diff --git a/matsim/viz/main.py b/matsim/viz/main.py new file mode 100644 index 0000000..2655d6d --- /dev/null +++ b/matsim/viz/main.py @@ -0,0 +1,28 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +from argparse import ArgumentParser + + +def start_piri(args): + from matsim.viz import piri + piri.app.run(debug=False) + +def main(): + """ Main entry point. """ + + parser = ArgumentParser(prog='matsim-viz', description="MATSim viz util") + subparsers = parser.add_subparsers(title="Subcommands") + + # Because the dash app can not easily be separated, the command lne parser is duplicated here + s1 = subparsers.add_parser("piri", help="Analyze the evolution of plans of a single agent or compare different agents side by side.") + s1.add_argument("inputfile", help="Full path to the file containing the plan inheritance records, e.g. path/to/matsim/output/planInheritanceRecords.csv.gz") + + s1.set_defaults(func=start_piri) + + args = parser.parse_args() + args.func(args) + + +if __name__ == "__main__": + main() diff --git a/matsim/viz/piri.py b/matsim/viz/piri.py new file mode 100644 index 0000000..f52c1a6 --- /dev/null +++ b/matsim/viz/piri.py @@ -0,0 +1,405 @@ +""" +Plan Inheritance Record Inspector + +Analyze the evolution of plans of a single agent or compare different agents side by side. +""" + +# Import packages +from dash import Dash, html, dash_table, dcc, callback, Output, Input, ctx +import pandas as pd +import plotly.express as px +import dash_cytoscape as cyto # graph plotting +import dash_bootstrap_components as dbc # column formatting and stuff +import argparse +import io +import sys + +# https://dash.plotly.com/cytoscape/layout +# Load extra layouts - time consuming +cyto.load_extra_layouts() +# https://github.com/cytoscape/cytoscape.js-dagre +# https://github.com/cytoscape/cytoscape.js-klay + +# Process command line arguments +parser = argparse.ArgumentParser(prog="piri", description="Analyze the evolution of plans of a single agent or compare different agents side by side.") + +if "piri" in sys.argv: + parser.add_argument("cmd", help="Hidden argument to consume the 'piri' subcommand") + +parser.add_argument("inputfile", help="Full path to the file containing the plan inheritance records, e.g. path/to/matsim/output/planInheritanceRecords.csv.gz") +args = parser.parse_args() + +# Read and PreProcess data +pir = pd.read_csv(args.inputfile, sep='\t') +pir['mutatedBy'] = pir['mutatedBy'].str.replace('_', ' ', regex=False) +pir['iterationsSelected'] = pir['iterationsSelected'].str.replace('[', '', regex=False).str.replace(']', '', + regex=False) +defaultagentId = pir['agentId'].unique()[0] +pir['nodeClasses'] = pir.apply( + lambda row: "initial" if row['ancestorId'] == "NONE" else "final" if row['iterationRemoved'] == -1 else "regular", + axis=1) + +# Initialize the app +app = Dash(__name__, + external_stylesheets=[dbc.themes.LUX] # required for column-based layouts + ) + +nodes = [] +edges = [] + +def get_graph_style(): + return [ + { + 'selector': 'node', # default node layout + 'style': { + 'label': 'data(label)', + 'text-rotation': '-90deg', + 'text-halign': 'center', # left, center, right + 'text-valign': 'center', # top, center, bottom + 'background-color': 'white', + 'background-opacity': 0.0, + 'height': '80%', + 'width': '20%' + } + }, + { + 'selector': '.legend', # layout for nodes tagged as legend + 'style': { + 'label': 'data(label)', + 'text-rotation': '0deg', + 'text-halign': 'center', # left, center, right + 'text-valign': 'center', # top, center, bottom + 'background-color': 'white', + 'background-opacity': 0.0, + 'height': '80%', + 'width': '20%' + } + }, + { + 'selector': '.initial', # layout for nodes tagged as initial plan + 'style': { + 'text-halign': 'center', # left, center, right + 'text-valign': 'center', # top, center, bottom + 'background-color': 'orange', + 'background-opacity': 0.2, + 'line-color': 'red', + 'shape': 'round-tag', # vee + 'height': '20%', + 'width': '20%' + } + }, + { + 'selector': '.final', # layout for nodes tagged as plans of the final choice-set + 'style': { + 'text-halign': 'center', # left, center, right + 'text-valign': 'center', # top, center, bottom + 'background-color': 'darkgreen', + 'background-opacity': 0.2, + 'line-color': 'red', + 'shape': 'round diamond', + 'height': '20%', + 'width': '20%' + } + }, + { + 'selector': 'edge', # default layout for edges + 'style': { + #'label': 'whatever', + 'curve-style': 'straight', + 'target-arrow-color': 'dodgerblue', + 'target-arrow-shape': 'vee', + 'line-color': 'dodgerblue', + 'target-endpoint': '-90deg', + 'source-endpoint': '90deg' + } + }, + { + 'selector': '.long', # layout for edges spanning more than one iteration - used in the overview graph + 'style': { + # The default curve style does not work with certain arrows + 'curve-style': 'unbundled-bezier', + 'curved': "true", + 'control-point-distances': (-30, -30), + 'control-point-weights': (0.1, 0.6), + 'target-endpoint': '-90deg', + 'source-endpoint': '90deg' + } + } + ] + +# App layout +tab1_content = dbc.Container([ + + dbc.Row([ + dcc.Dropdown(pir['agentId'].unique(), defaultagentId, clearable=False, placeholder="Select agent id", id='agentid-dropdown'), + ]), + + dbc.Row([ + dash_table.DataTable(data=[], + page_size=20, editable=False, + style_data={ + 'whiteSpace': 'normal', + 'height': 'auto', + }, + style_header={ + 'textAlign': 'left', + }, + style_cell={ + 'overflow': 'hidden', + 'textOverflow': 'ellipsis', + 'textAlign': 'right', + }, + style_data_conditional=[], + tooltip_data=[], + tooltip_duration=None, + sort_action='native', + sort_by=[{'column_id': 'iterationCreated', 'direction': 'asc'}], + columns=[ + #{"name": "Agent", "id": "agentId"}, + {"name": ["Id", "Plan"], "id": "planId"}, + {"name": ["Id", "Ancestor"], "id": "ancestorId"}, + {"name": ["Id", "Strategies"], "id": "mutatedBy"}, + {"name": ["Iteration", "Created"], "id": "iterationCreated"}, + {"name": ["Iteration", "Removed"], "id": "iterationRemoved"}, + {"name": ["Iteration", "Selected"], "id": "iterationsSelected"} + ], + merge_duplicate_headers=True, + id='agentid-table'), + ]), + + html.Hr(), + + dbc.Row([ + dbc.Col([ + html.P('Overview - Each plan one node', className="card-text"), + cyto.Cytoscape( + id='cytoscape-simple', # plots each plan only once + layout={ + 'name': 'dagre', + 'rankDir': 'LR', + }, + style={'width': '100%', 'height': '600px'}, + elements=[], + stylesheet=get_graph_style() + ), + ], width="2"), + + dbc.Col([ + html.P('Expanded view - Selected plan for each iteration', className="card-text"), + cyto.Cytoscape( + id='cytoscape-detail', # plots the selected plan of each iteration + layout={ + 'name': 'dagre', + 'rankDir': 'LR', + #'nodeSep': '20', + 'rankSep': '10', + }, + style={'width': '100%', 'height': '600px'}, + elements=[], + stylesheet=get_graph_style() + ), + ], width="10"), + ]), + ], fluid=True) + +tab2_content = dbc.Card( + dbc.CardBody( + [ + html.P("Plots the selected plan of each iteration for the first n agents.", className="card-text"), + #html.Div(className='row', children='Expanded view - Selected plan for each iteration'), + dcc.Input(id='number-of-agents', type='number', min=1, max=1000, step=1, debounce=True), dbc.Button("Click here to load", id='large-viz-load-button', color="blue", n_clicks=0), + cyto.Cytoscape( + id='cytoscape-large', + layout={ + 'name': 'preset' + }, + style={'width': '100%', 'height': '1000px'}, + elements=[], + stylesheet=get_graph_style() + ), + ]), + ) + +# The actual app layout +app.layout = dbc.Tabs( + [ + dbc.Tab( + 'Allows to inspect inspect the plans of a single agent or gives an overview of the first n agents.', label="Plan Inheritance Record Inspector", disabled=True + ), + dbc.Tab(tab1_content, label="Single Agent Analysis"), + dbc.Tab(tab2_content, label="Top N Overview") + ] +) + +@callback( + Output('cytoscape-large', 'elements'), + #Input('large-viz-load-button', 'n_clicks'), + Input('number-of-agents', 'value'), + prevent_initial_call=True +) +def on_load_button_clicked(value): + # activates once the input field looses the focus - either by tabbing out or by "clicking" the button + agent_ids = pir['agentId'].unique() + + max_iteration = 0 + expanded_list = [] + agent_number = 0 + for agent_id in agent_ids: + filtered_pir = pir.loc[pir['agentId'] == agent_id] + filtered_pir = filtered_pir.reset_index() # make sure indexes pair with number of rows + + agent_number += 1 + + if agent_number > value: + break # limit the number of agents + + for index, row in filtered_pir.iterrows(): # may work for small data frames + + ancestor = row['ancestorId'] + + if ancestor != "NONE": + ancestor_suffix = "" + created = row['iterationCreated'] + ancestor_row = filtered_pir.loc[filtered_pir['planId'] == ancestor] + + # it's always only one single entry since the planId is globally unique per definition + for ancestor_selected in ancestor_row['iterationsSelected'].iloc[0].split(','): + if int(ancestor_selected) < created: + ancestor_suffix = ancestor_selected + + ancestor = row['ancestorId'] + "_" + ancestor_suffix + + for selected in row['iterationsSelected'].split(','): + if max_iteration < int(selected): + max_iteration = int(selected) + + dict_expanded = { + 'agentId': agent_id, + 'agentNumber': agent_number, + 'iterationNumber': int(selected), + 'origPlanId': row['planId'], + 'planId': row['planId'] + "_" + selected, + 'ancestorId': ancestor, + 'label': row['planId'], + 'nodeClasses': row['nodeClasses']} + expanded_list.append(dict_expanded) # one entry per iteration selected + ancestor = row.planId + "_" + selected + + expanded_pir = pd.DataFrame(expanded_list) + # add info about whether this edge should have a long bezier-like curve or a regular straight one + expanded_pir['edgeClasses'] = expanded_pir.apply(lambda row: "short" if row['ancestorId'] == "NONE" else "short" if (row['iterationNumber'] - int(row['ancestorId'].split("_")[1]) == 1) and (row['origPlanId'] == row['ancestorId'].split("_")[0]) else "long", axis=1) + + nodes_detail = [ + {'data': {'id': id, 'label': label, 'origPlanId': origPlanId}, 'position': {'x': 40 * x, 'y': 75 * y}, 'classes': nodeClasses} for id, label, origPlanId, x, y, nodeClasses in zip(expanded_pir.planId, expanded_pir.label, expanded_pir.origPlanId, expanded_pir.iterationNumber, expanded_pir.agentNumber, expanded_pir.nodeClasses) + ] + + edges_detail = [ + {'data': {'source': source, 'target': target}, 'classes': edgeClasses} for source, target, edgeClasses in zip(expanded_pir.ancestorId, expanded_pir.planId, expanded_pir.edgeClasses) + ] + edges_detail = [x for x in edges_detail if not "NONE" in x.get("data").get("source")] + + # add nodes as legend + for agent_entry in expanded_list: + nodes_detail.append({'data': {'id': agent_entry["agentId"], 'label': agent_entry["agentId"], 'origPlanId': agent_entry["agentId"]}, 'position': {'x': -50, 'y': 75 * agent_entry["agentNumber"]}, 'classes': "legend"}) + + for iteration in range(max_iteration + 1): + nodes_detail.append({'data': {'id': str(iteration), 'label': str(iteration), 'origPlanId': str(iteration)}, 'position': {'x': 40 * iteration, 'y': 0}, 'classes': "legend"}) + + return nodes_detail + edges_detail + +@callback( + [Output('cytoscape-simple', 'elements'), Output('cytoscape-detail', 'elements'), Output('agentid-table', 'data'), Output('agentid-table', 'tooltip_data')], + [Input('agentid-dropdown', 'value')] + ) +def filter_single_agent_analysis_graphs_and_table_data(selectedAgent): + # activates once an agent id is selected + filtered_pir = pir.loc[pir['agentId'] == selectedAgent] + filtered_pir = filtered_pir.reset_index() # make sure indexes pair with number of rows + + nodes = [ + {'data': {'id': id, 'label': label}, 'classes': nodeClasses} for id, label, nodeClasses in zip(filtered_pir.planId, filtered_pir.planId, filtered_pir.nodeClasses) + ] + + edges = [ + {'data': {'source': source, 'target': target}} for source, target in zip(filtered_pir.ancestorId, filtered_pir.planId) + ] + edges = [x for x in edges if not "NONE" in x.get("data").get("source")] + + expanded_list = [] + for index, row in filtered_pir.iterrows(): # may work for small data frames + + ancestor = row['ancestorId'] + + if ancestor != "NONE": + ancestor_suffix = "" + created = row['iterationCreated'] + ancestor_row = filtered_pir.loc[filtered_pir['planId'] == ancestor] + + # it's always only one single entry since the planId is globally unique per definition + for ancestor_selected in ancestor_row['iterationsSelected'].iloc[0].split(','): + if int(ancestor_selected) < created: + ancestor_suffix = ancestor_selected + + ancestor = row['ancestorId'] + "_" + ancestor_suffix + + for selected in row['iterationsSelected'].split(','): + dict_expanded = { + 'origPlanId': row['planId'], + 'planId': row['planId'] + "_" + selected, + 'ancestorId': ancestor, + 'label': selected + "-" + row['planId'], + 'nodeClasses': row['nodeClasses'] + } + expanded_list.append(dict_expanded) + ancestor = row.planId + "_" + selected + + expanded_pir = pd.DataFrame(expanded_list) + + nodes_detail = [ + {'data': {'id': id, 'label': label, 'origPlanId' : origPlanId}, 'classes': nodeClasses} for id, label, origPlanId, nodeClasses in zip(expanded_pir.planId, expanded_pir.label, expanded_pir.origPlanId, expanded_pir.nodeClasses) + ] + + edges_detail = [ + {'data': {'source': source, 'target': target}} for source, target in zip(expanded_pir.ancestorId, expanded_pir.planId) + ] + edges_detail = [x for x in edges_detail if not "NONE" in x.get("data").get("source")] + + data = filtered_pir.to_dict('records') # sets the data of the table + + tooltip_data = [ # sets the tooltip for each cell + { + column: {'value': str(value), 'type': 'markdown'} + for column, value in row.items() + } for row in data + ] + + return nodes + edges, nodes_detail + edges_detail, data, tooltip_data + +@callback( + Output('agentid-table', 'style_data_conditional'), + [Input('cytoscape-simple', 'mouseoverNodeData'), + Input('cytoscape-detail', 'mouseoverNodeData')], + prevent_initial_call=True + ) +def mouse_over_node_data(data_simple, data_detail): + # activates once the user hovers over a node and highlights the corresponding row + triggered_id = ctx.triggered_id + + search_value = "" + + if triggered_id == 'cytoscape-simple': + search_value = data_simple['id'] + elif triggered_id == 'cytoscape-detail': + search_value = data_detail['origPlanId'] + + return [{ + 'if': { + 'filter_query': '{planId} eq ' + search_value + }, + 'backgroundColor': 'dodgerblue', + 'color': 'white' + }] + +# Run the app +if __name__ == '__main__': + app.run(debug=False) diff --git a/setup.py b/setup.py index a2b16e7..c575579 100644 --- a/setup.py +++ b/setup.py @@ -34,13 +34,15 @@ # m2cgen has problems with newer xgb, see this issue # https://github.com/BayesWitnesses/m2cgen/issues/581 'scenariogen': ["sumolib", "traci", "lxml", "optax", "requests", "tqdm", "scikit-learn", "xgboost==1.7.1", "lightgbm", - "sklearn-contrib-lightning", "numpy", "sympy", "m2cgen", "shapely", "optuna"] + "sklearn-contrib-lightning", "numpy", "sympy", "m2cgen", "shapely", "optuna"], + 'viz': ["dash", "plotly.express", "dash_cytoscape", "dash_bootstrap_components"] }, tests_require=["assertpy", "pytest"], entry_points={ 'console_scripts': [ 'matsim-tools=matsim.cli.main:main', - 'matsim-scenariogen=matsim.scenariogen:main' + 'matsim-scenariogen=matsim.scenariogen:main', + 'matsim-viz=matsim.viz:main', ] }, long_description=README,