diff --git a/Makefile b/Makefile
index 0d7f5e5f..feb71b7b 100644
--- a/Makefile
+++ b/Makefile
@@ -1,7 +1,7 @@
JAR := matsim-berlin-*.jar
-V := v6.2
+V := v6.3
CRS := EPSG:25832
p := input/$V
diff --git a/pom.xml b/pom.xml
index 33cc4cc4..ad41c4c8 100644
--- a/pom.xml
+++ b/pom.xml
@@ -15,7 +15,7 @@
4.0.0
com.github.matsim-scenarios
matsim-berlin
- 6.2-SNAPSHOT
+ 6.3-SNAPSHOT
MATSim Open Berlin scenario
MATSim Open Berlin scenario
diff --git a/src/main/java/org/matsim/run/OpenBerlinScenario.java b/src/main/java/org/matsim/run/OpenBerlinScenario.java
index abaeb224..161472c5 100644
--- a/src/main/java/org/matsim/run/OpenBerlinScenario.java
+++ b/src/main/java/org/matsim/run/OpenBerlinScenario.java
@@ -30,7 +30,7 @@ public class OpenBerlinScenario extends MATSimApplication {
private static final Logger log = LogManager.getLogger(RunOpenBerlinCalibration.class);
- public static final String VERSION = "6.2";
+ public static final String VERSION = "6.3";
public static final String CRS = "EPSG:25832";
@CommandLine.Mixin
private final SampleOptions sample = new SampleOptions(10, 25, 3, 1);
diff --git a/src/main/python/extract_income.py b/src/main/python/extract_income.py
deleted file mode 100644
index 2a20ecac..00000000
--- a/src/main/python/extract_income.py
+++ /dev/null
@@ -1,37 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-import argparse
-import numpy as np
-import os
-from matsim.scenariogen.data import read_all
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser(description="Converter for survey data")
-
- parser.add_argument("-d", "--directory", default=os.path.expanduser(
- "~/Development/matsim-scenarios/shared-svn/projects/matsim-berlin/data/SrV/"))
-
- args = parser.parse_args()
-
- hh, persons, trips = read_all([args.directory + "Berlin+Umland", args.directory + "Brandenburg"])
-
- hh = hh[hh.income >= 0]
-
- # Large households are underrepresented and capped (same operation as in input)
- hh.n_persons = np.minimum(hh.n_persons, 5)
-
- groups = list(sorted(set(hh.income)))
-
- def calc(x):
- counts = x.groupby("income").size()
- prob = counts / sum(counts)
- return prob.to_frame().transpose()
-
-
- dist = hh.groupby(["economic_status"]).apply(calc).fillna(0).reset_index().drop(columns=["level_1"])
-
- print("Income groups:", groups)
-
- for t in dist[["economic_status"] + groups].itertuples():
- print('"%s", new double[]{%s},' % (t.economic_status, ", ".join("%.3f" % x for x in t[2:])))
diff --git a/src/main/python/extract_trips.py b/src/main/python/extract_trips.py
deleted file mode 100644
index 5ec0d123..00000000
--- a/src/main/python/extract_trips.py
+++ /dev/null
@@ -1,49 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-import numpy as np
-from matsim.scenariogen.data import read_all
-
-from extract_ref_data import trip_filter
-
-if __name__ == "__main__":
- hh, persons, trips = read_all("../../../../shared-svn/projects/matsim-berlin/data/SrV/Berlin+Umland")
-
- trips = trip_filter(trips)
- trips = trips[trips.valid]
- trips = trips[(~trips.from_zone.isna()) & (~trips.to_zone.isna())]
- trips = trips[(~trips.from_location.isna()) & (~trips.to_location.isna())]
-
- trips_hh = trips.merge(hh, left_on="hh_id", right_index=True)
-
- trips = trips[trips_hh.location == "Berlin"]
-
- # Duplication factor
- factor = 3
-
- repeats = np.maximum(1, np.rint(trips.t_weight * factor)).to_numpy(int)
- index = trips.index.repeat(repeats)
- df = trips.loc[index]
-
- # Each sample has a unique sequence number
- seq = np.zeros(len(df), dtype=int)
-
- i = 0
- for r in repeats:
- for s in range(r):
- seq[i] = s
- i += 1
-
- df["seq"] = seq
-
- df = df.drop(columns=["valid"])
- # Norm weight to 3 as well
- df.t_weight = df.t_weight / 3
-
- df_hh = df.merge(hh, left_on="hh_id", right_index=True)
- df["hh_cars"] = df_hh["n_cars"]
-
- df = df.sort_values(["p_id", "seq", "n"])
- df.to_csv("trips-scaled.csv", index=False)
-
- persons.to_csv("persons-unscaled.csv", index=False)