-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.hpp
639 lines (559 loc) · 17.1 KB
/
utils.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
#ifndef _FAST_VEC_UTILS_H
#define _FAST_VEC_UTILS_H
#include <assert.h>
#include <algorithm>
#include <array>
#include <tuple>
#include <vector>
#include <atomic>
namespace certified_cosine {
template <typename int_t, int size>
class LRUContains {
private:
std::array<int_t, size> backing;
public:
LRUContains() { backing.fill(-1); }
bool operator()(int_t val) {
if (backing[val % backing.size()] == val) {
return true;
} else {
backing[val % backing.size()] = val;
return false;
}
}
bool contains(int_t val) { return backing[val % backing.size()] == val; }
void insert(int_t val) {
assert(val != -1);
backing[val % backing.size()] = val;
}
void clear() { backing.fill(-1); }
void remove(int_t val) {
if (backing[val % backing.size()] == val) {
backing[val % backing.size()] = -1;
}
}
};
template <typename int_t, int size>
class LRUCell {
private:
std::array<int_t, size> backing;
public:
LRUCell() { backing.fill(-1); }
bool contains(int_t val) {
for (int i = 0; i < size; i++) {
if (backing[i] == val) {
// move the key up given that it was just recently used
for (; i > 0; i--) backing[i] = backing[i - 1];
backing[0] = val;
return true;
}
}
return false;
}
void insert(int_t val) {
int i = 0;
for (; i < size - 1; i++)
if (backing[i] == val) break;
for (; i > 0; i--) backing[i] = backing[i - 1];
backing[0] = val;
}
bool operator()(int_t val) {
int i = 0;
for (; i < size; i++)
if (backing[i] == val) break;
bool ret = i < size;
for (; i > 0; i--) backing[i] = backing[i - 1];
backing[0] = val;
return ret;
}
void clear() { backing.fill(-1); }
void remove(int_t val) {
int i = 0;
for (; i < size; i++)
if (backing[i] == val) break;
for (; i < size - 1; i++) backing[i] = backing[i + 1];
backing[backing.size() - 1] = -1;
}
};
template <typename int_t, int cell_size, int num_cells>
class LRUContainsMultiway {
private:
std::array<LRUCell<int_t, cell_size>, num_cells> backing;
public:
LRUContainsMultiway() {}
bool contains(int_t val) { return backing[val % num_cells].contains(val); }
void insert(int_t val) { return backing[val % num_cells].insert(val); }
bool operator()(int_t val) { return backing[val % num_cells](val); }
void clear() {
for (auto& b : backing) b.clear();
}
void remove(int_t val) { backing[val % num_cells].remove(val); }
};
// https://stackoverflow.com/a/29195378/144600
// why is this not included somewhere in the standard library
class SpinLock {
std::atomic_flag locked = ATOMIC_FLAG_INIT;
public:
void lock() {
while (locked.test_and_set(std::memory_order_acquire)) {
;
}
}
void unlock() { locked.clear(std::memory_order_release); }
};
template <int N>
class SpinLockN {
private:
SpinLock m_locks[N];
public:
inline void lock(int id) { m_locks[id % N].lock(); }
inline void unlock(int id) { m_locks[id % N].unlock(); }
};
// value must implement:
// `int v.get_key() const` method for the integer key, this must return -1 in the case that this
// `bool is_empty() const` true in the case that this is a placeholder element
template <typename T>
class CuckooHashTable final {
private:
T* elements = nullptr;
uint32_t size_ = 0;
uint32_t offset_ = 0; // by increasing offset, we are going to be unable to
// find elements that are currently inserted, so this
// functions as a soft reset
inline uint32_t rehash(uint32_t x) {
// based off the murmur3 hash avalanche to shuffle all of the bits
x ^= x >> 16;
x *= 0x85ebca6b;
x ^= x >> 13;
x *= 0xc2b2ae35;
x ^= x >> 16;
return x;
}
inline uint32_t mod_size(uint32_t x) {
// return x % (size_ / 2);
// the size will now be a power of 2, avoid the mod operator
// as it requires using integer division where this should just be some bit masks
return x & ((size_ >> 1) - 1);
}
void resize(const auto& maybe_drop_checker) {
T* old = elements;
std::vector<T> reinsert;
const auto old_size = size_;
const auto old_mask = (old_size / 2) - 1;
size_ = size_ * 2;
assert(__builtin_popcountll(size_) == 1);
elements = new T[size_];
const uint old_offset = offset_;
offset_ = 0;
for (uint32_t i = 0; i < old_size / 2; i++) {
auto& v = old[i];
if (v.get_key() != -1 && ((v.get_key() + old_offset) & old_mask) == i) {
if (!insert_1(v, maybe_drop_checker)) {
// then we are going to have to do something about this element to reshuffle this in elsewhere
// (basically we want to avoid recursivly calling ourselves to resize)
reinsert.push_back(v);
}
}
}
for (uint32_t i = old_size / 2; i < old_size; i++) {
auto& v = old[i];
if (v.get_key() != -1 && (((rehash(v.get_key()) + old_offset) & old_mask) + (old_size / 2)) == i) {
if (!insert_1(v, maybe_drop_checker)) {
reinsert.push_back(v);
}
}
}
delete[] old;
// for elements that we were not able to directly reinsert into the hash table
// this will perform reshuffling and possible further resizing as needed
for (auto& v : reinsert) {
insert_shuffle(v, maybe_drop_checker); // this might call resize internally
}
}
T* insert_1(const T& v, const auto& maybe_drop_checker) {
// insert without a shuffle operation
int k = v.get_key();
uint i = mod_size(k + offset_); // % (size_ / 2);
if (elements[i].get_key() == -1 || elements[i].get_key() == k || mod_size(elements[i].get_key() + offset_) != i ||
maybe_drop_checker(elements[i])) {
elements[i] = v;
return &elements[i];
}
i = mod_size(rehash(k) + offset_) + (size_ / 2);
if (elements[i].get_key() == -1 || elements[i].get_key() == k ||
(mod_size(rehash(elements[i].get_key()) + offset_) + (size_ / 2)) != i || maybe_drop_checker(elements[i])) {
elements[i] = v;
return &elements[i];
}
return nullptr;
}
void insert_shuffle(const T& v, const auto& maybe_drop_checker) {
// then we are going to assume that there is already something that is in both of the buckets in this case
// so we are just going to start trying to shuffle the elements until we are able to find something that
// in the case that this fails
T value = v;
int k = v.get_key();
const size_t size = size_ / 2;
uint at = mod_size(k + offset_);
uint64_t track = 0; // approximate track which cells we have been in
int cnt = size > 100 ? 10 : size / 100;
while (true) {
std::swap(elements[at], value);
int k2 = value.get_key();
if (k2 == -1 || k2 == k) return; // then we inserted this element successfully
if (at < size) { // check if this element should be keept in the table
if (mod_size(k2 + offset_) != at) return;
} else {
if (mod_size(rehash(k2) + offset_) + size != at) return;
}
if (maybe_drop_checker(value)) return;
k = k2;
uint at2 = mod_size(k + offset_);
if (at == at2) {
at = mod_size(rehash(k) + offset_) + size;
} else {
// count down in the case that we have already been in this cell (approximatly)
if (track & (1 << (k % 64)))
if (--cnt <= 0) break;
track |= (1 << (k % 64));
at = at2;
}
}
// in this case, we have done a lot of isnerts, and have still not found
// some space where we are able to stash this element so we are goign to
// increase the size of the table and try the insert procedure again
resize(maybe_drop_checker);
insert(value, maybe_drop_checker);
}
public:
inline T* lookup(int k) {
uint i = mod_size(k + offset_);
uint j = mod_size(rehash(k) + offset_) + (size_ / 2);
T* ret = nullptr;
int a = elements[i].get_key(), b = elements[j].get_key();
if (a == k) ret = &elements[i];
if (b == k) ret = &elements[j];
return ret;
}
T* insert(const T& v) {
return insert(v, [](T& a) { return false; });
}
T* insert(const T& v, const auto& maybe_drop_checker) {
assert(v.get_key() >= 0);
T* ref;
if (!(ref = insert_1(v, maybe_drop_checker))) {
insert_shuffle(v, maybe_drop_checker);
ref = lookup(v.get_key());
}
return ref;
}
void remove(int k) {
uint i = mod_size(k + offset_);
if (elements[i].get_key() == k) {
elements[i] = T();
return;
}
i = mod_size(rehash(k) + offset_) + (size_ / 2);
if (elements[i].get_key() == k) {
elements[i] = T();
}
}
void prefetch(int k) {
// nop
}
void soft_clear() {
if (++offset_ == size_ / 2) {
clear();
}
}
void clear() {
offset_ = 0;
for (size_t i = 0; i < size_; i++) {
elements[i] = T();
}
}
CuckooHashTable() {
elements = new T[32];
size_ = 32;
}
~CuckooHashTable() { delete[] elements; }
};
template <typename T>
class FlatTable final {
T* elements = nullptr;
uint32_t size_;
uint32_t offset;
inline uint32_t mod_size(int32_t x) {
x -= offset;
if (x < 0) x += size_;
return x;
}
public:
T* lookup(int k) {
uint32_t l = mod_size(k);
if (elements[l].get_key() == k) return &elements[l];
return nullptr;
}
T* insert(const T& v) {
uint32_t l = mod_size(v.get_key());
elements[l] = v;
return &elements[l];
}
T* insert(const T& v, const auto& maybe_drop_checker) {
uint32_t l = mod_size(v.get_key());
elements[l] = v;
return &elements[l];
}
void remove(int k) {
uint32_t l = mod_size(k);
elements[k] = T();
}
void prefetch(int k) { __builtin_prefetch(&elements[mod_size(k)], 1, 1); }
void soft_clear() {
if (size_ == ++offset) clear();
}
void clear() {
for (size_t i = 0; i < size_; i++) {
elements[i] = T();
}
offset = 0;
}
FlatTable(uint32_t size) {
offset = 0;
size_ = size;
elements = new T[size_];
clear();
}
~FlatTable() { delete[] elements; }
};
// T must implement
// `compariable (float) get_value () const`
// this will be able to identify the min and max element
// T() must return an empty element
// based on details from: http://www.mhhe.com/engcs/compsci/sahni/enrich/c9/interval.pdf
template <typename T>
class IntervalHeap {
private:
// <min, max> maintained as a list of elements
std::vector<std::tuple<T, T>> elements;
size_t size_ = 0;
public:
void clear() {
size_ = 0;
elements.clear();
}
#ifndef NDEBUG
void check() {
for (int i = 0; i < size_; i++) {
if (i % 2 == 0)
std::get<0>(elements[i / 2]).get_value();
else
std::get<1>(elements[i / 2]).get_value();
}
}
#endif
inline size_t size() const { return size_; }
void remove_max() {
using namespace std;
assert(size_ > 0);
// take the last element and bubble it down
if (size_ == 1) {
elements.clear();
size_ = 0;
} else if (size_ == 2) {
get<1>(elements[0]) = T();
size_--;
} else {
T v;
if (size_ % 2 == 1) {
v = get<0>(elements.back());
elements.pop_back(); // reduce the size of the heap
} else {
v = get<1>(elements.back());
get<1>(elements.back()) = T();
}
auto vval = v.get_value();
int i = 1, // current node
ci = 2; // child of i
while (ci <= elements.size()) {
if (ci < elements.size()) {
if (ci == elements.size() - 1 && size_ % 2 == 0) {
if (get<1>(elements[ci - 1]).get_value() < get<0>(elements[ci]).get_value()) ci++;
} else {
if (get<1>(elements[ci - 1]).get_value() < get<1>(elements[ci]).get_value()) ci++;
}
}
assert(ci - 1 < elements.size());
if (ci == elements.size() && size_ % 2 == 0) {
if (vval >= get<0>(elements[ci - 1]).get_value()) break;
} else {
if (vval >= get<1>(elements[ci - 1]).get_value()) break;
}
// move the element up
if (ci == elements.size() && size_ % 2 == 0) {
get<1>(elements[i - 1]) = get<0>(elements[ci - 1]);
} else {
get<1>(elements[i - 1]) = get<1>(elements[ci - 1]);
if (vval < get<0>(elements[ci - 1]).get_value()) {
std::swap(v, get<0>(elements[ci - 1]));
vval = v.get_value();
}
}
// move down a level
i = ci;
ci *= 2;
}
if (i == elements.size() && size_ % 2 == 0) {
get<0>(elements[i - 1]) = v;
} else {
get<1>(elements[i - 1]) = v;
}
size_--;
}
}
void remove_min() {
using namespace std;
assert(size_ > 0);
if (size_ == 1) {
elements.clear();
size_ = 0;
} else if (size_ == 2) {
get<0>(elements[0]) = get<1>(elements[0]);
get<1>(elements[0]) = T();
size_--;
} else {
T v;
if (size_ % 2 == 1) {
v = get<0>(elements.back());
elements.pop_back(); // reduce the size of the heap
} else {
v = get<1>(elements.back());
get<1>(elements.back()) = T();
}
auto vval = v.get_value();
uint i = 1, ci = 2;
while (ci <= elements.size()) {
if (ci < elements.size() && get<0>(elements[ci - 1]).get_value() > get<0>(elements[ci]).get_value()) ci++;
assert(ci - 1 < elements.size());
if (vval <= get<0>(elements[ci - 1]).get_value()) break;
// move the element up
get<0>(elements[i - 1]) = get<0>(elements[ci - 1]);
if (!(ci == elements.size() && size_ % 2 == 0) && vval > get<1>(elements[ci - 1]).get_value()) {
std::swap(v, get<1>(elements[ci - 1]));
vval = v.get_value();
}
// move down a level
i = ci;
ci *= 2;
}
get<0>(elements[i - 1]) = v;
size_--;
}
}
void insert(const T& value) {
using namespace std;
if (size_ == 0) {
elements.push_back(make_tuple(value, T()));
size_++;
} else if (size_ == 1) {
get<1>(elements[0]) = value;
if (get<1>(elements[0]).get_value() < get<0>(elements[0]).get_value()) {
std::swap(get<1>(elements[0]), get<0>(elements[0]));
}
size_++;
} else {
bool minHeap;
auto val = value.get_value();
if (size_ % 2 == 1) {
// odd number of elements
if (val < get<0>(elements.back()).get_value()) {
// make space for this item in the min value side
std::swap(get<1>(elements.back()), get<0>(elements.back()));
minHeap = true;
} else {
minHeap = false;
}
} else {
// even number of elements
elements.push_back(make_tuple(T(), T()));
if (val < get<0>(elements[elements.size() / 2 - 1]).get_value()) {
minHeap = true;
} else {
minHeap = false;
}
}
assert(val != -1);
if (minHeap) {
int i = elements.size();
while (i != 1 && val < get<0>(elements[i / 2 - 1]).get_value()) {
get<0>(elements[i - 1]) = get<0>(elements[i / 2 - 1]);
i /= 2;
}
get<0>(elements[i - 1]) = value;
} else {
int i = elements.size();
while (i != 1 && val > get<1>(elements[i / 2 - 1]).get_value()) {
get<1>(elements[i - 1]) = get<1>(elements[i / 2 - 1]);
i /= 2;
}
get<1>(elements[i - 1]) = value;
if (size_ % 2 == 0) {
std::swap(get<1>(elements.back()), get<0>(elements.back()));
}
}
size_++;
}
}
inline bool is_empty() const { return elements.size() == 0; }
inline const T& min() const {
using namespace std;
assert(elements.size() > 0);
return get<0>(elements[0]);
}
inline const T& max() const {
// TODO: might want to change this given that we are having to branch here,
// and we are currently using the max as the entry that we are interested in
// seeing first
using namespace std;
assert(elements.size() > 0);
if (size_ == 1) return get<0>(elements[0]);
return get<1>(elements[0]);
}
auto begin() { return iterator(elements, 0); }
auto end() { return iterator(elements, size_); }
class iterator {
private:
typedef typename std::vector<std::tuple<T, T>>::iterator viter;
const std::vector<std::tuple<T, T>>& ref;
size_t at;
inline void inc() { at++; }
iterator(const std::vector<std::tuple<T, T>>& ref, size_t at) : ref(ref), at(at) {}
friend class IntervalHeap;
public:
typedef iterator self_type;
typedef const T value_type;
typedef const T& reference;
typedef T* const pointer;
self_type operator++() {
self_type i = *this;
inc();
return i;
}
self_type& operator++(int) {
inc();
return *this;
};
reference operator*() {
if (at % 2 == 0)
return std::get<0>(ref[at / 2]);
else
return std::get<1>(ref[at / 2]);
}
pointer operator->() { return at % 2 == 0 ? &std::get<0>(ref[at / 2]) : &std::get<1>(ref[at / 2]); }
bool operator==(self_type& o) { return o.at == at; }
bool operator!=(self_type& o) { return !(*this == o); }
};
};
} // namespace certified_cosine
// extern "C" void openblas_set_num_threads(int);
#endif