-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
mrp.java
107 lines (82 loc) · 2.21 KB
/
mrp.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// Java program Miller-Rabin primality test
import java.io.*;
import java.math.*;
class GFG {
// Utility function to do modular
// exponentiation. It returns (x^y) % p
static int power(int x, int y, int p) {
int res = 1; // Initialize result
//Update x if it is more than or
// equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x with result
if ((y & 1) == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// This function is called for all k trials.
// It returns false if n is composite and
// returns false if n is probably prime.
// d is an odd number such that d*2<sup>r</sup>
// = n-1 for some r >= 1
static boolean miillerTest(int d, int n) {
// Pick a random number in [2..n-2]
// Corner cases make sure that n > 4
int a = 2 + (int)(Math.random() % (n - 4));
// Compute a^d % n
int x = power(a, d, n);
if (x == 1 || x == n - 1)
return true;
// Keep squaring x while one of the
// following doesn't happen
// (i) d does not reach n-1
// (ii) (x^2) % n is not 1
// (iii) (x^2) % n is not n-1
while (d != n - 1) {
x = (x * x) % n;
d *= 2;
if (x == 1)
return false;
if (x == n - 1)
return true;
}
// Return composite
return false;
}
// It returns false if n is composite
// and returns true if n is probably
// prime. k is an input parameter that
// determines accuracy level. Higher
// value of k indicates more accuracy.
static boolean isPrime(int n, int k) {
// Corner cases
if (n <= 1 || n == 4)
return false;
if (n <= 3)
return true;
// Find r such that n = 2^d * r + 1
// for some r >= 1
int d = n - 1;
while (d % 2 == 0)
d /= 2;
// Iterate given nber of 'k' times
for (int i = 0; i < k; i++)
if (!miillerTest(d, n))
return false;
return true;
}
// Driver program
public static void main(String args[]) {
int k = 4; // Number of iterations
System.out.println("All primes smaller "
+ "than 100: ");
for (int n = 1; n < 100; n++)
if (isPrime(n, k))
System.out.print(n + " ");
}
}