-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
matrix_power.cpp
49 lines (41 loc) · 1.12 KB
/
matrix_power.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include <iostream>
using namespace std;
const int MaxSize = 2; //It depends on the problem (2 for computing Fibonacci series)
const int mod = 1e9+7; //It depends on the problem as you may don't need it
struct Matrix{
long long mat[MaxSize][MaxSize];
};
Matrix matMul(Matrix a , Matrix b)
{
Matrix ans; int k;
for(int i = 0 ; i < MaxSize ; i++)
for(int j = 0 ; j < MaxSize ; j++){
for(ans.mat[i][j] = k = 0 ; k < MaxSize ; k++){
long long sum = (a.mat[i][k] * b.mat[k][j]) % mod;
ans.mat[i][j] = (ans.mat[i][j] + sum) % mod;
}
}
return ans;
}
Matrix Identity(){
Matrix res;
for(int i = 0 ; i < MaxSize ; i++)
for(int j = 0 ; j < MaxSize ; j++)
res.mat[i][j] = (i == j);
return res;
}
Matrix Power(Matrix base, long long pw)
{
Matrix ans = Identity();
while(pw){
if(pw & 1) ans = matMul(ans , base);
base = matMul(base, base);
pw >>= 1;
}
return ans;
}
int main(){
// Matrix Power is a technique not a specific problem
// So I wrote just the template of its code.
return 0;
}