-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeatures.py
56 lines (45 loc) · 1.78 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import competition_utilities as cu
import csv
import datetime
import features
import numpy as np
import pandas as pd
import re
def camel_to_underscores(name):
s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
##############################################################
###### FEATURE FUNCTIONS
##############################################################
def body_length(data):
return pd.DataFrame.from_dict({"BodyLength": data["BodyMarkdown"].apply(len)})
def num_tags(data):
return pd.DataFrame.from_dict({"NumTags": [sum(map(lambda x:
pd.isnull(x), row)) for row in (data[["Tag%d" % d
for d in range(1,6)]].values)] } ) ["NumTags"]
def title_length(data):
return pd.DataFrame.from_dict({"TitleLength": data["Title"].apply(len)})
def user_age(data):
return pd.DataFrame.from_dict({"UserAge": (data["PostCreationDate"]
- data["OwnerCreationDate"]).apply(lambda x: x.total_seconds())})
###########################################################
def extract_features(feature_names, data):
fea = pd.DataFrame(index=data.index)
for name in feature_names:
if name in data:
fea = fea.join(data[name])
else:
fea = fea.join(getattr(features,
camel_to_underscores(name))(data))
return fea
if __name__=="__main__":
feature_names = [ "BodyLength"
, "NumTags"
, "OwnerUndeletedAnswerCountAtPostTime"
, "ReputationAtPostCreation"
, "TitleLength"
, "UserAge"
]
data = cu.get_dataframe("train-sample.csv")
features = extract_features(feature_names, data)
print(features)