-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
237 lines (171 loc) · 6.28 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 29 12:23:15 2020
@author: MPrina
"""
from libeplan import Node
import pandas as pd
import time
ex = pd.ExcelFile("Input.xlsx")
dfDV = ex.parse("decision variables")
dfPS = ex.parse("Paths and steps")
dfO = ex.parse("Additional output")
dfDV=dfDV.set_index('labels')
dfPS=dfPS.set_index('labels')
# print(dfDV.columns)
list_output_keys=dfO['labels'].to_list()
INPUTFILE = dfPS.loc["Input file", 'values']
ENERGYPLAN = dfPS.loc["EnergyPLAN folder", 'values']
OUT_FOLDER = dfPS.loc['Output folder', 'values']
# print(INPUTFILE, ENERGYPLAN ,OUT_FOLDER)
STEPS = int(dfPS.loc["Number of steps", 'values'])
indice = list(range(STEPS))
df = pd.DataFrame(index=indice)
# print(STEPS)
Costs = []
CO2 = []
measures={}
iterable=[]
for a in dfDV.columns:
measures[a]= [a, 0, dfDV.loc["Max potential", a], dfDV.loc["Additional step", a], dfDV.loc["EPLAN label", a]]
iterable.append(measures[a])
print(measures)
# -----------------------------------------------------------------------------
#function to calculate cost-effectivness or Cost of Carbon abatement (CCA)
def CE(dicREF, dic):
"""Cost effectiveness or CCA."""
Cost_REF = dicREF['TOTAL ANNUAL COSTS']
# print('Cost_REF', Cost_REF)
CO2_REF = dicREF['CO2-emission (total)']
# print('CO2_REF', CO2_REF)
Cost = dic['TOTAL ANNUAL COSTS']
# print('Cost = ', round(Cost, 2))
CO2 = dic['CO2-emission (total)']
# print('CO2 = ', round(CO2, 2))
if CO2_REF-CO2 <= 0:
CostEff = 100000
else:
CostEff = (Cost - Cost_REF)/(CO2_REF-CO2)
CO2_pot = CO2_REF-CO2
return CostEff, CO2_pot
def measure_def(data_act, data_start, measure):
"""Application of measure modifications."""
existing = data_act[measure[4]]
if existing+measure[3] > measure[2]:
varEP = measure[2]
else:
varEP = existing+measure[3]
data_act[measure[4]] = varEP
return data_act
names = dfDV.columns
CE_trends = pd.DataFrame(None, index=indice, columns=names)
# CO2 trends
CO2_trends = pd.DataFrame(None, index=indice, columns=names)
# Output trends
Output_trends = pd.DataFrame()
# Relevant variable inizialization
Names_opt = []
C_effectiveness = []
CO2_abb = []
CO2_TOT_opt = []
C_eMob_opt = []
C_indv_heating_opt = []
en_eff_step = []
EV_diff_act = 0
EVgap_costs = 0
EV_diff_step = []
en_eff_act = 0
# --------------------------------------
# Baseline setting
START = Node(INPUTFILE, ENERGYPLAN, OUT_FOLDER)
new_data = START.data
INPUTFILE = INPUTFILE.replace('.txt', 'new_node'+'.txt')
out_file = r'%s\out_new.txt' % (OUT_FOLDER)
new_node = Node(INPUTFILE, ENERGYPLAN, out_file, new_data)
new_node.write_input()
new_node.excute()
dicREF = new_node.read_All_outputs()
# MAC construction
data = new_data.copy()
dic_REFERE = dicREF.copy()
t0 = time.time()
for a in range(STEPS):
print('STEP:', a)
costE = {}
collection = {}
coll_data = {}
coll_Ceff = {}
coll_cost = {}
coll_CO2_tot = {}
if not iterable:
Names_opt.append('-')
C_effectiveness.append('-')
CO2_abb.append('-')
CO2_TOT_opt.append('-')
else:
for b in iterable:
data_op = data.copy()
dic_REFERE_op = dic_REFERE.copy()
# Measure recalling
name = b[0]
new_data_mod = measure_def(data_op, new_data, b)
new_node = Node(INPUTFILE, ENERGYPLAN, out_file, new_data_mod)
new_node.write_input()
new_node.excute()
#dic = new_node.read_output_y()
dic = new_node.read_All_outputs()
# Energy efficiency costs
dic['TOTAL ANNUAL COSTS'] = (dic['TOTAL ANNUAL COSTS'])
COST = dic['TOTAL ANNUAL COSTS']
CO2 = dic['CO2-emission (total)']
Cost_Eff, CO2Potential = CE(dic_REFERE_op, dic)
print('Evaluating: ', name)
print('CCA = ', round(Cost_Eff, 2))
print('CO2 potential reduction =', round(CO2Potential, 2))
print('Annual Costs = ',round(COST, 2))
print('Annual CO2 = ', round(CO2, 2))
print('----------------------')
costE[name] = Cost_Eff
coll_cost[name] = COST
collection[name] = dic
coll_data[name] = new_data_mod
coll_Ceff[name] = CO2Potential
coll_CO2_tot[name] = CO2
label_OPT = min(costE, key=costE.get)
dic_REFERE = collection[label_OPT]
data = coll_data[label_OPT]
Names_opt.append(label_OPT)
C_effectiveness.append(costE[label_OPT])
CO2_abb.append(coll_Ceff[label_OPT])
CO2_TOT_opt.append(coll_CO2_tot[label_OPT])
# Cost effectiveness and CO2 abatement
for b in iterable:
CE_trends.loc[(a, b[0])] = costE[b[0]]
CO2_trends.loc[(a, b[0])] = coll_Ceff[b[0]]
#Outputs trends
for b in list_output_keys:
Output_trends.loc[(a, b)] = dic_REFERE[b]
# Potential check used to remove a measure from iterable when the maximum potential is reached (only for short term approach)
for m in iterable:
# to_be_rem=m[:]
for i in range(len(dfDV.columns)):
if m[0] == dfDV.columns[i]:
m[1] = data[m[4]]
# for k in range(len(iterable)):
if m[1] == m[2]:
iterable.remove(m)
t1 = time.time()
elapsed_time = t1-t0
print ("The total time is.. ", elapsed_time)
df['Measure'] = Names_opt
df['C_effectiveness'] = C_effectiveness
df['CO2 abatement'] = CO2_abb
df['Total CO2'] = CO2_TOT_opt
CE_trends['Measure'] = Names_opt
CO2_trends['Measure'] = Names_opt
# Saving of all variables into an excel file
with pd.ExcelWriter('MAC.xlsx') as writer:
df.to_excel(writer, sheet_name='MAC')
CE_trends.to_excel(writer, sheet_name='Cost effectiveness trends')
CO2_trends.to_excel(writer, sheet_name='CO2 trends')
Output_trends.to_excel(writer, sheet_name='Output trends')