJ-H({Qlq*^y#ALD4{+Nzw4tb8@{>XsN}IV?%p7nt3`7zF;L2gtq;5F$&qT z_u*$l858%pbcwRJtzlguUaVa)-pMivynE>fZxdTdA^IZ9kAF;ZIh4n32R5*hjw{8o zGnBW+qV%4;4X&32W_}k$Q-l04@3VV5OKd_41sS_FU~^DXYWC+ukRQsx+PzRR#Ga)b z*6p`A(PCV*;+0I};0O%$3n+(+kxzQ+1KW2Z6f(+h3dHown&#hc6I?Xx&lm7#|r2%nt}78peA;} zoV?PkNNpFvvZz4}T>Kxx3}PR*lB4`*vWB9_1nZjBwkh=W_OTY#e=}rp)TH-vyBf z9?TUD+)h}oVRQ7Nvz{arQW@?oIpE-E!Pb1KGOqL_BzHQLs-P;O%iAwF_?%g(O4A`~ zLOHWs`d!XQ?V~0V<^3Oa;ijxG{5b3wSQy@_&Fkb$4a7c^$zccHG+fG*0SCYSFf*v7 z_#E(&Kuln5MSk&+VqKC2a6{x2l_WcmQXLMf%|)>It^?JS8Nhaynq2dA5n7c?CR6ru zVJ!0-CY00C{3Ia9IRi}ERfX8EB8bQ?LaU->@Ag*uPgRI-o#2Qd_=8nh{P4R^#Ah0bJhWP*@_ zxJ(n0LNXnC&NmU|F^L`y&Kr-Ba1J;)l+4prb*V#EW*ltEAka`Wd!plD?7?mh4$}-m zzJW?5@kMaF9RC#No@ffP(Ugd^?wBiezIG?2AR6n$4nbyd5M9>tg5zA0)g&w4PjLCP zU~+Du7VUZ#7>gYOT5|~rJ6#;J=L%}61YHjPvFlk71Ys4Is*~0k{%E#2P3r`M3-NZ- zFH)-nwT05<*M{FYMcrJy6IL~p+;VmyL6g7i`D8tU`digAp~+OhX~1}&p@3_yC!)lQ zHoOgoqbadN%vQFJi2=F{reu_38Y7nKn1%%fA&c7v(<)S6@DaqMX9QIh41dHKD}|T{ z&`YdmdnkaMn>U!m`|#=soN1z$&gs~5BKrh=SsuyDHVJ?l9DD=}{j{9-_PnJIhvGWB z`<>++Sf?t7!rC#{4A?}?V*diHL$#;8iFi(9ePXV?MHHn|vO=;oD@d zF>QhjJFw1|63%r{@TmGR@LBr>Y#+=&YXwsr97)L`8GeRmMTE=pDkW05&q8zIr{O3k zWkZN4sfO(MqS)3%nyKM?XslqO@D+9do==-1u^rLJM*=&Y9YA@|@{YU52%K;wTsGvR zp79~enIt{DwN(HY5QyrCewTHAPuU;5VlgCG>s|oi)h3x_&F$#@=9QmRL*4R+8E+Ak z?VX_ZlhQCqx8QzELU;P`XTpk&DZD@2`n{lMZk^abI{=@S%u(=yaK`&OlkoZGm4N8; zzi@NN)khbr?G8EP!EmoO z7}(Q7`Z}9*>tvBTl!jtktd08XV*UyBBFN-8ur7-j(hdq+Eg%htqZjRMzWiC`n&>>;`%X}yg7RsiKE&=fFo2poaY1Yo&F zI1qX@s}XBpUWmYBa>$=NAQ z3M=uFAuEs$8E=gkUMU9D%jXz-l~6p{xJr;l9jh#)Efna2;lTq0DkL;KWWEVl$%Gsi zxL9J07MGeNsW1`}`&ea}c)KAx4po*3pt*ObXeo_}+Jsjlw?24KDT=+c>;ZX9+?>Ct zvixa23%Y3-%(rx~t~V%VrW42|TN}~m%3cxTb=wv(j7@B?uZ`tAm3GQxw5b!gC@V{q zRlfsq&W8$AZc6TL16wSG1*~-<#j!{$#X7+!SzFbvRru|Mal~A`Ze;bk?wRL(9E6%J z>ln5oAD?!Sfq4a8VB`33m*Q=F1c`u7pPuFV70dOZeR2^g#1bEsRGR|MiNf!I`9Qt)(OBm(t>(TJMMvq;`sDmL+km5wGu~a z_vZv<4qcUOD8Du=gwKMg+$@CK2_tUc6w``5cmSB9H{5@WLJM~?c+%E3l1P2yniZ){ zh&-twb!_WIiv}6*C%Y2z2^a|ThKt;`C4_^et{taIiHgOA5XKwUXD=>S>Q4otalOfu zsh1)&-mqSBkjl&3@V&+#xF!FGggRiTe8ZB)8`gN4fbBQ$gsncDwEf9NG^~d#1k+dI zl&lkTZT_FPK?axc<5yJFu;weB9`1BIxibaRZt?>gaURTuWm;Qjor*ltJ!{h7G9XlP~x#p&R_v+JnL}(hgFgC^2oB=dU~zMb@r{2 z-A)t_Ax|nCmqKn=;*b!??C9a z3eeu&evD>%^2u9%)>K76`3PpVHZYU3BY)zK+sVpGa?-EA1J61olY9&I`n6%zG9YQ) zTF`CN_+^h?>=vRbK!TQssX#QYXV*1r-n>u4^*?&7l21W2wtrIB89n7}){l{4tS;PC(_BX6?f*`2Rk0bw`MAbd5 zla4Z27RcMLc`7)a9| zveZRgA5!~=lJK2nWipKy!x{j9rNp*Qwwy1TR8T&;0D-mk8kVgF^&W~!wK|f9HCR9E zVGDZG9Vugvy_HNiUP?QS7P5V|^% zFFrtqFnIz4LLedoojk=p{r=A(D^~2=JRq&RlpnWXX1521$;n@Sbl~)CcatSV+4x`4OQe@YlBXR z%x?SDVXH!#4Ng7QNl{7@Jx{weIJ=QQ{L23I4Qr5}f|BHG!>XykjmjY;uF5MHF@PtR zVZptn)AbCzIwguoZr`h6z0i=i8iU^Wgh{_{d0%7}cR8YVPm@!QeZq{`FS!@(fw1TE zHXP}Slu`B%!Fy}N%0FbVv7oHX%hezJ;46lAPw_-Dxl&7RpX?vv?m0K5n{I6w;xjY% zkkz(CcE!fLc)}lB%W?w;?bd8Y`XHmx1Kb$aXY!gDoBsUqa&*`bH!Y+?av6zYP0Qw= z=2^p9Q}wG)_;QCeb(X$7)andt9I4LRQ$5>@{J^CgS`Qy100Twu-D12>CVZ5xl8zk+ zEC9PB1Sqi-Ma2_Sf|#u<-WyiUyt6fqJZEa~93z~H2~Eh?rLeqVP2Nj+$b7N6owp78d zSnibeV;HDpllSE#3HBPxR+nxmxRscCsG`=%x`xV7Jwvt>ARVNv?pK2O_rlz-d8ioR z2p%P`fOrQ3VGslS#}k3@QQcI*=L&%%@GBQPnC971bzM4Fo>p6Bth2ovBI|z#0%4(2$+O#!TNhKA9A>*+ ze9bYLNht*Q8kFt{KA1DZ9vU76wFmw<5pZ!(|F(c((kf(!rZ&^Eze2+Q(d z7#Kk~8ZI}G%37OI@hCA11elD^QLwlogNi`s9NffYxsBj;#YCEdB`I5NYr{U26=RNZ zHWcI`rp@gCaLbaaEAZ&Goe4^Qm#cb?ju}UE*HbV&{mVC5Hf|mjm@~i3EerY$g^Qngb%4Qc=n-i@n9rbpP~WpGkaTZcUd$2 zin$EdH7SQq2vzEGwf1|xAyTunY(8qJLqG#e!Oab|BtZ-zX$EH}7NFu|*)x%&1sKt` zD_NrRFM0C&n~V+aUJnC%v+%fesqxKSS7`_^Fmm7^P#L{Mq(DA77XsjWw(>3{n-`#6 z!)ta0u4~25d3qZ&GtAgqRCxtlV$;uAuTi{M%NjzcrdyG{=t(j-y^eZTO)SmV@OrEA z!VM+aQle!KRKpCp_Bu{rU{O6rv`tsF#U- z4SBya^5wiVGJ`V>cUyGvIZ1#|$Fr7}M(y%t*d~lHM$Uly{sVV#1u8xW} zc5L;g>)uXCglPK4`vYY;FEh3Pz$2h4aPFqpEBFE_?tVK&O}uIo0epHV3w}S+#pTtL z%}kvNla-ydyjr`0IeiG9wS2kmOiw`~Y;X-J8*%^<@j@a$`{G6q^X`fpWD9F;EX%=k z0*EV8AQlQKK-821&V8xZn&!j7@wmebw;A*a$rBRgc?{lmUN3Zu>vD}B<_-6X#d$H5 znQzHZWLJ006_=3QCDU_!8=5lyzyZB4@}q+o-VB?i1d+vfEPfo3YAA3X^8Df8q*Vdn z8}v->0JN)|wzn0yjd0@~Sciy41 zWRPz;h&Jgyx~4$C+TVBL0_Iam>U@sutl9lk@kyp*<9P3q_R^B$;E<%mXl~vKVG?Ir zT8Q^-)Fkk|0*}L?XR@oi4Dv#oDhX&I9m-}=gRb?K<{m^%tq+pWnhuz^awB(UKrg$b z1=M~WfM+Kl>;3ATOvGjA7i;rQ&SHo_)OPp2_dr;J?4^5gd^=$=n9GY0e|Y)nV#|WX zPOxb6L;+-0>jY#QKGp*f?|}%YC?U<}ogiW-C;lb~JiL6L0ka5havYol2TW@&MEY=W zw1?*zKh?%PP=E7HaM&8jOaTt9J>ca4yYu6J-?n}9tUlHQ3J*x3EuRGEjD!-$oYmHqbI z0hIOW?A^SRGjp>qO;0BG0CVL_kSFaR`eG}>)a(Ti$SAN(p17=jLmdrfxo(y9o9YQK z%a9A~K-r42n|A1vGzX+6qc1-Wj0|U*yQ+D3Ih!SL!0qTU^sY($#l#p|{tPKgnxn@g z(pF3mQs@}ylFd?e*cxw0pjC|btdleLm$sE=gT+`M#P=d<_8&8)Y)FB{kAwJM34(D% zzpQ@W(3~9Dt)lM3J!y6us8ySnR+^mxZ^%bpQ zn$`)CzNF98vh5#gk}7!PCdbC{ibm6HF>1`}wJEP?SXQB?^@UlGOL&;pLHXH=ck6gC zvl4W^yoNEfo(HQ>_U!n?!1ZhI&fKYf3J^PQv!6AK13;tPrVY&{dMDO_{_I%x@&cT9 z#h#sN^K5>vk>?v-RH@j^wQewH#<+2?zyA~;4C^FgN`maXZO-w?&(?O8w(Kmwl&lM) z546-*_WnS07#H|ijR2xk#cl-aIeI?@wzuao_%QS?_I_CbqGmc`S3hdNyjcru8P)_4 zy<%EGbda4j1Rc%9d0EGWlunqocYXH2b}4sd6k=zC0)fSA#J3shI9kkr6l0vvc4uzC zx{7xwG?rVMdtf`?4iL4P{lIlb9ADbH92-9)0f)kow{-$h7?%E8&F%tZJH*Q4vcMkL zj{SE!W2aX8hi6(}7=5!Evo`nxAh?zcz_ebK(6_6X95A>>fS6xF<#7yU^95*SR{~{~qRey$Y*BC$_E=MP0DepNP9{MB+rchKFAEt5WcZTkTxPa2 zgveRQKCxgJt?JLy1EFo+1|OeSdpiz(h9I_1>+Q5&Cn(5q*w~)9fCIWl&Te)acqdq| zfb3WsrU+~uMgZ!Wy5Q8d<>>L*xGu!m5H!96n=V9=!Vb0r0Beu#kq~5zQ;5KNz}g5) zNNiG;KNFOmP}=%xb~adtlb1SEXk!u}6JnJB$~O)yuXz4Ic`!R_`xZFDcS3A?G-CE+ zNZu67aTfX7SQ2f;Jr3)bBspq1#C=+uJO?=Q>4-j&(S1s=VE3QbT~(j#NG0lL)~>lE z8*!UpBuWX%2MwyLGr?&u;&3Qi5$y0RTt{ms?5)qeZ7~xYwjKB1k5hiIQ05S1FF=Q_ zd_eRoVIHyw_J7Fwm^}F%uyGQ7DtQ?tByF(H2UH$Ag1sy=F*)&0Mwf7X_82l>RN?2F z?rm&3m?3*e+F%{LWMJpWGxNk5U9O!_CVZ(_Wv(93`^7RBHk>t6Fa4OZfddsj~IPz@__v(6q@RwYYGt zDsg$lU~+pKb%`?+s;8guFi}68ncM^FiKD?euWm2VVDWnCia+>DE;1~W>LY~hVqutU4}rmio3N>~#RzQ$5n&Ub#IBB0VTv@-jLMtT zzwt=&1LcXS4DE3LPX`0aU8oI_gOH)Oj1e9@n_@ov-U&ftz_YdWPzQqZ#VZhoE6m(8 z@1+?cZq~ILUDxvJdl@On!W#pGB~)25S`YRfF4JNR4FzO| zD6Y;NLUqWk$+9XKgYDN}R9Sxh`yapk=U>15{r5k9|L;Hl_}l*gS26u$Z2<)URc=1h literal 0 HcmV?d00001 diff --git a/tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.Fe.gz b/tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR_Fe.gz similarity index 100% rename from tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.Fe.gz rename to tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR_Fe.gz diff --git a/tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.P.gz b/tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR_P.gz similarity index 100% rename from tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.P.gz rename to tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR_P.gz diff --git a/tests/io/lobster/test_inputs.py b/tests/io/lobster/test_inputs.py index a3cc5f67a9d..df536d2e77a 100644 --- a/tests/io/lobster/test_inputs.py +++ b/tests/io/lobster/test_inputs.py @@ -1550,7 +1550,7 @@ def test_standard_settings(self): lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{VASP_IN_DIR}/INCAR.lobster", - f"{VASP_IN_DIR}/POTCAR_Fe3O4", + f"{VASP_IN_DIR}/POTCAR_Fe3O4.gz", option=option, ) assert lobsterin1["cohpstartenergy"] == approx(-35.0) @@ -1712,7 +1712,7 @@ def test_read_write_lobsterin(self): def test_get_basis(self): # get basis functions lobsterin1 = Lobsterin({}) - potcar = Potcar.from_file(f"{VASP_IN_DIR}/POTCAR_Fe3O4") + potcar = Potcar.from_file(f"{VASP_IN_DIR}/POTCAR_Fe3O4.gz") potcar_names = [name["symbol"] for name in potcar.spec] assert lobsterin1.get_basis( @@ -1727,7 +1727,7 @@ def test_get_basis(self): ) == ["Ga 3d 4p 4s ", "As 4p 4s "] def test_get_all_possible_basis_functions(self): - potcar = Potcar.from_file(f"{VASP_IN_DIR}/POTCAR_Fe3O4") + potcar = Potcar.from_file(f"{VASP_IN_DIR}/POTCAR_Fe3O4.gz") potcar_names = [name["symbol"] for name in potcar.spec] result = Lobsterin.get_all_possible_basis_functions( Structure.from_file(f"{TEST_FILES_DIR}/Fe3O4.cif"), @@ -1746,7 +1746,7 @@ def test_get_all_possible_basis_functions(self): def test_get_potcar_symbols(self): lobsterin1 = Lobsterin({}) - assert lobsterin1._get_potcar_symbols(f"{VASP_IN_DIR}/POTCAR_Fe3O4") == ["Fe", "O"] + assert lobsterin1._get_potcar_symbols(f"{VASP_IN_DIR}/POTCAR_Fe3O4.gz") == ["Fe", "O"] assert lobsterin1._get_potcar_symbols(f"{TEST_FILES_DIR}/cohp/POTCAR.GaAs") == ["Ga_d", "As"] def test_write_lobsterin(self): @@ -1755,7 +1755,7 @@ def test_write_lobsterin(self): lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{VASP_IN_DIR}/INCAR.lobster", - f"{VASP_IN_DIR}/POTCAR_Fe3O4", + f"{VASP_IN_DIR}/POTCAR_Fe3O4.gz", option="standard", ) lobsterin1.write_lobsterin(outfile_path) @@ -1768,7 +1768,7 @@ def test_write_incar(self): lobsterin1 = Lobsterin.standard_calculations_from_vasp_files( f"{VASP_IN_DIR}/POSCAR_Fe3O4", f"{VASP_IN_DIR}/INCAR.lobster", - f"{VASP_IN_DIR}/POTCAR_Fe3O4", + f"{VASP_IN_DIR}/POTCAR_Fe3O4.gz", option="standard", ) lobsterin1.write_INCAR( From 831c64366954bfe9abe963454d827b6cec109fef Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 19:09:04 +0800 Subject: [PATCH 16/21] relocate feff test files --- tests/files/{ => feff}/ATOMS | 0 tests/files/{ => feff}/HEADER | 0 tests/files/{ => feff}/feff.inp | 0 tests/files/{ => feff}/feff_dist_test/HEADER | 0 .../{ => feff}/feff_dist_test/PARAMETERS | 0 .../files/{ => feff}/feff_dist_test/feff.inp | 0 tests/files/{ => feff}/feff_eels_powder.inp | 0 tests/files/{ => feff}/feff_eels_x.inp | 0 tests/files/{ => feff}/feff_radial_shell.xyz | 0 .../files/{ => feff}/feff_reci_dos/PARAMETERS | 0 tests/files/{ => feff}/feff_reci_dos/feff.inp | 0 tests/files/{ => feff}/feff_reci_dos/ldos.inp | 0 .../files/{ => feff}/feff_reci_dos/ldos00.dat | 0 .../files/{ => feff}/feff_reci_dos/ldos01.dat | 0 .../files/{ => feff}/feff_reci_dos/ldos02.dat | 0 .../files/{ => feff}/feff_reci_dos/ldos03.dat | 0 tests/files/{ => feff}/feff_reci_dos/pot.inp | 0 tests/files/{ => feff}/ldos00.dat | 0 tests/files/{ => feff}/ldos01.dat | 0 tests/files/{ => feff}/ldos02.dat | 0 tests/files/{ => feff}/xmu.dat | 0 tests/io/feff/test_inputs.py | 24 ++++++++++--------- tests/io/feff/test_outputs.py | 18 +++++++------- tests/io/feff/test_sets.py | 14 ++++++----- 24 files changed, 30 insertions(+), 26 deletions(-) rename tests/files/{ => feff}/ATOMS (100%) rename tests/files/{ => feff}/HEADER (100%) rename tests/files/{ => feff}/feff.inp (100%) rename tests/files/{ => feff}/feff_dist_test/HEADER (100%) rename tests/files/{ => feff}/feff_dist_test/PARAMETERS (100%) rename tests/files/{ => feff}/feff_dist_test/feff.inp (100%) rename tests/files/{ => feff}/feff_eels_powder.inp (100%) rename tests/files/{ => feff}/feff_eels_x.inp (100%) rename tests/files/{ => feff}/feff_radial_shell.xyz (100%) rename tests/files/{ => feff}/feff_reci_dos/PARAMETERS (100%) rename tests/files/{ => feff}/feff_reci_dos/feff.inp (100%) rename tests/files/{ => feff}/feff_reci_dos/ldos.inp (100%) rename tests/files/{ => feff}/feff_reci_dos/ldos00.dat (100%) rename tests/files/{ => feff}/feff_reci_dos/ldos01.dat (100%) rename tests/files/{ => feff}/feff_reci_dos/ldos02.dat (100%) rename tests/files/{ => feff}/feff_reci_dos/ldos03.dat (100%) rename tests/files/{ => feff}/feff_reci_dos/pot.inp (100%) rename tests/files/{ => feff}/ldos00.dat (100%) rename tests/files/{ => feff}/ldos01.dat (100%) rename tests/files/{ => feff}/ldos02.dat (100%) rename tests/files/{ => feff}/xmu.dat (100%) diff --git a/tests/files/ATOMS b/tests/files/feff/ATOMS similarity index 100% rename from tests/files/ATOMS rename to tests/files/feff/ATOMS diff --git a/tests/files/HEADER b/tests/files/feff/HEADER similarity index 100% rename from tests/files/HEADER rename to tests/files/feff/HEADER diff --git a/tests/files/feff.inp b/tests/files/feff/feff.inp similarity index 100% rename from tests/files/feff.inp rename to tests/files/feff/feff.inp diff --git a/tests/files/feff_dist_test/HEADER b/tests/files/feff/feff_dist_test/HEADER similarity index 100% rename from tests/files/feff_dist_test/HEADER rename to tests/files/feff/feff_dist_test/HEADER diff --git a/tests/files/feff_dist_test/PARAMETERS b/tests/files/feff/feff_dist_test/PARAMETERS similarity index 100% rename from tests/files/feff_dist_test/PARAMETERS rename to tests/files/feff/feff_dist_test/PARAMETERS diff --git a/tests/files/feff_dist_test/feff.inp b/tests/files/feff/feff_dist_test/feff.inp similarity index 100% rename from tests/files/feff_dist_test/feff.inp rename to tests/files/feff/feff_dist_test/feff.inp diff --git a/tests/files/feff_eels_powder.inp b/tests/files/feff/feff_eels_powder.inp similarity index 100% rename from tests/files/feff_eels_powder.inp rename to tests/files/feff/feff_eels_powder.inp diff --git a/tests/files/feff_eels_x.inp b/tests/files/feff/feff_eels_x.inp similarity index 100% rename from tests/files/feff_eels_x.inp rename to tests/files/feff/feff_eels_x.inp diff --git a/tests/files/feff_radial_shell.xyz b/tests/files/feff/feff_radial_shell.xyz similarity index 100% rename from tests/files/feff_radial_shell.xyz rename to tests/files/feff/feff_radial_shell.xyz diff --git a/tests/files/feff_reci_dos/PARAMETERS b/tests/files/feff/feff_reci_dos/PARAMETERS similarity index 100% rename from tests/files/feff_reci_dos/PARAMETERS rename to tests/files/feff/feff_reci_dos/PARAMETERS diff --git a/tests/files/feff_reci_dos/feff.inp b/tests/files/feff/feff_reci_dos/feff.inp similarity index 100% rename from tests/files/feff_reci_dos/feff.inp rename to tests/files/feff/feff_reci_dos/feff.inp diff --git a/tests/files/feff_reci_dos/ldos.inp b/tests/files/feff/feff_reci_dos/ldos.inp similarity index 100% rename from tests/files/feff_reci_dos/ldos.inp rename to tests/files/feff/feff_reci_dos/ldos.inp diff --git a/tests/files/feff_reci_dos/ldos00.dat b/tests/files/feff/feff_reci_dos/ldos00.dat similarity index 100% rename from tests/files/feff_reci_dos/ldos00.dat rename to tests/files/feff/feff_reci_dos/ldos00.dat diff --git a/tests/files/feff_reci_dos/ldos01.dat b/tests/files/feff/feff_reci_dos/ldos01.dat similarity index 100% rename from tests/files/feff_reci_dos/ldos01.dat rename to tests/files/feff/feff_reci_dos/ldos01.dat diff --git a/tests/files/feff_reci_dos/ldos02.dat b/tests/files/feff/feff_reci_dos/ldos02.dat similarity index 100% rename from tests/files/feff_reci_dos/ldos02.dat rename to tests/files/feff/feff_reci_dos/ldos02.dat diff --git a/tests/files/feff_reci_dos/ldos03.dat b/tests/files/feff/feff_reci_dos/ldos03.dat similarity index 100% rename from tests/files/feff_reci_dos/ldos03.dat rename to tests/files/feff/feff_reci_dos/ldos03.dat diff --git a/tests/files/feff_reci_dos/pot.inp b/tests/files/feff/feff_reci_dos/pot.inp similarity index 100% rename from tests/files/feff_reci_dos/pot.inp rename to tests/files/feff/feff_reci_dos/pot.inp diff --git a/tests/files/ldos00.dat b/tests/files/feff/ldos00.dat similarity index 100% rename from tests/files/ldos00.dat rename to tests/files/feff/ldos00.dat diff --git a/tests/files/ldos01.dat b/tests/files/feff/ldos01.dat similarity index 100% rename from tests/files/ldos01.dat rename to tests/files/feff/ldos01.dat diff --git a/tests/files/ldos02.dat b/tests/files/feff/ldos02.dat similarity index 100% rename from tests/files/ldos02.dat rename to tests/files/feff/ldos02.dat diff --git a/tests/files/xmu.dat b/tests/files/feff/xmu.dat similarity index 100% rename from tests/files/xmu.dat rename to tests/files/feff/xmu.dat diff --git a/tests/io/feff/test_inputs.py b/tests/io/feff/test_inputs.py index 11108b3ac7f..00a59be09d2 100644 --- a/tests/io/feff/test_inputs.py +++ b/tests/io/feff/test_inputs.py @@ -10,6 +10,8 @@ from pymatgen.io.feff.inputs import Atoms, Header, Paths, Potential, Tags from pymatgen.util.testing import TEST_FILES_DIR +FEFF_TEST_DIR = f"{TEST_FILES_DIR}/feff" + header_string = """* This FEFF.inp file generated by pymatgen TITLE comment: From cif file TITLE Source: CoO19128.cif @@ -27,7 +29,7 @@ class TestHeader(unittest.TestCase): def test_init(self): - filepath = f"{TEST_FILES_DIR}/HEADER" + filepath = f"{FEFF_TEST_DIR}/HEADER" header = Header.header_string_from_file(filepath) h = header.splitlines() hs = header_string.splitlines() @@ -48,7 +50,7 @@ def test_get_str(self): ), "Failed to generate HEADER from structure" def test_as_dict_and_from_dict(self): - file_name = f"{TEST_FILES_DIR}/HEADER" + file_name = f"{FEFF_TEST_DIR}/HEADER" header = Header.from_file(file_name) dct = header.as_dict() header2 = Header.from_dict(dct) @@ -73,7 +75,7 @@ def test_single_absorbing_atom(self): in the pot_dict to avoid an error. """ # one Zn+2, 9 triflate, plus water - xyz = f"{TEST_FILES_DIR}/feff_radial_shell.xyz" + xyz = f"{FEFF_TEST_DIR}/feff_radial_shell.xyz" mol = Molecule.from_file(xyz) mol.set_charge_and_spin(-7) atoms = Atoms(mol, "Zn", 9) @@ -100,13 +102,13 @@ def test_absorber_line(self): def test_distances(self): atoms_1 = self.atoms.get_lines() distances_1 = [float(a[5]) for a in atoms_1] - atoms_2 = Atoms.atoms_string_from_file(f"{TEST_FILES_DIR}/ATOMS") + atoms_2 = Atoms.atoms_string_from_file(f"{FEFF_TEST_DIR}/ATOMS") atoms_2 = atoms_2.splitlines()[3:] distances_2 = [float(a.split()[5]) for a in atoms_2] assert_allclose(distances_1, distances_2, rtol=1e-5) def test_atoms_from_file(self): - filepath = f"{TEST_FILES_DIR}/ATOMS" + filepath = f"{FEFF_TEST_DIR}/ATOMS" atoms = Atoms.atoms_string_from_file(filepath) assert atoms.splitlines()[3].split()[4] == "O", "failed to read ATOMS file" @@ -119,7 +121,7 @@ def test_get_str(self): assert atoms.splitlines()[3].split()[4] == central_atom, "failed to create ATOMS string" def test_as_dict_and_from_dict(self): - file_name = f"{TEST_FILES_DIR}/HEADER" + file_name = f"{FEFF_TEST_DIR}/HEADER" header = Header.from_file(file_name) struct = header.struct atoms = Atoms(struct, "O", radius=10.0) @@ -130,7 +132,7 @@ def test_as_dict_and_from_dict(self): def test_cluster_from_file(self): self.atoms.write_file("ATOMS_test") mol_1 = Atoms.cluster_from_file("ATOMS_test") - mol_2 = Atoms.cluster_from_file(f"{TEST_FILES_DIR}/ATOMS") + mol_2 = Atoms.cluster_from_file(f"{FEFF_TEST_DIR}/ATOMS") assert mol_1.formula == mol_2.formula assert len(mol_1) == len(mol_2) os.remove("ATOMS_test") @@ -199,11 +201,11 @@ def test_eels_tags(self): "S02": [0.0], "SCF": [6, 0, 30, 0.2, 5], } - tags_1 = Tags.from_file(f"{TEST_FILES_DIR}/feff_eels_powder.inp") + tags_1 = Tags.from_file(f"{FEFF_TEST_DIR}/feff_eels_powder.inp") assert dict(tags_1) == ans_1 ans_1["ELNES"]["BEAM_ENERGY"] = "200 0 1 1" ans_1["ELNES"]["BEAM_DIRECTION"] = "1 0 0" - tags_2 = Tags.from_file(f"{TEST_FILES_DIR}/feff_eels_x.inp") + tags_2 = Tags.from_file(f"{FEFF_TEST_DIR}/feff_eels_x.inp") assert dict(tags_2) == ans_1 @@ -221,7 +223,7 @@ def test_single_absorbing_atom(self): in the pot_dict to avoid an error. """ # one Zn+2, 9 triflate, plus water - xyz = f"{TEST_FILES_DIR}/feff_radial_shell.xyz" + xyz = f"{FEFF_TEST_DIR}/feff_radial_shell.xyz" mol = Molecule.from_file(xyz) mol.set_charge_and_spin(-7) pot = Potential(mol, "Zn") @@ -231,7 +233,7 @@ def test_single_absorbing_atom(self): assert str(pot).count("Zn") == 1 def test_as_dict_and_from_dict(self): - file_name = f"{TEST_FILES_DIR}/HEADER" + file_name = f"{FEFF_TEST_DIR}/HEADER" header = Header.from_file(file_name) struct = header.struct pot = Potential(struct, "O") diff --git a/tests/io/feff/test_outputs.py b/tests/io/feff/test_outputs.py index f5298ccb1e6..d090297d26f 100644 --- a/tests/io/feff/test_outputs.py +++ b/tests/io/feff/test_outputs.py @@ -5,16 +5,16 @@ from pymatgen.io.feff.outputs import LDos, Xmu from pymatgen.util.testing import TEST_FILES_DIR -TEST_DIR = f"{TEST_FILES_DIR}/feff_reci_dos" +FEFF_TEST_DIR = f"{TEST_FILES_DIR}/feff" class TestFeffLdos(unittest.TestCase): - filepath1 = f"{TEST_FILES_DIR}/feff.inp" - filepath2 = f"{TEST_FILES_DIR}/ldos" + filepath1 = f"{FEFF_TEST_DIR}/feff.inp" + filepath2 = f"{FEFF_TEST_DIR}/ldos" ldos = LDos.from_file(filepath1, filepath2) - reci_feffinp = f"{TEST_DIR}/feff.inp" - reci_ldos = f"{TEST_DIR}/ldos" + reci_feffinp = f"{FEFF_TEST_DIR}/feff_reci_dos/feff.inp" + reci_ldos = f"{FEFF_TEST_DIR}/feff_reci_dos/ldos" reci_dos = LDos.from_file(reci_feffinp, reci_ldos) def test_init(self): @@ -51,14 +51,14 @@ def test_reci_charge(self): class TestXmu(unittest.TestCase): def test_init(self): - filepath1 = f"{TEST_FILES_DIR}/xmu.dat" - filepath2 = f"{TEST_FILES_DIR}/feff.inp" + filepath1 = f"{FEFF_TEST_DIR}/xmu.dat" + filepath2 = f"{FEFF_TEST_DIR}/feff.inp" x = Xmu.from_file(filepath1, filepath2) assert x.absorbing_atom == "O", "failed to read xmu.dat file properly" def test_as_dict_and_from_dict(self): - filepath1 = f"{TEST_FILES_DIR}/xmu.dat" - filepath2 = f"{TEST_FILES_DIR}/feff.inp" + filepath1 = f"{FEFF_TEST_DIR}/xmu.dat" + filepath2 = f"{FEFF_TEST_DIR}/feff.inp" x = Xmu.from_file(filepath1, filepath2) data = x.data.tolist() dct = x.as_dict() diff --git a/tests/io/feff/test_sets.py b/tests/io/feff/test_sets.py index 268df463cb7..4863d74d0df 100644 --- a/tests/io/feff/test_sets.py +++ b/tests/io/feff/test_sets.py @@ -11,6 +11,8 @@ from pymatgen.io.feff.sets import FEFFDictSet, MPELNESSet, MPEXAFSSet, MPXANESSet from pymatgen.util.testing import TEST_FILES_DIR, PymatgenTest +FEFF_TEST_DIR = f"{TEST_FILES_DIR}/feff" + class TestFeffInputSet(PymatgenTest): @classmethod @@ -119,7 +121,7 @@ def test_eels_tags_set(self): def test_charged_structure(self): # one Zn+2, 9 triflate, plus water # Molecule, net charge of -7 - xyz = f"{TEST_FILES_DIR}/feff_radial_shell.xyz" + xyz = f"{FEFF_TEST_DIR}/feff_radial_shell.xyz" mol = Molecule.from_file(xyz) mol.set_charge_and_spin(-7) # Zn should not appear in the pot_dict @@ -220,13 +222,13 @@ def test_post_feffset(self): assert struct_orig == struct_reci def test_post_dist_diff(self): - feff_dict_input = FEFFDictSet.from_directory(f"{TEST_FILES_DIR}/feff_dist_test") - assert feff_dict_input.tags == Tags.from_file(f"{TEST_FILES_DIR}/feff_dist_test/feff.inp") - assert str(feff_dict_input.header()) == str(Header.from_file(f"{TEST_FILES_DIR}/feff_dist_test/HEADER")) + feff_dict_input = FEFFDictSet.from_directory(f"{FEFF_TEST_DIR}/feff_dist_test") + assert feff_dict_input.tags == Tags.from_file(f"{FEFF_TEST_DIR}/feff_dist_test/feff.inp") + assert str(feff_dict_input.header()) == str(Header.from_file(f"{FEFF_TEST_DIR}/feff_dist_test/HEADER")) feff_dict_input.write_input(f"{self.tmp_path}/feff_dist_regen") - origin_tags = Tags.from_file(f"{TEST_FILES_DIR}/feff_dist_test/PARAMETERS") + origin_tags = Tags.from_file(f"{FEFF_TEST_DIR}/feff_dist_test/PARAMETERS") output_tags = Tags.from_file(f"{self.tmp_path}/feff_dist_regen/PARAMETERS") - origin_mole = Atoms.cluster_from_file(f"{TEST_FILES_DIR}/feff_dist_test/feff.inp") + origin_mole = Atoms.cluster_from_file(f"{FEFF_TEST_DIR}/feff_dist_test/feff.inp") output_mole = Atoms.cluster_from_file(f"{self.tmp_path}/feff_dist_regen/feff.inp") original_mole_dist = np.array(origin_mole.distance_matrix[0, :]) output_mole_dist = np.array(output_mole.distance_matrix[0, :]) From 23dbef2ea19b41162463d1aa49ca00f9e2613040 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 19:16:39 +0800 Subject: [PATCH 17/21] recover FePO4.vasp and correct name --- tests/files/vasp/inputs/FePO4.vasp | 31 ++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) create mode 100644 tests/files/vasp/inputs/FePO4.vasp diff --git a/tests/files/vasp/inputs/FePO4.vasp b/tests/files/vasp/inputs/FePO4.vasp new file mode 100644 index 00000000000..5e0e6bc8e15 --- /dev/null +++ b/tests/files/vasp/inputs/FePO4.vasp @@ -0,0 +1,31 @@ +FePO4 for testing *.vasp inputs (#1233) +-300.65685512 + 10.4117668700 0.0000000000 0.0000000000 + 0.0000000000 6.0671718800 0.0000000000 + 0.0000000000 0.0000000000 4.7594895400 +4 4 16 +direct + 0.2187282200 0.7500000000 0.4748671100 Fe + 0.2812717800 0.2500000000 0.9748671100 Fe + 0.7187282200 0.7500000000 0.0251328900 Fe + 0.7812717800 0.2500000000 0.5251328900 Fe + 0.0946130900 0.2500000000 0.4182432700 P + 0.4053869100 0.7500000000 0.9182432700 P + 0.5946130900 0.2500000000 0.0817567300 P + 0.9053869100 0.7500000000 0.5817567300 P + 0.0433723100 0.7500000000 0.7071376700 O + 0.0966424400 0.2500000000 0.7413203500 O + 0.1657097400 0.0460723300 0.2853839400 O + 0.1657097400 0.4539276700 0.2853839400 O + 0.3342902600 0.5460723300 0.7853839400 O + 0.3342902600 0.9539276700 0.7853839400 O + 0.4033575600 0.7500000000 0.2413203500 O + 0.4566276900 0.2500000000 0.2071376700 O + 0.5433723100 0.7500000000 0.7928623300 O + 0.5966424400 0.2500000000 0.7586796500 O + 0.6657097400 0.0460723300 0.2146160600 O + 0.6657097400 0.4539276700 0.2146160600 O + 0.8342902600 0.5460723300 0.7146160600 O + 0.8342902600 0.9539276700 0.7146160600 O + 0.9033575600 0.7500000000 0.2586796500 O + 0.9566276900 0.2500000000 0.2928623300 O From 2b8474e51479938f18e6d011507b83cdfc01532c Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 19:18:32 +0800 Subject: [PATCH 18/21] reverse name of wrong potcars --- .../POT_GGA_PAW_PBE/{POTCAR_Fe.gz => POTCAR.Fe.gz} | Bin .../POT_GGA_PAW_PBE/{POTCAR_P.gz => POTCAR.P.gz} | Bin 2 files changed, 0 insertions(+), 0 deletions(-) rename tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/{POTCAR_Fe.gz => POTCAR.Fe.gz} (100%) rename tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/{POTCAR_P.gz => POTCAR.P.gz} (100%) diff --git a/tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR_Fe.gz b/tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.Fe.gz similarity index 100% rename from tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR_Fe.gz rename to tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.Fe.gz diff --git a/tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR_P.gz b/tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.P.gz similarity index 100% rename from tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR_P.gz rename to tests/files/vasp/inputs/wrong_potcars/POT_GGA_PAW_PBE/POTCAR.P.gz From d01c5f9080110f8d4fa4cd0fa68796ad2d19d0d4 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 19:30:49 +0800 Subject: [PATCH 19/21] remove duplicate `INCAR_3` --- tests/files/vasp/inputs/INCAR_3 | 19 -------- tests/io/vasp/test_inputs.py | 80 ++------------------------------- 2 files changed, 3 insertions(+), 96 deletions(-) delete mode 100644 tests/files/vasp/inputs/INCAR_3 diff --git a/tests/files/vasp/inputs/INCAR_3 b/tests/files/vasp/inputs/INCAR_3 deleted file mode 100644 index f921e23dc42..00000000000 --- a/tests/files/vasp/inputs/INCAR_3 +++ /dev/null @@ -1,19 +0,0 @@ -ALGO=Fast -LDAUPRINT=1 -LORBIT=11 -ISIF=3 -SYSTEM=id=[91090] dblock_code=[20070929235612LiNiO-59.53134651-VASP] formula=[Li3 Ni3 O6] sg_name=[R-3m] -NELM=100 -LREAL=Auto -IBRION=2 -EDIFF=1.0e-4 -NSW=51 -PREC=Accurate -NELMIN=3 -ISMEAR=-5 -ICHARG=1 -ISPIN=2 -SIGMA=0.05 -LMAXMIX=4 -NPAR=1 -LWAVE=.FALSE. \ No newline at end of file diff --git a/tests/io/vasp/test_inputs.py b/tests/io/vasp/test_inputs.py index 6b7db50c14f..ba56c8ca3c6 100644 --- a/tests/io/vasp/test_inputs.py +++ b/tests/io/vasp/test_inputs.py @@ -555,84 +555,10 @@ def test_copy(self): assert self.incar.get("LDAU") is None def test_diff(self): - filepath1 = f"{VASP_IN_DIR}/INCAR" - incar1 = Incar.from_file(filepath1) - filepath2 = f"{VASP_IN_DIR}/INCAR_2" - filepath3 = f"{VASP_IN_DIR}/INCAR_3" - incar2 = Incar.from_file(filepath2) - incar3 = Incar.from_file(filepath3) - assert incar1.diff(incar2) == { - "Different": { - "NELM": {"INCAR1": None, "INCAR2": 100}, - "ISPIND": {"INCAR1": 2, "INCAR2": None}, - "LWAVE": {"INCAR1": True, "INCAR2": False}, - "LDAUPRINT": {"INCAR1": None, "INCAR2": 1}, - "MAGMOM": { - "INCAR1": [ - 6, - -6, - -6, - 6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - 0.6, - ], - "INCAR2": None, - }, - "NELMIN": {"INCAR1": None, "INCAR2": 3}, - "ENCUTFOCK": {"INCAR1": 0.0, "INCAR2": None}, - "HFSCREEN": {"INCAR1": 0.207, "INCAR2": None}, - "LSCALU": {"INCAR1": False, "INCAR2": None}, - "ENCUT": {"INCAR1": 500, "INCAR2": None}, - "NSIM": {"INCAR1": 1, "INCAR2": None}, - "ICHARG": {"INCAR1": None, "INCAR2": 1}, - "NSW": {"INCAR1": 99, "INCAR2": 51}, - "NKRED": {"INCAR1": 2, "INCAR2": None}, - "NUPDOWN": {"INCAR1": 0, "INCAR2": None}, - "LCHARG": {"INCAR1": True, "INCAR2": None}, - "LPLANE": {"INCAR1": True, "INCAR2": None}, - "ISMEAR": {"INCAR1": 0, "INCAR2": -5}, - "NPAR": {"INCAR1": 8, "INCAR2": 1}, - "SYSTEM": { - "INCAR1": "Id=[0] dblock_code=[97763-icsd] formula=[li mn (p o4)] sg_name=[p n m a]", - "INCAR2": "Id=[91090] dblock_code=[20070929235612linio-59.53134651-vasp] formula=[li3 ni3 o6] " - "sg_name=[r-3m]", - }, - "ALGO": {"INCAR1": "Damped", "INCAR2": "Fast"}, - "LHFCALC": {"INCAR1": True, "INCAR2": None}, - "TIME": {"INCAR1": 0.4, "INCAR2": None}, - }, - "Same": { - "IBRION": 2, - "PREC": "Accurate", - "ISIF": 3, - "LMAXMIX": 4, - "LREAL": "Auto", - "ISPIN": 2, - "EDIFF": 0.0001, - "LORBIT": 11, - "SIGMA": 0.05, - }, - } + incar1 = Incar.from_file(f"{VASP_IN_DIR}/INCAR") + incar2 = Incar.from_file(f"{VASP_IN_DIR}/INCAR_2") - assert incar1.diff(incar3) == { + assert incar1.diff(incar2) == { "Different": { "NELM": {"INCAR1": None, "INCAR2": 100}, "ISPIND": {"INCAR1": 2, "INCAR2": None}, From e66818852b3b6303a116aafa0dcefad7762a08c6 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 20:01:31 +0800 Subject: [PATCH 20/21] move another FEFF file --- tests/files/{ => feff}/PARAMETERS | 0 tests/files/{ => feff}/PARAMETERS.2 | 0 tests/io/feff/test_inputs.py | 8 ++++---- 3 files changed, 4 insertions(+), 4 deletions(-) rename tests/files/{ => feff}/PARAMETERS (100%) rename tests/files/{ => feff}/PARAMETERS.2 (100%) diff --git a/tests/files/PARAMETERS b/tests/files/feff/PARAMETERS similarity index 100% rename from tests/files/PARAMETERS rename to tests/files/feff/PARAMETERS diff --git a/tests/files/PARAMETERS.2 b/tests/files/feff/PARAMETERS.2 similarity index 100% rename from tests/files/PARAMETERS.2 rename to tests/files/feff/PARAMETERS.2 diff --git a/tests/io/feff/test_inputs.py b/tests/io/feff/test_inputs.py index 00a59be09d2..0004b4124a1 100644 --- a/tests/io/feff/test_inputs.py +++ b/tests/io/feff/test_inputs.py @@ -146,16 +146,16 @@ def test_atom_num(self): class TestFeffTags(unittest.TestCase): def test_init(self): - filepath = f"{TEST_FILES_DIR}/PARAMETERS" + filepath = f"{FEFF_TEST_DIR}/PARAMETERS" parameters = Tags.from_file(filepath) parameters["RPATH"] = 10 assert parameters["COREHOLE"] == "Fsr", "Failed to read PARAMETERS file" assert parameters["LDOS"] == [-30.0, 15.0, 0.1], "Failed to read PARAMETERS file" def test_diff(self): - filepath1 = f"{TEST_FILES_DIR}/PARAMETERS" + filepath1 = f"{FEFF_TEST_DIR}/PARAMETERS" parameters1 = Tags.from_file(filepath1) - filepath2 = f"{TEST_FILES_DIR}/PARAMETERS.2" + filepath2 = f"{FEFF_TEST_DIR}/PARAMETERS.2" parameters2 = Tags.from_file(filepath2) assert Tags(parameters1).diff(parameters2) == { "Different": {}, @@ -176,7 +176,7 @@ def test_diff(self): } def test_as_dict_and_from_dict(self): - file_name = f"{TEST_FILES_DIR}/PARAMETERS" + file_name = f"{FEFF_TEST_DIR}/PARAMETERS" tags = Tags.from_file(file_name) dct = tags.as_dict() tags2 = Tags.from_dict(dct) From 8646bd9f7f39a996fc028345ab7adaf5515fa1b6 Mon Sep 17 00:00:00 2001 From: Haoyu Yang Date: Fri, 8 Mar 2024 20:06:14 +0800 Subject: [PATCH 21/21] relocate last batch of feff files --- tests/files/{ => feff}/POTENTIALS | 0 tests/files/{ => feff}/Pt37_atoms.inp.gz | Bin tests/io/feff/test_inputs.py | 4 ++-- 3 files changed, 2 insertions(+), 2 deletions(-) rename tests/files/{ => feff}/POTENTIALS (100%) rename tests/files/{ => feff}/Pt37_atoms.inp.gz (100%) diff --git a/tests/files/POTENTIALS b/tests/files/feff/POTENTIALS similarity index 100% rename from tests/files/POTENTIALS rename to tests/files/feff/POTENTIALS diff --git a/tests/files/Pt37_atoms.inp.gz b/tests/files/feff/Pt37_atoms.inp.gz similarity index 100% rename from tests/files/Pt37_atoms.inp.gz rename to tests/files/feff/Pt37_atoms.inp.gz diff --git a/tests/io/feff/test_inputs.py b/tests/io/feff/test_inputs.py index 0004b4124a1..812c70c0019 100644 --- a/tests/io/feff/test_inputs.py +++ b/tests/io/feff/test_inputs.py @@ -138,7 +138,7 @@ def test_cluster_from_file(self): os.remove("ATOMS_test") def test_atom_num(self): - filepath = f"{TEST_FILES_DIR}/Pt37_atoms.inp.gz" + filepath = f"{FEFF_TEST_DIR}/Pt37_atoms.inp.gz" atoms = Atoms.cluster_from_file(filepath) assert len(atoms) == 37 assert atoms.formula == "Pt37" @@ -211,7 +211,7 @@ def test_eels_tags(self): class TestFeffPot(unittest.TestCase): def test_init(self): - filepath = f"{TEST_FILES_DIR}/POTENTIALS" + filepath = f"{FEFF_TEST_DIR}/POTENTIALS" feff_pot = Potential.pot_string_from_file(filepath) dct, dr = Potential.pot_dict_from_str(feff_pot) assert dct["Co"] == 1, "Wrong symbols read in for Potential"