-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot_control.py
103 lines (86 loc) · 3.22 KB
/
plot_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# -*- coding: utf-8 -*-
"""How to load various HAWC2 formats to a NumPy array.
Also does a plot thing because why not.
"""
import h5py
import matplotlib.pyplot as plt
import numpy as np
import os
def load_hawc_ascii(dat_path):
"""Load HAWC ascii data to a NumPy array.
Input path to .dat file.
"""
data = np.loadtxt(dat_path)
return data
def load_hawc_binary(dat_path):
"""Load HAWC binary file to a NumPy array.
Input path to .dat file.
"""
sel_path = dat_path.replace('.dat', '.sel')
with open(sel_path, 'r') as f:
content = f.readlines()
# get number lines and channels
nr_lines, nr_chan = [int(s) for s in content[8].split()[:2]]
# get the scale factors
i_scale = [i+1 for i in range(len(content)) if 'scale factors' in content[i].lower()][0]
scale_factors = np.loadtxt(sel_path, skiprows=i_scale)
with open(dat_path, 'rb') as fid:
data = np.zeros((nr_lines, nr_chan))
j = 0
for i in range(nr_chan):
fid.seek(i * nr_lines * 2, 0)
data[:, j] = np.fromfile(fid, 'int16', nr_lines) * scale_factors[i]
j += 1
return data
#%% Importing datasets
cases = ['./V2/results/hawc2/control/f0.05_eta0.7.dat', './V2/results/hawc2/control/f0.05_eta0.75.dat', \
'./V2/results/hawc2/control/f0.05_eta0.7ct.dat', './V2/results/hawc2/control/f0.06_eta0.7ct.dat',\
'./V2/results/hawc2/control/f0.06_eta0.75ct.dat']
data_lst = []
for c in range(len(cases)):
path = cases[c]
data = load_hawc_ascii(path)
data_lst.append(data)
#%% Plotting
itime = 0 # column index of time
irotspd = 9 # column index of rotor speed
iwspd = 14 # column index of wind speed
ipitch = 70 # column index of pitch angle
iepower = 99 # column index of electrical power
itorque = 69 # column index of generator torque
ithrust = 12 # column index of generator thrust
iOpPBRM = 25
iIPBRM = 26
data_all = data_lst
time_shift = 0
# ====================== plot things for fun ======================
idx = [irotspd, iwspd, ipitch, iepower, itorque, ithrust, iOpPBRM, iIPBRM]
name = ['rpm', 'wspd', 'pitch', 'power', 'torque', 'thrust', 'OoP BRM', 'IP BRM']
leg = ['$\omega$ [rad/s]', '$V_{\infty}$ [m/s]', r'$\theta$ [deg]',
'$P_{electric}$ [MW]', '$Q_{gen}$ [Nm]', 'T [kN]', 'OoP BRM [kNm]', 'IP BRM [kNm]']
lab = ['$f = 0.05$, $\zeta = 0.7 cp$', '$f = 0.05$, $\zeta = 0.75 cp$',\
'$f = 0.05$, $\zeta = 0.7 ct$', '$f = 0.06$, $\zeta = 0.7 ct$',\
'$f = 0.06$, $\zeta = 0.75 ct$']
for i in range(len(idx)):
plt.figure()
for j in range(len(data_all)):
data = data_all[j]
time = data[time_shift*100:, itime]
y = data[time_shift*100:, idx[i]]
if idx[i] == ipitch:
y = np.rad2deg(y)
elif idx[i] == iepower:
y = y/10**6
plt.plot(time, y, label=lab[j])
plt.ylabel(leg[i])
plt.xlabel('t [s]')
plt.grid()
plt.legend()
# plt.xlim([420,500])
# idx1 = np.where(time==420)[0][0]
# idx2 = np.where(time==500)[0][0]
# ylim1 = np.min(y[idx1:idx2])*0.99
# ylim2 = np.max(y[idx1:idx2])*1.01
# plt.ylim([ylim1, ylim2])
#plt.savefig('figures/cstP_'+name[i]+'.png')
#plt.savefig('figures/cstT_'+name[i]+'.png')