-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot_fatigue_loads.py
131 lines (104 loc) · 5.01 KB
/
plot_fatigue_loads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
"""Calculate extreme loads.
Use method (a) in IEC 61400-1 (2019), which is extreme times 1.35. Note that we are
incorrectly applying this to all loads, when it is only technically allowed for blade
root moments and deflections.
"""
import re
import matplotlib.pyplot as plt
import numpy as np
from _loads_utils import load_stats
from matplotlib.patches import Patch
stat_dir1 = './DTU10MW/results/hawc2/dtu10mw_tca/'
stat_dir2 = './V1/results/hawc2/res_turb/' # results directory with statistics files !!! END WITH SLASH !!!
stat_dir3 = './V2/results/hawc2/res_turb/' # results directory with statistics files !!! END WITH SLASH !!!
stat_dirs = [stat_dir1, stat_dir2, stat_dir3]
i_plot = [17, 18, 20, 21, 25, 26, 27, 108] # channel indices in .sel file that you want to process
i_wind = 15 # channel number with the wind speed
# undef_tclear = 18.25 # undeflected-blade tower clearance [m]
v_ref = [50, 37.5, 37.5] # reference wind speed based on wind class (I=50, 2=42.5, 3=37.5)
# dictionary to map .sel index to ylabel for the plot
ylabels = {4: 'Pitch angle [deg]',
10: 'Rotor speed [rad/s]',
13: 'Thrust [kN]',
15: 'Wind speed [m/s]',
17: 'Tower-base FA [kNm]',
18: 'Tower-base SS [kNm]',
20: 'Yaw-bearing pitch [kNm]',
21: 'Yaw-bearing roll [kNm]',
25: 'Shaft torsion [kNm]',
26: 'OoP BRM [kNm]',
27: 'IP BRM [kNm]',
70: 'Generator torque [Nm]',
100: 'Electrical power [W]',
108: 'Tower clearance [m]'}
markers = ['.', '+', '2']
colors_maxmin = ['#8A8A8A', '#EE6363', '#4876FF'] # colors for max and min
colors_mean = ['#000000', '#CD0000', '#000080'] # colors mean
pa1 = Patch(facecolor='#000000', edgecolor='black')
pa2 = Patch(facecolor='#8A8A8A', edgecolor='black')
#
pb1 = Patch(facecolor='#CD0000', edgecolor='black')
pb2 = Patch(facecolor='#EE6363', edgecolor='black')
pc1 = Patch(facecolor='#000080', edgecolor='black')
pc2 = Patch(facecolor='#4876FF', edgecolor='black')
# loop through the channels
for i, chan_idx in enumerate(i_plot):
# define ylabel
ylabel = ylabels[chan_idx]
fig = plt.figure(1 + i, figsize=(7, 3), clear=True)
plt.grid('on')
plt.xlabel('Wind speed [m/s]')
plt.ylabel(ylabel)
plt.tight_layout()
for t in range(3):
stat_dir = stat_dirs[t]
# load the del 4 statistics
stat_file = stat_dir + 'stats_del4.txt'
files, idxs, data_4 = load_stats(stat_file)
# load the del 10 statistics
stat_file = stat_dir + 'stats_del10.txt'
files, idxs, data_10 = load_stats(stat_file)
# get the mean wind for plotting
stat_file = stat_dir + 'stats_mean.txt'
files, idxs, data_mean = load_stats(stat_file)
wind = data_mean[:, idxs == i_wind].squeeze()
# extract the set wind speed value from the filename using regex tricks
wsps = [float(re.findall('[0-9]{1,2}[.][0-9]', f)[0]) for f in files]
if t==0:
chan_idx_new = chan_idx + 2
else:
chan_idx_new = chan_idx
# determine which DEL to select
if 'BRM' in ylabel:
data = data_10[:, idxs == chan_idx_new].squeeze()
m = 10 # 10 exponent for composites
else:
data = data_4[:, idxs == chan_idx_new].squeeze()
m = 4 # 4 exponent for metals
# combine short-term dels in given wind speed bin to single value for that bin
wsp_uniqe = np.unique(wsps)
st_dels = np.empty(wsp_uniqe.size)
for j, vj in enumerate(wsp_uniqe):
wsp_dels = data[np.isclose(wsps, vj)] # short-term dels
p = 1 / wsp_dels.size # probability of each wsp in this bin
st_dels[j] = sum(p * wsp_dels**m)**(1/m)
# plot short-term dels versus wind speed
plt.plot(wind, data, marker=markers[t], mec=colors_maxmin[t], ms=6, mfc='none', linestyle='none', alpha=0.8)
# for fun, plot the wind-speed-averaged DELs on top
plt.plot(wsp_uniqe, st_dels, marker=markers[t], color=colors_mean[t], ms=6, linestyle='none', alpha=0.8,)
# calculate the lifetime damage equivalent load
v_ave = 0.2 * v_ref[t] # average wind speed per IEC 61400-1
dvj = wsp_uniqe[1] - wsp_uniqe[0] # bin width. assumes even bins!
probs = (np.exp(-np.pi*((wsp_uniqe - dvj/2) / (2*v_ave))**2)
- np.exp(-np.pi*((wsp_uniqe + dvj/2) / (2*v_ave))**2)) # prob of wind in each bin
del_life = sum(probs * st_dels**m)**(1/m) # sum DELs ignoring reference number of cycles
if t==0:
print('DTU 10MW '+ylabel, f'{del_life:.6e}')
elif t==1:
print('DTU 10MW V1 '+ylabel, f'{del_life:.6e}')
else:
print('Redesign V2 '+ylabel, f'{del_life:.6e}')
plt.legend(handles=[pa1, pb1, pc1, pa2, pb2, pc2],
labels=['', '', '', 'DTU 10MW', 'Redesign V1', 'Redesign V2'], ncol=2, handletextpad=0.5, handlelength=1.0, columnspacing=-0.5,
loc='best', fontsize=10)