From 31586e96179192d77687c88e01d767d21fbb96fd Mon Sep 17 00:00:00 2001 From: sime94 Date: Thu, 31 Oct 2024 19:02:29 +0100 Subject: [PATCH] refactor regression analysis to normal R script --- src/main/R/badWeather/regressionAnalysis.R | 483 +++++++++++++++++++++ src/main/R/badWeather/resultDemo.Rmd | 2 +- 2 files changed, 484 insertions(+), 1 deletion(-) create mode 100644 src/main/R/badWeather/regressionAnalysis.R diff --git a/src/main/R/badWeather/regressionAnalysis.R b/src/main/R/badWeather/regressionAnalysis.R new file mode 100644 index 00000000..d6ed4523 --- /dev/null +++ b/src/main/R/badWeather/regressionAnalysis.R @@ -0,0 +1,483 @@ +library(tidyverse) +library(lubridate) +library(plotly) +library(leaflet) +library(rmarkdown) +library(modelr) +library(splines) +library(forecast) +library(fitdistrplus) +library(rjson) + + +# colors for model plots +colors <- c("predicted" = "red", "Mon" = "darkblue", "Tue" = "deepskyblue4", "Wed" = "deepskyblue2", "Thu" = "cadetblue4", "Fri" = "chartreuse4") +colors2 <- c("Identity line" = "black", "Mon" = "darkblue", "Tue" = "deepskyblue4", "Wed" = "deepskyblue2", "Thu" = "cadetblue4", "Fri" = "chartreuse4") + +############################################## read data inputs ############################################################################################################################### + +# Ingolstadt weather +ingolstadt_weather <- read_delim("https://bulk.meteostat.net/v2/daily/10860.csv.gz",",",col_names = FALSE) +colnames(ingolstadt_weather) <- c("date", "tavg", "tmin", "tmax", "prcp", "snow", "wdir", "wspd", "wpgt", "pres", "tsun") + +# Weatherstack data +weatherstack_kelheim <- read_delim("../../shared-svn/projects/KelRide/data/badWeather/data/Kelheim_weather_since_july_2008.csv",delim = ",") + +# Stringency +json <- fromJSON(file = "../../shared-svn/projects/KelRide/data/badWeather/data/2022-12-31.json") +json <- unlist(json) +#Mobility +demand <- read_delim("../../shared-svn/projects/KelRide/data/badWeather/data/allDemandByDate.csv") + +#Holidays +holidays2020 <- read_csv2("../../shared-svn/projects/KelRide/data/badWeather/data/Holidays2020.csv") %>% dplyr::select(1,2,3) +holidays2021 <- read_csv2("../../shared-svn/projects/KelRide/data/badWeather/data/Holidays2021.csv") %>% dplyr::select(1,2,3) +holidays2022 <- read_csv2("../../shared-svn/projects/KelRide/data/badWeather/data/Holidays2022.csv") %>% dplyr::select(1,2,3) +holidays2023 <- read_csv2("../../shared-svn/projects/KelRide/data/badWeather/data/Holidays2023.csv") %>% dplyr::select(1,2,3) +holidays <- rbind(holidays2020,holidays2021,holidays2022,holidays2023) +holidays <- holidays %>% mutate(EndDateTime1 = as.Date(as.POSIXct(EndDateTime1, format = "%m.%d.%Y %H:%M")), + StartDateTime1 = as.Date(as.POSIXct(StartDateTime1, format = "%m.%d.%Y %H:%M"))) + +holiday_days <- unique(c(seq(holidays$StartDateTime1[1],holidays$EndDateTime1[1],by = "days"))) + +for(i in 1:nrow(holidays)){ + holiday_days = append(holiday_days,seq(holidays$StartDateTime1[i],holidays$EndDateTime1[i],by = "days")) +} + +df_holidays <- data.frame(date = holiday_days,isHoliday = TRUE) + +# Weatherstack +weatherstack_kelheim_daily <- weatherstack_kelheim %>% + group_by(date) %>% + count(description) + +# Stringency +deu_stringency <- json[grep("DEU.stringency_actual",names(json))] +date_stringency <- sapply(strsplit(names(deu_stringency),split = ".",fixed = TRUE),"[[",2) +df_stringency <- data.frame(date = date_stringency,stringency = deu_stringency) +df_stringency <- df_stringency %>% mutate(stringency = as.numeric(stringency), date = as.Date(date)) + +stringency2022 <- df_stringency %>% filter(date > as.Date("2021-12-31")) +meanStringency2022 <- mean(stringency2022$stringency) + +# dates of missing covid data since 2023. +stringency2023 <- data.frame(date = as.Date(c(ymd("2023-01-01"):ymd("2023-07-08")), origin = "1970-01-01")) %>% + mutate(stringency = 11.11) + +df_stringency <- rbind(df_stringency,stringency2023) + +############################################## adapt and join data ############################################################################################################################### + +# Ingolstadt +type_of_weather <- unique(weatherstack_kelheim$description) +map_vector <- c("Clear","Sunny","Cloudy","Light","Light","Light","Light","Light","Light","Light","Light","Medium","Cloudy","Light","Light","Heavy","Heavy","Heavy","Light","Medium","Heavy","Heavy", + "Light","Heavy","Heavy","Heavy","Heavy","Heavy","Heavy","Light","Medium","Medium","Light","Heavy","Light","Light","Light","Light","Light","Heavy","Light","Medium","Heavy","Heavy","Heavy") +names(map_vector)<- type_of_weather + +ingolstadt_weather <- ingolstadt_weather %>% + mutate(season = ifelse(month(date) %in% c(12,1,2),"winter",NA)) %>% + mutate(season = ifelse(month(date) %in% c(3,4,5),"spring",season)) %>% + mutate(season = ifelse(month(date) %in% c(6,7,8),"summer",season)) %>% + mutate(season = ifelse(month(date) %in% c(9,10,11),"autumn",season)) + +day_description_impact <- weatherstack_kelheim_daily %>% pivot_wider(names_from = description,values_from = n) + +#remove NAs +day_description_impact[is.na(day_description_impact)] = 0 + +day_description_impact <- day_description_impact %>% pivot_longer(cols = all_of(type_of_weather),names_to = "description",values_to = "value") + +day_description_impact <- day_description_impact +day_description_impact$description <- map_vector[(day_description_impact$description)] + +day_description_impact <- day_description_impact %>% group_by(date)%>% + top_n(n = 1,value) %>% group_by(date) %>% top_n(n = 1,description) %>% rename(weather_impact = value) + +#####Join the data##### +result_data <- demand %>% left_join(day_description_impact, by = "date") %>% inner_join(ingolstadt_weather,by = "date") %>% inner_join(df_stringency,by = "date") %>% mutate(date = as.Date(date,format = "%Y-%m-%d")) + +#Also need to be added: weekday and simplified date variable +result_data <- result_data %>% + mutate(wday = as.character(wday(date,week_start = 1))) %>% + dplyr::arrange(result_data, result_data$date) %>% + distinct() %>% + mutate(trend = as.integer(date) - as.integer(min(result_data$date))) + +#Append holidays +result_data <- result_data %>% left_join(df_holidays, by = "date") %>% replace_na(list(isHoliday = FALSE,snow = 0)) %>% +#%>% filter(noRides != 0) + filter(date <= as.Date("2022-12-31")) + +sundays <- result_data %>% + filter(wday == 7) + +head(result_data) + +summer <- mean(result_data$tavg[result_data$season == "summer"]) + +spring <- mean(result_data$tavg[result_data$season == "spring"]) + +autumn <- mean(result_data$tavg[result_data$season == "autumn"]) + +winter <- mean(result_data$tavg[result_data$season == "winter"]) + +result_data <- result_data %>% + mutate(tdiff = ifelse(season == "winter",tavg-winter,NA)) %>% + mutate(tdiff = ifelse(season == "spring",tavg-spring,tdiff)) %>% + mutate(tdiff = ifelse(season == "autumn",tavg-autumn,tdiff)) %>% + mutate(tdiff = ifelse(season == "summer",tavg-summer,tdiff)) %>% + mutate(wday_char = wday(date, + label = TRUE, + abbr = TRUE, + locale = "USA")) + +############################################## exploratory plots ############################################################################################################################### + +plot_data <- result_data + +plot_data$isHoliday[plot_data$isHoliday==TRUE] <- "Holiday" +plot_data$isHoliday[plot_data$isHoliday==FALSE] <- "Non-holiday" + +wday_plot <- ggplot(plot_data, aes(x=wday_char,y=noRides))+ + geom_boxplot(aes(color=wday_char), lwd=0.75) + + xlab("Weekday") + + ylab("Number of rides") + + # labs(title="Daily no of KEXI rides per weekday") + + theme(plot.title = element_text(hjust=0.5), legend.title = element_blank()) + + theme(text = element_text(size = 17)) + + scale_color_manual(values = c("darkblue", "deepskyblue4", "deepskyblue2", "cadetblue", "chartreuse4","darkgoldenrod2","darkorchid4")) + +holiday_plot <- ggplot(plot_data) + + geom_boxplot(aes(x = isHoliday, y = noRides)) + + xlab(NULL) + + ylab("Number of rides") + + labs(title="Daily no of KEXI rides per holiday / non-holiday") + + theme(plot.title = element_text(hjust=0.5)) + +ggplotly(wday_plot) +ggplotly(holiday_plot) + +############################################## filter data for different time periods ############################################################################################################################### + +result_data <- result_data %>% + filter(wday!=1 & wday!=5 & wday!=6 & wday!=7, + isHoliday == FALSE, + noRides!=0) + +# new after discussion on 31.10.24 +before_sep_21 <- result_data %>% + filter(date < ymd("2021-09-18")) + +result_data <- result_data %>% filter(wday!=6 & wday!=7,isHoliday == FALSE, noRides!=0) #%>% +# new after discussion on 31.10.24 + # filter(date %within% interval(ymd("2021-09-18"), ymd("2022-12-18"))) + +############################################## Pearson correlation coefficients ############################################################################################################################### + +result_data$description = factor(result_data$description) +result_data$season = factor(result_data$season) +result_sum = data.frame(c("noRides","description","weather_impact","tavg","tmin","tmax","prcp","snow","wspd","wpgt","pres","tdiff"), + c("Number of rides in day (dependent variable)","Weather description - the type of the weather with highest absolute duration among descriptions during a day","Number of hours of selected description with maximal hours a day", + "The average air temperature in °C","The minimum air temperature in °C ","The maximum air temperature in °C","The daily precipitation total in mm","The maximum snow depth in mm","The average wind speed in km/h", + "The peak wind gust in km/h","The average sea-level air pressure in hPa","Difference between season mean temperature and daily average temperature"), + c("Mean: 80.2","Clear, Cloudy, Heavy, Light, Medium, Sunny","Mean: 12 °C","Mean: 10.37 °C","Mean: 5.81 °C","Mean: 15.06","Mean: 1.76","Mean: 0.2348","Mean: 8.6 km/h","Mean: 32.75 km/h","Mean: 1019.3 hPa","Mean: 0.12701 °C")) +colnames(result_sum) = c("Variable","Description","Stat") + +correlations <- result_data %>% ungroup() %>% + dplyr::select(-noRides,-description ,-date,-season,-wday,-wday_char) %>% + map_dbl(cor,y = result_data$noRides) %>% + sort(decreasing = TRUE) +print(correlations) + +correlations <- data.frame(correlation = correlations) %>% + rownames_to_column("variable") %>% + mutate(correlation = round(correlation,2)) + +barplot <- ggplot(correlations, aes(x=variable, y=correlation)) + + geom_bar(fill="white",color="black",stat = "identity") + + geom_text(aes(label=correlation),size = 3, position = position_stack(vjust = 0.5)) + + ggtitle("corrielation with noRides per ind. variable") +barplot + +############################################## first regression model ############################################################################################################################### + +data <- result_data + +omega_model <- lm(noRides ~ stringency+wspd+wpgt+wdir+snow+tmax+tavg+tmin+tdiff+pres,data = data) + +summary(omega_model) +confint(omega_model) + +model <- omega_model +test_data <- data %>% add_predictions(model = model) %>% add_residuals(model = model) %>% mutate(error = ifelse(abs(resid)>=20,"extreme","normal")) + +ggplot(test_data %>% filter(year(date)>=2020)) + + geom_point(data=test_data %>% filter(wday_char=="Mon"),mapping=aes(x = date,y = noRides,color="Mon"))+ + geom_point(data=test_data %>% filter(wday_char=="Tue"),mapping=aes(x = date,y = noRides,color="Tue"))+ + geom_point(data=test_data %>% filter(wday_char=="Wed"),mapping=aes(x = date,y = noRides,color="Wed"))+ + geom_point(data=test_data %>% filter(wday_char=="Thu"),mapping=aes(x = date,y = noRides,color="Thu"))+ + geom_point(data=test_data %>% filter(wday_char=="Fri"),mapping=aes(x = date,y = noRides,color="Fri"))+ + # geom_line(mapping=aes(x = date,y = pred,color="predicted"), size = 1.2)+ + theme_minimal() + + xlab("Date") + + theme(legend.position = "bottom", legend.title = element_blank()) + + theme(axis.ticks.x = element_line(), + axis.ticks.y = element_line(), + axis.ticks.length = unit(5, "pt")) + + scale_x_date(date_breaks = "4 month", date_labels = "%b/%y") + + theme(text = element_text(size = 17)) + + scale_color_manual(values = colors) + + ggtitle("First Linear regression model") + +ggplot(test_data %>% filter(year(date)>=2020)) + + geom_point(data=test_data,mapping=aes(x = date,y = tmin))+ + theme_minimal() + + xlab("Date") + + theme(legend.position = "bottom", legend.title = element_blank()) + + theme(axis.ticks.x = element_line(), + axis.ticks.y = element_line(), + axis.ticks.length = unit(5, "pt")) + + scale_x_date(date_breaks = "4 month", date_labels = "%b/%y") + + theme(text = element_text(size = 17)) + + scale_color_manual(values = colors) + + ggtitle("temperature vs time") + +ggplot(test_data %>% filter(year(date)>=2020)) + + geom_point(data=test_data,mapping=aes(x = date,y = stringency))+ + theme_minimal() + + xlab("Date") + + theme(legend.position = "bottom", legend.title = element_blank()) + + theme(axis.ticks.x = element_line(), + axis.ticks.y = element_line(), + axis.ticks.length = unit(5, "pt")) + + scale_x_date(date_breaks = "4 month", date_labels = "%b/%y") + + theme(text = element_text(size = 17)) + + scale_color_manual(values = colors) + + ggtitle("stringency vs time") + +ggplot(test_data %>% filter(year(date)>=2020)) + + geom_point(data=test_data,mapping=aes(x = date,y = snow))+ + theme_minimal() + + xlab("Date") + + theme(legend.position = "bottom", legend.title = element_blank()) + + theme(axis.ticks.x = element_line(), + axis.ticks.y = element_line(), + axis.ticks.length = unit(5, "pt")) + + scale_x_date(date_breaks = "4 month", date_labels = "%b/%y") + + theme(text = element_text(size = 17)) + + scale_color_manual(values = colors) + + ggtitle("snow vs time") + +#ggsave("C:/Users/Simon/Desktop/wd/2023-07-31/first-regression-model.png", modelPlot) + + +ggplot(test_data %>% filter(year(date)>=2020))+ + geom_line(aes(x = date,y = resid,color = "gray"))+ + # geom_ref_line(h = 0)+ + xlab("Date") + + ylab("Residuals") + + theme_minimal() + + theme(text = element_text(size = 17)) + + theme(axis.ticks.x = element_line(), + axis.ticks.y = element_line(), + axis.ticks.length = unit(5, "pt"), legend.position = "none") + + ggtitle("Residuals over time for first linear regression model") + + +omega_date_model <- lm(noRides ~ stringency+wspd+wpgt+wdir+snow+tmax+tavg+tmin+tdiff+pres+trend,data = data) +summary(omega_date_model) + +omega_date_model_prcp <- lm(noRides ~ wspd+wpgt+wdir+snow+tmax+tavg+tmin+tdiff+pres+trend+prcp,data = data) +summary(omega_date_model_prcp) + +omega_date_model_prcp_tavg <- lm(noRides ~ wspd+wpgt+wdir+snow+tmin+pres+trend+prcp,data = data) +summary(omega_date_model_prcp_tavg) + +omega_model_trend_tmin <- lm(noRides ~ tmin+trend,data = data) +summary(omega_model_trend_tmin) + +omega_model_trend_tmin_beforeSep21 <- lm(noRides ~ tmin+trend,data = before_sep_21) +summary(omega_model_trend_tmin_beforeSep21) + +print(cor(before_sep_21$noRides, before_sep_21$tmin)) + +print(cor(before_sep_21$noRides, before_sep_21$tmax)) + + + +omega_date_model_prcp_before_sep21 <- lm(noRides ~ stringency+wspd+wpgt+wdir+snow+tmax+tavg+tmin+tdiff+pres+trend+prcp,data = before_sep_21) +summary(omega_date_model_prcp_before_sep21) + +omega_date_only_model <- lm(noRides ~ wspd+wpgt+wdir+snow+tmax+tavg+tmin+tdiff+pres+trend,data = data) +summary(omega_date_only_model) + + +model <- omega_date_only_model +test_data <- data %>% add_predictions(model = model) %>% add_residuals(model = model) %>% mutate(error = ifelse(abs(resid)>=20,"extreme","normal")) + +cor_stringency_noRides <- cor(test_data$stringency, test_data$noRides) +cor_trend_noRides <- cor(test_data$trend, test_data$noRides) +cor_stringency_trend <- cor(test_data$stringency, test_data$trend) + +print(paste("correlation of stringency and trend:",cor_stringency_trend)) +print(paste("correlation of stringency and noRides:",cor_stringency_noRides)) +print(paste("correlation of trend and noRides:",cor_trend_noRides)) + +ggplotly(ggplot(test_data %>% filter(year(date)>=2020)) + + geom_point(data=test_data %>% filter(wday_char=="Mon"),mapping=aes(x = date,y = noRides,color="Mon"))+ + geom_point(data=test_data %>% filter(wday_char=="Tue"),mapping=aes(x = date,y = noRides,color="Tue"))+ + geom_point(data=test_data %>% filter(wday_char=="Wed"),mapping=aes(x = date,y = noRides,color="Wed"))+ + geom_point(data=test_data %>% filter(wday_char=="Thu"),mapping=aes(x = date,y = noRides,color="Thu"))+ + geom_point(data=test_data %>% filter(wday_char=="Fri"),mapping=aes(x = date,y = noRides,color="Fri"))+ + geom_point(aes(x = date,y = pred,color="predicted"))+ + scale_color_manual(values = colors)+ + ggtitle("Linear regression model with date parameter")) +ggplotly(ggplot(test_data %>% filter(year(date)>=2020))+ + geom_line(aes(x = date,y = resid,color = "gray50"))+ + geom_ref_line(h = 0)+ + ggtitle("Residuals over time")) + +barplot <- ggplot(test_data, aes(x = resid ))+ + geom_histogram(aes(y = stat(density)),colour="black", fill="white", binwidth=7)+ + ggtitle("Residuals histogram") + +############################################## reduced regression models ############################################################################################################################### + +reduced_1_model <- lm(noRides ~ snow+tavg+trend, data = data) +summary(reduced_1_model) + +model <- reduced_1_model +test_data <- data %>% add_predictions(model = model) %>% add_residuals(model = model) %>% mutate(error = ifelse(abs(resid)>=20,"extreme","normal")) + +############################################## cross-correlation check ############################################################################################################################### + +cor_check <- data %>% + dplyr::select(tavg,trend,snow) +print(cor(cor_check)) + +data <- data %>% + mutate(snowDependentTemperature = tavg * snow, + trendDependentSnow = snow * trend) + +reduced_3_model <- lm(noRides ~ snow+tavg+trend+snowDependentTemperature+trendDependentSnow, data = data) +summary(reduced_3_model) +confint(reduced_3_model) #95% confidence interval + +############################################## final linear regression model ############################################################################################################################### + +final_model <- lm(noRides ~ snow+tavg+trend, data = data) +summary(final_model) +confint(final_model) #95% confidence interval + +model <- final_model + +test_data <- data %>% add_predictions(model = model) %>% add_residuals(model = model) %>% mutate(error = ifelse(abs(resid)>=20,"extreme","normal")) + +ggplot(test_data %>% filter(year(date)>=2020)) + + geom_point(data=test_data %>% filter(wday_char=="Mon"),mapping=aes(x = date,y = noRides,color="Mon"))+ + geom_point(data=test_data %>% filter(wday_char=="Tue"),mapping=aes(x = date,y = noRides,color="Tue"))+ + geom_point(data=test_data %>% filter(wday_char=="Wed"),mapping=aes(x = date,y = noRides,color="Wed"))+ + geom_point(data=test_data %>% filter(wday_char=="Thu"),mapping=aes(x = date,y = noRides,color="Thu"))+ + geom_point(data=test_data %>% filter(wday_char=="Fri"),mapping=aes(x = date,y = noRides,color="Fri"))+ + geom_line(aes(x = date,y = pred,color="predicted"), size = 1.2)+ + theme_minimal() + + xlab("Date") + + theme(legend.position = "bottom", legend.title = element_blank()) + + theme(axis.ticks.x = element_line(), + axis.ticks.y = element_line(), + axis.ticks.length = unit(5, "pt")) + + scale_x_date(date_breaks = "4 month", date_labels = "%b/%y") + + theme(text = element_text(size = 17)) + + scale_color_manual(values = colors) + + ggtitle("Linear regression model with independent variables snow, tavg and trend") + +ggplot(test_data %>% filter(year(date)>=2020)) + +# geom_point(aes(x = pred,y = noRides)) + + geom_point(data=test_data %>% filter(wday_char=="Mon"),mapping=aes(x = pred,y = noRides,color="Mon"))+ + geom_point(data=test_data %>% filter(wday_char=="Tue"),mapping=aes(x = pred,y = noRides,color="Tue"))+ + geom_point(data=test_data %>% filter(wday_char=="Wed"),mapping=aes(x = pred,y = noRides,color="Wed"))+ + geom_point(data=test_data %>% filter(wday_char=="Thu"),mapping=aes(x = pred,y = noRides,color="Thu"))+ + geom_point(data=test_data %>% filter(wday_char=="Fri"),mapping=aes(x = pred,y = noRides,color="Fri"))+ +geom_abline(aes(intercept = 0, slope = 1,color="Identity line"), size = 1.5) + +theme_minimal() + +xlab("Predicted noRides") + +ylab("Observed noRides") + +theme(axis.ticks.x = element_line(), + axis.ticks.y = element_line(), + axis.ticks.length = unit(5, "pt")) + + theme(text = element_text(size = 17)) + + ggtitle("Observed vs. Predicted noRides") + + scale_color_manual(values = colors2) + +ggplot(test_data %>% filter(year(date)>=2020))+ + geom_line(aes(x = date,y = resid,color = "gray50"))+ + # geom_ref_line(h = 0)+ + scale_color_manual(values = colors)+ + xlab("Date") + + ylab("Residuals") + + theme_minimal() + + theme(axis.ticks.x = element_line(), + axis.ticks.y = element_line(), + axis.ticks.length = unit(5, "pt"), legend.position = "none") + + ggtitle("Residuals over time for linear regression model with independent variables snow, tavg and trend") + +ggplot(test_data %>% filter(year(date)>=2020), aes(x = pred,y = resid))+ + geom_point()+ + # geom_ref_line(h = 0)+ + scale_color_manual(values = colors)+ + geom_smooth(method ="loess", se = FALSE, color = "#666666", size = 1.5) + + xlab("Predicted noRides") + + ylab("Residuals") + + theme_minimal() + + theme(axis.ticks.x = element_line(), + axis.ticks.y = element_line(), + axis.ticks.length = unit(5, "pt"), legend.position = "none") + + theme(text = element_text(size = 17)) + + ggtitle("Residuals over predicted values for linear regression model with independent variables snow, tavg and trend") + + +barplot <- ggplot(test_data, aes(x = resid ))+ + geom_histogram(aes(y = after_stat(density)),colour="black", fill="white", binwidth=9)+ + ggtitle("Final residuals distributions with independent variables snow, tavg and trend") + +# test_data <- test_data %>% filter(resid>=-50) +m <- mean(test_data$resid) +s <- sd(test_data$resid) +n <- nrow(test_data) +p <- (1 : n) / n - 0.5 / n + +plot1 <- ggplot(test_data) + + geom_qq(aes(sample=rnorm(resid,10,4)))+ + geom_abline(intercept = 10, slope = 4,color = "red", size = 1.5, alpha = 0.8)+ + theme_minimal() + + theme(text = element_text(size = 17)) + + ggtitle("Normal QQ-Plot for the final linear regression model") + + xlab("Theoretical Quantiles") + + ylab("Model Residual Quantiles") + + +anno <- list( + list( + x = 0.2, + y = 1.0, + text = "Normal QQ Plot", + xref = "paper", + yref = "paper", + xanchor = "center", + yanchor = "bottom", + showarrow = FALSE + ), + list( + x = 0.75, + y = 1.0, + text = "Normal PP Plot", + xref = "paper", + yref = "paper", + xanchor = "center", + yanchor = "bottom", + showarrow = FALSE + )) + +ggplotly(plot1) + +# subplot(plot1,plot2) %>% layout(annotations = anno) diff --git a/src/main/R/badWeather/resultDemo.Rmd b/src/main/R/badWeather/resultDemo.Rmd index d0cdc627..1ad6d732 100644 --- a/src/main/R/badWeather/resultDemo.Rmd +++ b/src/main/R/badWeather/resultDemo.Rmd @@ -1,5 +1,5 @@ --- -title: "Linear regression model on Kelheim weather data" +title: "DEPRECATED! PLEASE CONSIDER TO LOOK AT FILE regressionAnalysis.R IN THIS FOLDER. Linear regression model on Kelheim weather data" author: "Oleksandr Soboliev, Simon Meinhardt, Tilmann Schlenther (VSP @ TU Berlin)" output: html_document: