-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path07_life_cycle_model.html
1372 lines (1340 loc) · 94.1 KB
/
07_life_cycle_model.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.3.433">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>CEMPRA Guidance Document - 7 Life Cycle Model</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}</style>
<script src="site_libs/quarto-nav/quarto-nav.js"></script>
<script src="site_libs/quarto-nav/headroom.min.js"></script>
<script src="site_libs/clipboard/clipboard.min.js"></script>
<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="site_libs/quarto-search/fuse.min.js"></script>
<script src="site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="./">
<link href="./08_stressor_response_library.html" rel="next">
<link href="./06_r_shiny_app.html" rel="prev">
<link href="./favicon.ico" rel="icon">
<script src="site_libs/cookie-consent/cookie-consent.js"></script>
<link href="site_libs/cookie-consent/cookie-consent.css" rel="stylesheet">
<script src="site_libs/quarto-html/quarto.js"></script>
<script src="site_libs/quarto-html/popper.min.js"></script>
<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="site_libs/quarto-html/anchor.min.js"></script>
<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="site_libs/bootstrap/bootstrap.min.js"></script>
<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "sidebar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "start",
"type": "textbox",
"limit": 20,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit",
"search-label": "Search"
}
}</script>
<script async="" src="https://www.googletagmanager.com/gtag/js?id=G-3SJZ32N1H9"></script>
<script type="text/plain" cookie-consent="tracking">
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-3SJZ32N1H9', { 'anonymize_ip': true});
</script>
<script type="text/javascript" charset="UTF-8">
document.addEventListener('DOMContentLoaded', function () {
cookieconsent.run({
"notice_banner_type":"simple",
"consent_type":"implied",
"palette":"light",
"language":"en",
"page_load_consent_levels":["strictly-necessary","functionality","tracking","targeting"],
"notice_banner_reject_button_hide":false,
"preferences_center_close_button_hide":false,
"website_name":""
});
});
</script>
</head>
<body class="nav-sidebar floating">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="quarto-secondary-nav">
<div class="container-fluid d-flex">
<button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<i class="bi bi-layout-text-sidebar-reverse"></i>
</button>
<nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./07_life_cycle_model.html"><span class="chapter-number">7</span> <span class="chapter-title">Life Cycle Model</span></a></li></ol></nav>
<a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
</a>
<button type="button" class="btn quarto-search-button" aria-label="" onclick="window.quartoOpenSearch();">
<i class="bi bi-search"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">CEMPRA Guidance Document</a>
<div class="sidebar-tools-main">
<a href="https://github.com/mattjbayly/CEMPRA_documentation/" rel="" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
</div>
</div>
</div>
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./index.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">CEMPRA</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./01_intro.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">1</span> <span class="chapter-title">Introduction</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./02_stressor_response.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">2</span> <span class="chapter-title">Stressor-Response Functions</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./03_pathways_endpoints.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">3</span> <span class="chapter-title">Modelling Pathways and Assessment Endpoints</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./04_initial_setup.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">4</span> <span class="chapter-title">Setup and Installation</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./05_data_inputs.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">5</span> <span class="chapter-title">Data Inputs</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./06_r_shiny_app.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">6</span> <span class="chapter-title">R-Shiny Application</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./07_life_cycle_model.html" class="sidebar-item-text sidebar-link active">
<span class="menu-text"><span class="chapter-number">7</span> <span class="chapter-title">Life Cycle Model</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./08_stressor_response_library.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">8</span> <span class="chapter-title">Stressor-Response Library</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./09_case_study_applications.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">9</span> <span class="chapter-title">Example Datasets</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./10_r_package_tutorials.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">10</span> <span class="chapter-title">R Package Tutorials</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./11_conclusions.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">11</span> <span class="chapter-title">Concluding Remarks</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./references.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">References</span></a>
</div>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true">
<span class="menu-text">Appendices</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./appendix_interaction_matrix.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">A</span> <span class="chapter-title">Multi-Stressor Interaction Matrix</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./appendix_socio_economic.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">B</span> <span class="chapter-title">Socio-economic Evaluation of Restoration Actions</span></span></a>
</div>
</li>
</ul>
</li>
</ul>
</div>
</nav>
<div id="quarto-sidebar-glass" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar,#quarto-sidebar-glass"></div>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#overview" id="toc-overview" class="nav-link active" data-scroll-target="#overview"><span class="header-section-number">7.1</span> Overview</a></li>
<li><a href="#data-input-life-cycle-profiles" id="toc-data-input-life-cycle-profiles" class="nav-link" data-scroll-target="#data-input-life-cycle-profiles"><span class="header-section-number">7.2</span> Data Input: Life Cycle Profiles</a>
<ul class="collapse">
<li><a href="#purpose" id="toc-purpose" class="nav-link" data-scroll-target="#purpose"><span class="header-section-number">7.2.1</span> Purpose</a></li>
<li><a href="#layout" id="toc-layout" class="nav-link" data-scroll-target="#layout"><span class="header-section-number">7.2.2</span> Layout</a></li>
</ul></li>
<li><a href="#matrix-life-cycle-model" id="toc-matrix-life-cycle-model" class="nav-link" data-scroll-target="#matrix-life-cycle-model"><span class="header-section-number">7.3</span> Matrix Life Cycle Model</a>
<ul class="collapse">
<li><a href="#anadromous-life-histories" id="toc-anadromous-life-histories" class="nav-link" data-scroll-target="#anadromous-life-histories"><span class="header-section-number">7.3.1</span> Anadromous Life Histories</a></li>
<li><a href="#vital-rates-for-survivorship-and-growth" id="toc-vital-rates-for-survivorship-and-growth" class="nav-link" data-scroll-target="#vital-rates-for-survivorship-and-growth"><span class="header-section-number">7.3.2</span> Vital Rates for Survivorship and Growth</a></li>
<li><a href="#vital-rates-for-fecundity" id="toc-vital-rates-for-fecundity" class="nav-link" data-scroll-target="#vital-rates-for-fecundity"><span class="header-section-number">7.3.3</span> Vital Rates for Fecundity</a></li>
</ul></li>
<li><a href="#density-dependent-constraints-on-growth" id="toc-density-dependent-constraints-on-growth" class="nav-link" data-scroll-target="#density-dependent-constraints-on-growth"><span class="header-section-number">7.4</span> Density-Dependent Constraints on Growth</a>
<ul class="collapse">
<li><a href="#location-and-stage-specific-carrying-capacities" id="toc-location-and-stage-specific-carrying-capacities" class="nav-link" data-scroll-target="#location-and-stage-specific-carrying-capacities"><span class="header-section-number">7.4.1</span> Location and Stage-Specific Carrying Capacities</a></li>
<li><a href="#compensation-ratios-for-density-dependent-growth" id="toc-compensation-ratios-for-density-dependent-growth" class="nav-link" data-scroll-target="#compensation-ratios-for-density-dependent-growth"><span class="header-section-number">7.4.2</span> Compensation Ratios for Density-Dependent Growth</a></li>
</ul></li>
<li><a href="#stochastic-simulations" id="toc-stochastic-simulations" class="nav-link" data-scroll-target="#stochastic-simulations"><span class="header-section-number">7.5</span> Stochastic Simulations</a>
<ul class="collapse">
<li><a href="#eps_sd-standard-deviation-in-eggs-per-spawner" id="toc-eps_sd-standard-deviation-in-eggs-per-spawner" class="nav-link" data-scroll-target="#eps_sd-standard-deviation-in-eggs-per-spawner"><span class="header-section-number">7.5.1</span> eps_sd: Standard Deviation in Eggs-per-Spawner</a></li>
<li><a href="#egg_rho-correlation-in-egg-fecundity-through-time" id="toc-egg_rho-correlation-in-egg-fecundity-through-time" class="nav-link" data-scroll-target="#egg_rho-correlation-in-egg-fecundity-through-time"><span class="header-section-number">7.5.2</span> egg_rho: Correlation in Egg Fecundity Through Time</a></li>
<li><a href="#m.cv-coefficient-of-variation-cv-in-interannual-stage-specific-mortality" id="toc-m.cv-coefficient-of-variation-cv-in-interannual-stage-specific-mortality" class="nav-link" data-scroll-target="#m.cv-coefficient-of-variation-cv-in-interannual-stage-specific-mortality"><span class="header-section-number">7.5.3</span> M.cv: Coefficient of Variation (CV) in Interannual Stage-Specific Mortality</a></li>
<li><a href="#m.rho-correlation-in-stage-class-mortality-through-time" id="toc-m.rho-correlation-in-stage-class-mortality-through-time" class="nav-link" data-scroll-target="#m.rho-correlation-in-stage-class-mortality-through-time"><span class="header-section-number">7.5.4</span> M.rho: Correlation in Stage-Class Mortality Through Time</a></li>
<li><a href="#p.cat-probability-of-catastrophe-per-generation" id="toc-p.cat-probability-of-catastrophe-per-generation" class="nav-link" data-scroll-target="#p.cat-probability-of-catastrophe-per-generation"><span class="header-section-number">7.5.5</span> p.cat: Probability of Catastrophe per Generation</a></li>
</ul></li>
<li><a href="#building-a-life-cycle-profile" id="toc-building-a-life-cycle-profile" class="nav-link" data-scroll-target="#building-a-life-cycle-profile"><span class="header-section-number">7.6</span> Building a Life Cycle Profile</a></li>
<li><a href="#benefits-and-limitations" id="toc-benefits-and-limitations" class="nav-link" data-scroll-target="#benefits-and-limitations"><span class="header-section-number">7.7</span> Benefits and Limitations</a></li>
</ul>
</nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<h1 class="title"><span class="chapter-number">7</span> <span class="chapter-title">Life Cycle Model</span></h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<div class="quarto-video ratio ratio-16x9"><iframe data-external="1" src="https://www.youtube.com/embed/v4nmlRSHo0A" title="" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen=""></iframe></div>
<section id="overview" class="level2" data-number="7.1">
<h2 data-number="7.1" class="anchored" data-anchor-id="overview"><span class="header-section-number">7.1</span> Overview</h2>
<p>The integrated life cycle model is a core component of the CEMPRA tool. The life cycle modeling component is a valuable endpoint to evaluate and understand cumulative effects through the lens of demographic rates and population ecology. Some user groups may be satisfied with the simplified Joe Modelling (stressor roll-up) component of the CEMPRA tool and, therefore, not wish to interact with the life cycle model. However, other user groups may benefit substantially from working with the life cycle modeling component. Framing cumulative effects through an integrated life cycle model allows us to understand critical bottlenecks to the productivity and capacity of a target study system. In the CEMPRA life cycle modeling component, stressor-response relationships are linked to vital rates such as life-stage-specific survivorship, fecundity, and carrying capacity. Therefore, the life cycle modeling component can be used to make relative comparisons between locations (spatial units), scenarios, and stressors to understand limiting factors and design recovery action strategies.</p>
<p>At its core, the life cycle modeling component of the CEMPRA tool is a stage-structured matrix model (see <span class="citation" data-cites="caswell1997">(<a href="#ref-caswell1997" role="doc-biblioref">Caswell, 1997</a>)</span>). A simplified life cycle profile csv data input file (described below) is populated by the user and then imported to parameterize and construct components of the matrix model (e.g., number of stages, stage-specific survivorship, years in each stage, etc.).</p>
<p>When the life cycle model is run, a hypothetical population is projected forward in time through simulations. The stage-structured matrix model governs the behavior of the simulated population. Density-dependent growth constraints are implemented using either compensation ratios (if the location and stage-specific capacities are unknown) or location and stage-specific Beverton-Holt functions (discussed further below). Location-specific stressor values will interact with the simulated population to curtail or enhance stage-specific survivorship, fecundity, or habitat capacities. Population projections are then compared across scenarios and/or locations to evaluate the relative change in equilibrium abundance estimates for a target life stage (i.e., carrying capacities) and/or the intrinsic productivity (i.e., growth rates) possible at low densities.</p>
<p>The life cycle modeling component of the CEMPRA tool performs a large number of calculations behind the scenes. While convenient, the embedded complexity can create misleading results if input values and assumptions are not carefully considered. It is assumed that users of the life cycle model have an understanding of basic concepts in population ecology (e.g., population growth rates, carrying capacities etc.) and a familiarity with matrix life cycle models. The following resources provide useful refreshers for interested individuals:</p>
<ul>
<li>Basic refresher on matrix life cycle models: <a href="https://compadre-db.org/Education/article/what-is-a-matrix-model" class="uri">https://compadre-db.org/Education/article/what-is-a-matrix-model</a></li>
<li>An in-depth overview of stage-structured matrix models: <a href="https://blog.uvm.edu/tdonovan-vtcfwru/files/2020/06/12-Donov-pages-322-CB.pdf" class="uri">https://blog.uvm.edu/tdonovan-vtcfwru/files/2020/06/12-Donov-pages-322-CB.pdf</a></li>
<li>Density-dependent and density-independent constraints on population growth: <a href="https://www.nature.com/scitable/knowledge/library/population-limiting-factors-17059572/" class="uri">https://www.nature.com/scitable/knowledge/library/population-limiting-factors-17059572/</a></li>
<li>Density-dependent growth functions (review section on the Beverton-Holt function): <a href="http://courses.ecology.uga.edu/ecol4000-fall2018/wp-content/uploads/sites/22/2018/08/Chapter-3-complex-dynamics.pdf" class="uri">http://courses.ecology.uga.edu/ecol4000-fall2018/wp-content/uploads/sites/22/2018/08/Chapter-3-complex-dynamics.pdf</a></li>
</ul>
<p>The model code for the life cycle modeling component of the CEMPRA tool follows a similar structure to the code base used by <span class="citation" data-cites="vanderlee2020">(<a href="#ref-vanderlee2020" role="doc-biblioref">Van der Lee & Koops, 2020</a>)</span>. The underlying code and assessment framework was modified substantially by Dr. Kyle Wilson and Matthew Bayly (M.J. Bayly Analytics Ltd.) throughout 2022 and 2024. Code snippets, functional forms, and rationale largely follow conventional workflow demographic modeling outlined in <span class="citation" data-cites="schaub2021">(<a href="#ref-schaub2021" role="doc-biblioref">Schaub & Kéry, 2021</a>)</span>. For anadromous life cycles with terminal spawners classes, matrix structures follow the generalized design proposed by <span class="citation" data-cites="davison2016">(<a href="#ref-davison2016" role="doc-biblioref">Davison & Satterthwaite, 2016</a>)</span>. Users are encouraged to review these resources for additional background and rationale.</p>
</section>
<section id="data-input-life-cycle-profiles" class="level2" data-number="7.2">
<h2 data-number="7.2" class="anchored" data-anchor-id="data-input-life-cycle-profiles"><span class="header-section-number">7.2</span> Data Input: Life Cycle Profiles</h2>
<section id="purpose" class="level3" data-number="7.2.1">
<h3 data-number="7.2.1" class="anchored" data-anchor-id="purpose"><span class="header-section-number">7.2.1</span> Purpose</h3>
<p>The life cycle profile is the main input file for the life cycle model. It provides the names and values of key life cycle parameters and vital rates, including parameters for survival, growth, reproduction, and density-dependent effects. This file makes it easy for users to store and edit life cycle parameter values either within or outside of the R Shiny web application. The following sections break down the components of the life cycle profile file with illustrative examples. The intent of the following sections is to provide a detailed explanation of how the life cycle model works with a description of each component of the input file so that users may create their own life cycle profile for a target species of interest.</p>
</section>
<section id="layout" class="level3" data-number="7.2.2">
<h3 data-number="7.2.2" class="anchored" data-anchor-id="layout"><span class="header-section-number">7.2.2</span> Layout</h3>
<p>The life cycle profile is a comma-separated values (CSV) file that contains the names and values of each of the parameters within the life cycle model. Life cycle profiles will be unique to each species or life history variant. The life cycle profile file contains three columns:</p>
<ul>
<li><strong>Parameters</strong>: The full name/description of the parameter. This column can be adjusted by the user to provide more relevant nicknames for each stage (e.g., fry survival, smolt survival etc.). <em>Please update and change these values for your study system.</em></li>
<li><strong>Name</strong>: The short form name of the parameter used in the model. The names of these parameters are referenced by the model code and should not be modified (apart from adding or removing stage classes). <em>Feel free to add or remove rows, depending on the number of stages, but do not change the text in this column.</em></li>
<li><strong>Value</strong>: The numeric value of the parameter used in the model. The values are adjusted for each species profile.</li>
</ul>
<p>The following table shows an example life cycle parameters file for Athabasca Rainbow Trout (non-anadromous).</p>
<table class="table">
<caption>Example life cycle parameters file for Athabasca Rainbow Trout (non-anadromous)</caption>
<colgroup>
<col style="width: 39%">
<col style="width: 32%">
<col style="width: 28%">
</colgroup>
<thead>
<tr class="header">
<th><strong>Parameters</strong></th>
<th><strong>Name</strong></th>
<th><strong>Value</strong></th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>Number of life stages</td>
<td>Nstage</td>
<td>4</td>
</tr>
<tr class="even">
<td>Anadromous</td>
<td>anadromous</td>
<td>FALSE</td>
</tr>
<tr class="odd">
<td>Adult capacity</td>
<td>k</td>
<td>100</td>
</tr>
<tr class="even">
<td>Spawn events per female</td>
<td>events</td>
<td>1</td>
</tr>
<tr class="odd">
<td>Eggs per female spawn</td>
<td>eps</td>
<td>3000</td>
</tr>
<tr class="even">
<td>spawning interval</td>
<td>int</td>
<td>1</td>
</tr>
<tr class="odd">
<td>egg survival</td>
<td>SE</td>
<td>0.1</td>
</tr>
<tr class="even">
<td>yoy survival</td>
<td>S0</td>
<td>0.3</td>
</tr>
<tr class="odd">
<td>sex ratio</td>
<td>SR</td>
<td>0.5</td>
</tr>
<tr class="even">
<td>Hatchling Survival</td>
<td>surv_1</td>
<td>0.3</td>
</tr>
<tr class="odd">
<td>Juvenile Survival</td>
<td>surv_2</td>
<td>0.3</td>
</tr>
<tr class="even">
<td>Sub-adult Survival</td>
<td>surv_3</td>
<td>0.9</td>
</tr>
<tr class="odd">
<td>Adult Survival</td>
<td>surv_4</td>
<td>0.9</td>
</tr>
<tr class="even">
<td>Years as hatchling</td>
<td>year_1</td>
<td>1</td>
</tr>
<tr class="odd">
<td>years as juvenile</td>
<td>year_2</td>
<td>2</td>
</tr>
<tr class="even">
<td>years as subadult</td>
<td>year_3</td>
<td>2</td>
</tr>
<tr class="odd">
<td>years as adult</td>
<td>year_4</td>
<td>5</td>
</tr>
<tr class="even">
<td>egg survival compensation ratio</td>
<td>cr_E</td>
<td>1</td>
</tr>
<tr class="odd">
<td>yoy survival compensation ratio</td>
<td>cr_0</td>
<td>3</td>
</tr>
<tr class="even">
<td>hatchling survival compensation ratio</td>
<td>cr_1</td>
<td>2.5</td>
</tr>
<tr class="odd">
<td>juvenile survival compensation ratio</td>
<td>cr_2</td>
<td>2</td>
</tr>
<tr class="even">
<td>subadult survival compensation ratio</td>
<td>cr_3</td>
<td>1.1</td>
</tr>
<tr class="odd">
<td>adult survival compensation ratio</td>
<td>cr_4</td>
<td>1</td>
</tr>
<tr class="even">
<td>maturity as hatchling</td>
<td>mat_1</td>
<td>0</td>
</tr>
<tr class="odd">
<td>maturity as juvenile</td>
<td>mat_2</td>
<td>0</td>
</tr>
<tr class="even">
<td>maturity as subadult</td>
<td>mat_3</td>
<td>0</td>
</tr>
<tr class="odd">
<td>maturity as adult</td>
<td>mat_4</td>
<td>1</td>
</tr>
<tr class="even">
<td>variance in eggs per female</td>
<td>eps_sd</td>
<td>1.00E+03</td>
</tr>
<tr class="odd">
<td>correlation in egg fecundity through time</td>
<td>egg_rho</td>
<td>0.1</td>
</tr>
<tr class="even">
<td>coefficient of variation in stage-specific mortality</td>
<td>M.cv</td>
<td>1.00E-01</td>
</tr>
<tr class="odd">
<td>correlation in mortality through time</td>
<td>M.rho</td>
<td>0.1</td>
</tr>
</tbody>
</table>
</section>
</section>
<section id="matrix-life-cycle-model" class="level2" data-number="7.3">
<h2 data-number="7.3" class="anchored" data-anchor-id="matrix-life-cycle-model"><span class="header-section-number">7.3</span> Matrix Life Cycle Model</h2>
<p>The stage-structured matrix modelling framework, embedded within the CEMPRA tool, can be represented graphically by a life cycle diagram (figure) or a transition matrix. The transition matrix can be represented symbolically with either equations (Table 1) or absolute values (Table 2). The structure of the life cycle diagram and transition matrix will be different depending on whether the <strong>anadromous</strong> input is set to TRUE (for anadromous life histories e.g., salmon) or FALSE (for non-anadromous life histories e.g., most trout).</p>
<p>The life cycle diagram figure (below) shows stage class transitions for Athabasca Rainbow Trout. In the diagram and input file, we see that there are four main stages (stage_1 to stage_4). stage_1 individuals can become stage_4 individuals after three years in the simulation, but it is also possible for some individuals to spend more than one year in stages 2, 3, and 4 (denoted by the circular loop). We also see that stage_4 individuals are sexually mature and have the capacity to generate new stage_1 individuals. There are also special year 0 (Age-0) events that occur before new stage_1 (Age-1) individuals are secured in the simulation. These events include egg survival (SE) and Age-0 fry survival (S0).</p>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-fig-figure28" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="images/image040.png" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">Samle life cycle diagram for Athabasca Rainbow Trout.</figcaption>
</figure>
</div>
<p>The life cycle modelling component of the CEMPRA tool is set up as a pre-birth pulse census (see Caswell 2000). Since the design of stage-structured matrix models does not easily allow for the initial number of eggs and fry to be represented as independent matrix elements (cells), their transitions are included within the fecundity term. In a pre-birth pulse census, we assume that the demographic census takes place immediately before spawning (fecundity), meaning that yearlings of the previous spawning year have survived a full time-step (Age-0/stage-0 to Age-1/stage-1). Yearlings (Age-0: egg & fry) must survive the entire census period to the start of the next census. Therefore, the Age-0 transitions (egg-to-fry survivorship: SE and fry-to-parr survivorship: S0) are accounted for within the fecundity element (cells) of the transition matrix (Table 1).</p>
<section id="anadromous-life-histories" class="level3" data-number="7.3.1">
<h3 data-number="7.3.1" class="anchored" data-anchor-id="anadromous-life-histories"><span class="header-section-number">7.3.1</span> Anadromous Life Histories</h3>
<p>For semelparous species (such as salmon) we need to impose a slightly different structure to accurately represent a terminal spawner class (B) with death upon reproduction. This can become challenging because we need to also account for the fact that some species such as Coho Salmon, Chinook Salmon, Steelhead etc. will choose to return to spawn at different ages. For example, some Chinook Salmon will return to spawn at age-3, age-4, or age-5 (and sometimes even later). Therefore, the matrix structure needs to represent a dual track for breeders (B) that return to spawn and pre-breeders (P) that remain at sea (or elsewhere) for continued growth. Elegant solutions have been proposed by <span class="citation" data-cites="davison2016">(<a href="#ref-davison2016" role="doc-biblioref">Davison & Satterthwaite, 2016</a>)</span> (and others) to achieve this.</p>
<p>The diagram below illustrates the anadromous life history diagram for Chinook Salmon. In this diagram, there are two pathways available to individual age-2 fish transitioning to age-3 fish. Individuals may return for spawning as breeders (B) (orange boxes) or remain in the marine environment as pre-breeders (Pb) (light blue boxes) for additional years. Pre-breeder (Pb) age classes can have interannual survivorship estimates >0 (to advance fish to older cage classes) but all spawner classes (B-breeders) will die after spawning. The probability of becoming a spawner (at age 3-5) will depend on the portion that become mature at each age class (mat_x). For example, the transition from age-2 (Pb - prebreeders) to age-3 spawners (B - breeders) will be expressed as the baseline marine survivorship from age-2 to age-3 (surv_2) multiplied by the portion of fish that spawn at age-3 (mat_3). Additional migratory mortality for age-3 fish returning to spawn can expressed as (smig_3). Alternatively, age-2 fish can remain at sea for another year to enter the age-3 pre-breeder marine class (stage_Pb_3). This marine transition (stage_Pb_2 to stage_Pb_3) will be expressed as the baseline age-2 to age-3 marine survivorship (surv_2) * the portion of fish that do not spawn at age-3 (1 – mat_3). The cycle repeats itself until the final transition from age-4 to age-5. We assume that age-5 is the maximum possible age any fish can achieve. mat_5 is set 1.0 (100% of remaining individuals return to spawn). No fish will enter into the class (stage_Pb_5 – not shown). We can also set surv_5 to 0, but doing so is not necessary if mat_5 is set to 1.0.</p>
<p>Recruitment of one-year-old fish (stage_Pb_1) is a function of the number of spawners of a given age class (e.g., stage_B_x) multiplied by the average pre-spawn mortality of that age class (u_x), the average fecundity (eggs per female spawner, eps) for that age class (eps_x), the sex ratio (portion female, SR), the average egg survivorship (SE), and finally the average fry survivorship (S0). We can assume the spawning events (events) and interval (int) are both set to 1.0. Therefore, the number of stage_Pb_1 recruits from age-3 spawners would be expressed as (μ_3 * events * eps_3 * SE * s0 * SR)/int.</p>
<p>This diagram can be restructured for Coho, Steelhead, Coastal Cutthroat etc. by adjusting vital rates and then adding or removing age class maturity schedules (see examples at the end of this chapter). We strongly recommend that all implimentations of the CEMPRA anadromous life cycle model for salmon develop an age-based matrix model (Leslie Matrix Models) as a opposed to a stage-based matrix model. We have found that these are less prone to misinterpretations and easier to diagnose.</p>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/anadromous_1.png" class="img-fluid figure-img" alt="Generalized life history stage class transition diagram for anadromous species (example for Chinook Salmon)"></p>
<figcaption class="figure-caption">Generalized life history stage class transition diagram for anadromous species (example for Chinook Salmon)</figcaption>
</figure>
</div>
</section>
<section id="vital-rates-for-survivorship-and-growth" class="level3" data-number="7.3.2">
<h3 data-number="7.3.2" class="anchored" data-anchor-id="vital-rates-for-survivorship-and-growth"><span class="header-section-number">7.3.2</span> Vital Rates for Survivorship and Growth</h3>
<p>The following table lists the vital rates for survivorship and growth:</p>
<table class="table">
<colgroup>
<col style="width: 26%">
<col style="width: 73%">
</colgroup>
<thead>
<tr class="header">
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>Nstage</td>
<td>The number of stages in the transition matrix (excluding Stage-0/Age-0). Each stage must span one or more years in the life cycle. In the reference example, there are four stages: stage_1, stage_2, stage_3, and stage_4.</td>
</tr>
<tr class="even">
<td>surv_1</td>
<td>Mean annual survivorship of individuals in each stage. If Nstage value was higher than four, additional rows would be added to the life cycle profile CSV file for surv_5, surv_6, etc. If the Nstage value is less than four, then the additional surv_X rows should be deleted from the life cycle profile. These survivorship estimates should be estimates of intrinsic density-independent survival (in the absence of density-dependent constraints).</td>
</tr>
<tr class="odd">
<td>year_1</td>
<td>The number of years spent in each stage. Individuals in the simulation can spend more than one year in each stage. In the example input file, mature adults can spend up to five years in stage_4. If we were to set the year values to 1 for all stages, then we would have an age-based Leslie matrix model. If additional stages are added (or removed), be sure to modify rows in the life cycle profile CSV file accordingly (i.e., delete or add new rows).</td>
</tr>
<tr class="even">
<td>SE</td>
<td>Egg survivorship (density-independent).</td>
</tr>
<tr class="odd">
<td>S0</td>
<td>Age-0 fry survivorship (density-independent).</td>
</tr>
</tbody>
</table>
<p><em>Table: Vital rates for survivorship and growth in the life cycle model.</em></p>
<p>Ensure that all survivorship estimates represent hypothetical density-independent survivorship in the absence of density-dependent constraints. Density-dependent survivorship is accounted for in the next section. If density-independent survivorship is unknown, but strong, density-dependent constraints are to be included in the species profile, then it might be possible to simply set the density-independent survivorship estimate to a value close to 1.0 (e.g., S0: 0.999).</p>
<p>For fecundity, we have to consider the proportion of each age class that is sexually mature (mat), the proportion of the population that is female (SR: 0.5), the fecundity (eps: eggs per spawner) per spawning event, the spawning events per year (events), and the spawning interval (int). The calculation of individuals in stage class 1 (stage_1) also must account for the Age-0 survivorship of eggs and fry.</p>
<p><em>Sample fecundity function for stage class 4:</em></p>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/image041.png" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">Sample fecundity function</figcaption>
</figure>
</div>
</section>
<section id="vital-rates-for-fecundity" class="level3" data-number="7.3.3">
<h3 data-number="7.3.3" class="anchored" data-anchor-id="vital-rates-for-fecundity"><span class="header-section-number">7.3.3</span> Vital Rates for Fecundity</h3>
<p>The following table lists the vital rates for fecundity:</p>
<table class="table">
<colgroup>
<col style="width: 26%">
<col style="width: 73%">
</colgroup>
<thead>
<tr class="header">
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>mat_1</td>
<td>The proportion of each stage class that is sexually mature (0 – 1). For example, in the demo species profile, 100% of the individuals become sexually mature at stage class 4, and the sexual maturity is 0% for all other stage classes. It is also possible for a stage class to have partial maturity (e.g., 0.85). If the Nstage value is different than four, then add or remove rows in the species profile so that the number of mat values matches the number of stage classes (Nstage value).</td>
</tr>
<tr class="even">
<td>events</td>
<td>Spawning events per female per year. This parameter will almost always be set to 1 to indicate one spawning event per year per mature female. For populations with complex life history variants (e.g., systems with Spring Chinook & Fall Chinook), we recommend keeping this value at one and using two different species profiles to represent each life history variant.</td>
</tr>
<tr class="odd">
<td>eps</td>
<td>Eggs per spawning female. The mean fecundity per female per spawning event.</td>
</tr>
<tr class="even">
<td>SR</td>
<td>The sex ratio is represented as the proportion of the population that is female. This value will almost always be set to 0.5 to indicate an equal proportion of males and females in the population.</td>
</tr>
<tr class="odd">
<td>int</td>
<td>Spawning interval (in years). This value will also be set to 1 for most species, indicating that mature individuals spawn each year.</td>
</tr>
</tbody>
</table>
<p><em>Table: Vital rates for fecundity in the life cycle model.</em></p>
<p>We can combine all parameters discussed in this section along with the example species profile (<a href="#fig-figure27">Figure <span class="quarto-unresolved-ref">fig-figure27</span></a>) to construct a symbolic (mathematical) representation of the transition matrix (<img src="#tbl:transition-matrix.png" class="img-fluid" alt="Table 1">). The stage-to-stage transitions account for the probability of staying within each stage or advancing to the next stage based on the <code>surv_X</code> and n-year spent within a stage <code>year_X</code>. The fecundity element of the matrix (top row) includes elements for fecundity and Age-0 survivorship.</p>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-tbl:transition-matrix">
<p>Table 1. Symbolic Representation of the Transition Matrix</p>
<table class="table">
<colgroup>
<col style="width: 20%">
<col style="width: 20%">
<col style="width: 20%">
<col style="width: 20%">
<col style="width: 20%">
</colgroup>
<thead>
<tr class="header">
<th></th>
<th>stage_1</th>
<th>stage_2</th>
<th>stage_3</th>
<th>stage_4</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>stage_1</td>
<td>surv_1 * (1 - surv_1^( year_1 - 1))/(1 - surv_1^ year_1)</td>
<td>(mat2 * events * eps * sE * s0 * sR)/int</td>
<td>(mat3 * events * eps * sE * s0 * sR)/int</td>
<td>(mat4 * events * eps * sE * s0 * sR)/int</td>
</tr>
<tr class="even">
<td>stage_2</td>
<td>surv_1 - surv_1 * (1 - surv_1^(year_1 - 1))/(1 - surv_1^ year_1)</td>
<td>surv_2 * (1 - surv_2^( year_2 - 1))/(1 - surv_2^ year_2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr class="odd">
<td>stage_3</td>
<td>0</td>
<td>surv_2 - surv_2 * (1 - surv_2^( year_2 - 1))/(1 - surv_2^ year_2)</td>
<td>surv_3 * (1 - surv_3^( year_3 - 1))/(1 - surv_3^ year_3)</td>
<td>0</td>
</tr>
<tr class="even">
<td>stage_4</td>
<td>0</td>
<td>0</td>
<td>surv_3 - s3 * (1 - surv_3^( year_3 - 1))/(1 - surv_3^ year_3)</td>
<td>surv_4 * (1 - surv_4^( year_4 - 1))/(1 - surv_4^ year_4)</td>
</tr>
</tbody>
</table>
</div>
<p>The stage-to-stage transition probabilities are also expressed as functions from <code>surv_X</code> (annual survivorship with stage X) and <code>year_X</code> (number of simulation years within stage X). <code>surv_X</code> is the total annual probability of survival (i.e., regardless of staying within the current stage OR advancing to the next subsequent stage). The example below illustrates how the combined probability of staying within a stage or advancing to the next stage always equals <code>surv_X</code> regardless of n-years in each stage. <em>Note that the sum of the yellow cells equals 0.6 (for both fates of staying within stage or advancing to the next stage).</em></p>
<div class="quarto-figure quarto-figure-center">
<figure class="figure">
<p><img src="images/image042.png" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">Stage-to-stage transition probabilities</figcaption>
</figure>
</div>
<p>We can continue with the working example to represent the transition matrix numerically (<img src="#tbl:numerical-transition-matrix.png" class="img-fluid" alt="Table 2">). The fecundity element for <code>stage_4</code> is set at 45 since it accounts for the vital rates relating to maturity and Age-0 survivorship.</p>
<p>Net Fecundity (stage-4) = (mat4 * events * eps * sE * s0 * sR)/int</p>
<p>45 = (1 * 1 * 3,000 * 0.1 * 0.3 * 0.5)/1</p>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-tbl:numerical-transition-matrix">
<p>Table 2. Numerical representation of the transition matrix</p>
<table class="table">
<thead>
<tr class="header">
<th></th>
<th>stage_1</th>
<th>stage_2</th>
<th>stage_3</th>
<th>stage_4</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>stage_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45</td>
</tr>
<tr class="even">
<td>stage_2</td>
<td>0.3</td>
<td>0.231</td>
<td>0</td>
<td>0</td>
</tr>
<tr class="odd">
<td>stage_3</td>
<td>0</td>
<td>0.069</td>
<td>0.474</td>
<td>0</td>
</tr>
<tr class="even">
<td>stage_4</td>
<td>0</td>
<td>0</td>
<td>0.426</td>
<td>0.756</td>
</tr>
</tbody>
</table>
</div>
<p>The derived lambda value of the projection matrix (intrinsic rate of growth) in this example species profile is 1.21 (above 1.0), meaning that the population will continue to grow exponentially in the absence of density-dependent constraints.</p>
</section>
</section>
<section id="density-dependent-constraints-on-growth" class="level2" data-number="7.4">
<h2 data-number="7.4" class="anchored" data-anchor-id="density-dependent-constraints-on-growth"><span class="header-section-number">7.4</span> Density-Dependent Constraints on Growth</h2>
<p>It is rare for natural populations to grow in perpetuity without any constraints on growth, survival, and reproduction. Therefore, life cycle models will typically include a mechanism (or multiple mechanisms) to constrain population growth or limit high densities.</p>
<p>Stressor-response relationships can be incorporated into the life cycle model without accounting for density-dependent constraints, but the interpretation of the results will be limited to eigen analyses of intrinsic growth rates and sensitivities/elasticities assessments. Not only are these outputs difficult to communicate to diverse working groups, but they may also be misleading. If there are key demographic bottlenecks in the life cycle, then a density-independent model may inappropriately lead users to focus on stressors linked to fecundity or early life-stage survivorship before a key bottleneck (e.g., egg-to-fry survivorship) is experienced. However, if (in reality) a hypothetical population experiences strong density-dependent constraints on growth, then factors limiting habitat availability or productivity of a key life stage will become more influential. A common example of density-independent and density-dependent constraints on growth can be found in the transition between the early life stages of Steelhead (<em>Oncorhynchus mykiss</em>) as individuals transition from egg-to-fry (a density-independent life stage) and then from fry-to-smolts/parr (a density-dependent life stage) <span class="citation" data-cites="ward1993egg">(<a href="#ref-ward1993egg" role="doc-biblioref">Ward & Slaney, 1993</a>)</span>.</p>
<p>The life cycle modeling component of the CEMPRA tool has two different mechanisms to incorporate density-dependent growth constraints. The first mechanism makes use of adult carrying capacity and compensation ratios (discussed below), while the second mechanism considers stage and location-specific carrying capacities. Incorporating density-dependent constraints with compensation ratios is convenient because users are only required to input a single value (an estimate of the adult carrying capacity); however, incorporating density-dependent constraints with stage and location-specific carrying capacities can provide more accurate results in systems with ample habitat data and knowledge of life stage-specific density constraints across habitat types. Both mechanisms of density-dependent constraints utilize the Beverton-Holt function to constrain the transition probability of key demographic bottlenecks.</p>
<p>The Beverton-Holt function calculates the expected number of individuals in the next time step (N at time + 1, or density) as a function of the number of individuals in the current time step (N at time). In the case of stage-structured matrix models, this relationship is expressed as the number of individuals transitioning between two stages (e.g., from stage 2 to stage 3). In the Beverton-Holt function, input parameters governing this relationship include an estimate of stage-specific carrying capacity (K), a baseline estimate of density-independent survival (S) (surv_X from the species profile) for the transition probability, and the number of individuals in the current stage class (Nt) for the simulation year.</p>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-fig-beverton-holt" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="images/image043.png" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">Beverton-Holt function for density-dependent growth</figcaption>
</figure>
</div>
<p>The following figure provides an overview of the Beverton-Holt function, showing the number of individuals at time (t) on the x-axis and the number of individuals at time + 1 on the y-axis. For example, this could be the number of Age-0 fry on the x-axis and the number of Age-1+ parr recruits on the y-axis. The curved black line shows the effects of density-dependent growth (limited recruitment as the number of individuals in the first stage is increased). The steep red line is the intrinsic productivity (survivorship, surv_X), which is 0.8 under hypothetical density-independent growth conditions. The blue line is the hypothetical carrying capacity of 100.</p>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-fig-density-dependent" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="images/image044.jpg" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">Beverton-Holt function for density-dependent growth</figcaption>
</figure>
</div>
<div>
<p>Beverton-Holt function for density-dependent growth shows the survivorship under density-independent growth (red line), the maximum carrying capacity (blue line), and the resulting relationship from the BH curve (black line).</p>
</div>
<section id="location-and-stage-specific-carrying-capacities" class="level3" data-number="7.4.1">
<h3 data-number="7.4.1" class="anchored" data-anchor-id="location-and-stage-specific-carrying-capacities"><span class="header-section-number">7.4.1</span> Location and Stage-Specific Carrying Capacities</h3>
<p>For more systems with ample habitat data and known relationships between habitat availability and maximum densities, it is possible to use location-specific carrying capacities for one or more rate-limiting life stages (e.g., <em>Location X can produce up to 1,200 parr</em>). If this is the case, a special table can be included that specifies the maximum number of individuals per stage class per life stage per location:</p>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-fig-location-specific" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="images/image045.png" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">Location and stage-specific carrying capacity input data table</figcaption>
</figure>
</div>
<div>
<p>Location and stage-specific carrying capacity input data table.</p>
</div>
<p>This table (Location-specific capacities) is referred to as the <em>locations carrying capacity table</em> and exists as a special input file that can be used to control density-dependent growth in the life cycle model. Users must estimate the average carrying capacity for a given life stage at each location (e.g., k_stage_1_mean: 1,200) and the interannual variability (CV: coefficient of variation) in the carrying capacity (e.g., k_stage_1_cv: 0.1). If the location carrying capacity table is provided, any cells that are populated with values are assumed to have density-dependent constraints. Any cells that are left blank are assumed to be governed only by density-independent factors and do not have any density-dependent constraints.</p>
<p>In the previous example (Location-specific capacities), the population model will run with constraints on <code>stage_1</code>, meaning that the survivorship from <code>stage_0</code> to <code>stage_1</code> will be governed by a Beverton-Holt relationship, and the abundance (or density) of <code>stage_1</code> individuals will be constrained for each location according to the values provided in the locations carrying capacity table.</p>
<p>The CEMPRA tool does not support the development of these locations and stage-specific carrying capacity estimates, but it’s assumed that relevant reference literature will be used to develop appropriate input values (e.g., if stage 1 is Steelhead parr; regional densities for Steelhead parr are roughly 1,500 parr/km of stream; and fish-accessible reaches within Rock Creek sum up to roughly 800m in length; then k_stage_1_mean should equal roughly 1,200 parr). Developing these estimates alongside a species profile can be laborious, but the advantage is that projection from the CEMPRA tool will ultimately account for habitat quality and habitat availability.</p>
<p>If the locations carrying capacity table is provided, the population projections will implement density-dependent growth constraints for species-specific life stages according to the stage-specific carrying capacities (with Beverton-Holt constraint on growth), and intrinsic density-independent survivorship estimates. The steel head spawners figure shows an example simulation for Steelhead from the CEMPRA tool with adult spawning on the y-axis and a stage-1 (parr) carrying capacity constraint set to 160,000 individuals. In the Steelhead example, the only density-dependent constraint is the parr carrying capacity of the system (set to 160,000). The number of adult spawners is, therefore, a derived metric from the life cycle model. Implementing density-dependent constraints with <em>location and stage-specific carrying capacities</em> is different from the approach with <em>compensation ratios</em>, where users are required to first input an estimate of the adult carrying capacity and work backwards from there.</p>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-fig-steelhead-spawners" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="images/image047.png" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">Simulation of Steelhead Spawners with stage_1 capacity set to 160,000</figcaption>
</figure>
</div>
<div>
<p>Simulation of Steelhead Spawners (y-axis) with stage_1 (parr) capacity set to 160,000.</p>
</div>
<p><strong>Location and Stage-Specific Carrying Capacities Constraints in the Species Profile</strong></p>
<table class="table">
<colgroup>
<col style="width: 27%">
<col style="width: 72%">
</colgroup>
<thead>
<tr class="header">
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td></td>
<td></td>
</tr>
<tr class="even">
<td>bh_stage_1, bh_stage_2, bh_stage_3, bh_stage_4</td>
<td>The location and stage-specific carrying capacities constraints can be toggled on and off for each life stage with <code>bh_stage_X</code> input in the species profile. Setting the Value to 0 (or omitting the row) means that there will be no density-dependent constraint on a given life stage. Setting the Value to 1 will implement a Beverton-Holt style density-dependent constraint for the given life stage. If implemented, the <em>location and stage-specific carrying capacity</em> input data table must be supplied, and values must be populated for each location.</td>
</tr>
</tbody>
</table>
</section>
<section id="compensation-ratios-for-density-dependent-growth" class="level3" data-number="7.4.2">
<h3 data-number="7.4.2" class="anchored" data-anchor-id="compensation-ratios-for-density-dependent-growth"><span class="header-section-number">7.4.2</span> Compensation Ratios for Density-Dependent Growth</h3>
<p>It is possible to implement density-dependent constraints with both the compensation ratios and the location and stage-specific carrying capacities, but we recommend using only one mechanism for density-dependent growth to avoid confusion.</p>
<p>Compensation ratios (CR values) can be used in the CEMPRA life cycle model to parameterize and control density-dependent growth. Compensation ratios (described below) are a reparameterization of the classical Beverton-Holt function for density-dependent growth.</p>
<p>Compensation Ratios (CR) adjust the survivorship of each life stage based on the observed densities (abundance, N i,t) and stage-specific carrying capacities (Ki):</p>
<section id="compensation-ratio-cr-for-life-stage-i" class="level4" data-number="7.4.2.1">
<h4 data-number="7.4.2.1" class="anchored" data-anchor-id="compensation-ratio-cr-for-life-stage-i"><span class="header-section-number">7.4.2.1</span> Compensation Ratio CR for life stage i:</h4>
<p>The compensation ratio for life stage i adjusts the survivorship of each life stage based on the observed densities (abundance, Ni,t) and stage-specific carrying capacities (Ki):</p>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-fig-compensation-ratio" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="images/image048.png" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">Compensation Ratio CR for life stage i</figcaption>
</figure>
</div>
<p>In the CR equation above, Si,0 is the baseline survivorship (surv_X) under density-independent growth conditions; wi is the compensation ratio (CR value) of life stage i; Ni,t is the current number of individuals in life stage i in a given time step (t); and Ki is the carrying capacity of life stage i. The compensation ratios, in essence, modify the survivorship of each life stage based on how far the stage-specific abundance (Ni,t) has departed from its assumed carrying capacity (Ki).</p>
<p>A plot of compensation ratios is provided below to illustrate their effects on stage-specific survivorship transitions. In this example, abundance values of a hypothetical stage class (i) are plotted along the x-axis with a carrying capacity (Ki) set to 100 individuals (blue vertical line). The hypothetical stage class (i) has a baseline survivorship (productivity) value of 0.8 in the absence of density-dependent growth conditions (horizontal red line). The y-axis on the plot shows how the default survivorship value of 0.8 is modified based on the stage-specific compensation ratio for stage class (CRi). The survivorship value for the stage class is suppressed as the abundance values exceed the carrying capacity K. The effects are amplified as compensation ratios are increased. Compensation ratios of 1.0 leave the vital rate unmodified. Compensation ratios less than 1.0 increase survivorship values (allowing for a potential positive effect of density). When the abundance of the age class is less than the carrying capacity, baseline survivorship values can actually increase. However, within the model code, adjusted survivorship values are fixed so that they never exceed 1.0 for any stage transition.</p>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-fig-compensation-ratios-effect" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="images/image049.jpg" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">Influence of compensation ratios on stage-specific survivorship</figcaption>
</figure>
</div>
<div>
<p>Influence of compensation ratios on stage-specific survivorship.</p>
</div>
</section>
<section id="stage-specific-carrying-capacity-estimates" class="level4" data-number="7.4.2.2">
<h4 data-number="7.4.2.2" class="anchored" data-anchor-id="stage-specific-carrying-capacity-estimates"><span class="header-section-number">7.4.2.2</span> Stage-Specific Carrying Capacity Estimates:</h4>
<p>When using compensation ratios, it is only possible to modify the carrying capacity for the adult age class via the K parameter in the life cycle profile. The K values for other age classes are derived from the stable-stage distribution of the underlying transition matrix. This means that users who implement density-dependent growth via compensation ratios can only modify stage-specific abundance relative to the stable stage distribution. If you know (or can estimate) critical location-specific and stage-specific capacities (e.g., maximum stage_1 parr at location X), then refer to Section 8.4.1 to implement density-dependent growth constraints with location and stage-specific carrying capacities.</p>
<p>Stage-specific capacities (K) with compensation ratios:</p>
<ul>
<li>K (Stage-0, eggs): Calculated as the product of the number of individuals in all mature age classes, multiplied by maturation probabilities for each class, the number of spawning events, eggs per female, sex ratio and spawning interval.</li>
<li>K (Stage-0, fry): K values for young-of-the-year (fry/Age-0) individuals are calculated as the product of K (Stage-0, eggs) * the egg survival (SE).</li>
<li>K (Stage-1): Calculated from the stable-stage distribution of the transition matrix (B) after setting the adult stage (Stage-4) to K (e.g., 100).</li>
<li>K (Stage-2): Calculated from the stable-stage distribution of the transition matrix (B) after setting the adult stage (Stage-4) to K (e.g., 100).</li>
<li>K (Stage-3): Calculated from the stable-stage distribution of the transition matrix (B) after setting the adult stage (Stage-4) to K (e.g., 100).</li>
<li>K (Stage-4): Manually input by the user for the population of interest. This assumes that stage-4 is the only mature age class.</li>
</ul>
<p>Stable-stage distribution (portions) under the example species profile <a href="#fig-figure27">Figure <span class="quarto-unresolved-ref">fig-figure27</span></a>:</p>
</section>
<section id="stable-stage-distributions-as-a-fraction-0---1-stage-specific-carrying-capacities-k" class="level4" data-number="7.4.2.3">
<h4 data-number="7.4.2.3" class="anchored" data-anchor-id="stable-stage-distributions-as-a-fraction-0---1-stage-specific-carrying-capacities-k"><span class="header-section-number">7.4.2.3</span> Stable Stage Distributions (as a fraction 0 - 1) & Stage-specific Carrying Capacities (K):</h4>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-fig-stable-stage-distributions" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="images/image050.png" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">Stable Stage Distributions and Stage-specific Carrying Capacities</figcaption>
</figure>
</div>
</section>
<section id="density-dependence-matrix-d" class="level4" data-number="7.4.2.4">
<h4 data-number="7.4.2.4" class="anchored" data-anchor-id="density-dependence-matrix-d"><span class="header-section-number">7.4.2.4</span> Density-Dependence Matrix (D):</h4>
<p>Based on the derived stage-specific carrying capacities (K values), baseline survivorship values (SE, S0, surv_1, …) and the corresponding compensation ratios (cr_E, cr_0, cr_1, …), a density-dependence matrix (D) for a hypothetical population vector of eggs: 10,000,000, fry: 1,000,000; stage 1: 100,000, stage 2: 10,000, stage 3: 1,000 & stage 4: 100 will appear as follows:</p>
<p>The density-dependence matrix (D) contains vital rate modifiers for the estimated survivorship values at each stage transition. The density-dependence matrix (D) is multiplied with the corresponding transition matrix (B, Table 2) of density-independent transition probabilities. The finalized projection matrix (A) is the product of the density-dependent matrix (D), and the transition matrix (B) [A is a product of B*D = A]. The density-dependent matrix changes with each time step based on the number of individuals. The projection matrix (A) is, therefore, recalculated for each time step.</p>
<p>Compensation ratios are widely used as parameters in stock-recruitment functions, although they are admittedly less popular in classical matrix life cycle modeling. Steepness (the proportion of recruitment produced when stock size is reduced to 20% of initial biomass) is sometimes used in place of compensation ratios. Numerous other methods exist to introduce density dependence into stage-structured life cycle models. The compensation ratios are available as a default option for the CEMPRA tool to represent a versatile mechanism for applications to a large number of hypothetical species profiles. If location and stage-specific carrying capacities can be estimated, we recommend users set all compensation ratios to 1.0 for each stage class (therefore omitting compensation ratios) and refer to Section 8.4.1 for classical density-dependent growth with Beverton-Holt functions. For additional background, please review the following references to learn more about compensation ratios and life cycle modeling with density-dependent growth.</p>
<p><strong>Compensation Ratios in the Species Profile</strong></p>
<table class="table">
<colgroup>
<col style="width: 27%">
<col style="width: 72%">
</colgroup>
<thead>
<tr class="header">
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td></td>
<td></td>
</tr>
<tr class="even">
<td>cr_E, cr_0, cr_1, cr_2, cr_3, cr_4</td>
<td>The compensation ratios for egg (cr_E), Age-0 fry (cr_0) and subsequent stage classes (cr_1 to cr_4) can be set. If the Nstage value is different than four, then add or remove rows accordingly. Compensation ratios can be set to 1.0 to omit the use of compensation ratios to govern density-dependent growth.</td>
</tr>
</tbody>
</table>
</section>
<section id="useful-references-to-understand-compensation-ratios" class="level4" data-number="7.4.2.5">
<h4 data-number="7.4.2.5" class="anchored" data-anchor-id="useful-references-to-understand-compensation-ratios"><span class="header-section-number">7.4.2.5</span> Useful references to understand Compensation Ratios:</h4>
<p>To further understand compensation ratios and their application in life cycle modeling, the following references are recommended:</p>
<ul>
<li>Goodyear, C. P. (1980). Compensation in fish populations. Biological monitoring of fish, 253-280.</li>
<li>Myers, R. A. (2001). Stock and recruitment: generalizations about maximum reproductive rate, density dependence, and variability using meta-analytic approaches. ICES Journal of Marine Science, 58(5), 937-951.</li>
<li>Rose, K. A., Cowan Jr, J. H., Winemiller, K. O., Myers, R. A., & Hilborn, R. (2001). Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish and Fisheries, 2(4), 293-327.</li>
<li>Myers, R. A., Bowen, K. G., & Barrowman, N. J. (1999). Maximum reproductive rate of fish at low population sizes. Canadian Journal of Fisheries and Aquatic Sciences, 56(12), 2404-2419.</li>
<li>Walters, C. J., & Martell, S. J. (2004). Fisheries ecology and management. Princeton University Press.</li>
<li>Forrest, R. E., McAllister, M. K., Dorn, M. W., Martell, S. J., & Stanley, R. D. (2010). Hierarchical Bayesian estimation of recruitment parameters and reference points for Pacific rockfishes (Sebastes spp.) under alternative assumptions about the stock–recruit function. Canadian Journal of Fisheries and Aquatic Sciences, 67(10), 1611-1634.</li>
</ul>
</section>
</section>
</section>
<section id="stochastic-simulations" class="level2" data-number="7.5">
<h2 data-number="7.5" class="anchored" data-anchor-id="stochastic-simulations"><span class="header-section-number">7.5</span> Stochastic Simulations</h2>
<p>Several additional parameters are available to influence the stochasticity (variability) of the population projections. Implementing these parameters is useful for understanding the viability of the population and (over many simulations) estimating the number of batch replicates that fall below a given critical threshold (e.g., X adults).</p>
<section id="eps_sd-standard-deviation-in-eggs-per-spawner" class="level3" data-number="7.5.1">
<h3 data-number="7.5.1" class="anchored" data-anchor-id="eps_sd-standard-deviation-in-eggs-per-spawner"><span class="header-section-number">7.5.1</span> eps_sd: Standard Deviation in Eggs-per-Spawner</h3>
<table class="table">
<colgroup>
<col style="width: 26%">
<col style="width: 73%">
</colgroup>
<thead>
<tr class="header">
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>eps_sd</code></td>
<td>The Standard Deviation in Eggs-per-Spawner controls the variability in fecundity across simulation years and batch replicates. The example below shows a sample projection with <code>eps_sd</code> set to 250 and 750. In the example with <code>eps_sd</code> set to 750, there are several years with very high fecundity. Density-dependent constraints (if implemented) may attenuate the apparent effect of high <code>eps_sd</code> inputs.</td>
</tr>
</tbody>
</table>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-fig-eps-sd" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="images/image051.png" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">eps_sd Standard Deviation in Eggs-per-Spawner</figcaption>
</figure>
</div>
<div>
<p>eps_sd Standard Deviation in Eggs-per-Spawner</p>
</div>
</section>
<section id="egg_rho-correlation-in-egg-fecundity-through-time" class="level3" data-number="7.5.2">
<h3 data-number="7.5.2" class="anchored" data-anchor-id="egg_rho-correlation-in-egg-fecundity-through-time"><span class="header-section-number">7.5.2</span> egg_rho: Correlation in Egg Fecundity Through Time</h3>
<table class="table">
<colgroup>
<col style="width: 26%">
<col style="width: 73%">
</colgroup>
<thead>
<tr class="header">
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>egg_rho</code></td>
<td>In natural populations, there will be good years and bad years. It’s assumed that good years will be good for large adults and small adults. If multiple mature stage classes contribute to spawning (fecundity) (i.e., maturity values are greater than 0), it is assumed that fecundity will be correlated between good and bad years across stage classes (i.e., stage_5, stage_6 & stage_7). <code>egg_rho</code> controls the degree of correlation in interannual fecundity between stage classes. See the following figure for an illustrative example. If <code>egg_rho</code> is low, and multiple stage classes contribute to spawning, then some stage classes may compensate for good/bad years. Conversely, if <code>egg_rho</code> is high, then the population may be highly volatile as all cohorts experience good/bad years simultaneously.</td>
</tr>
</tbody>
</table>
<div id="07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-07_life_cycle_model-fig-egg-rho" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="images/image052.png" class="img-fluid figure-img"></p>
<figcaption class="figure-caption">egg_rho: correlation in egg fecundity through time</figcaption>
</figure>
</div>
<div>
<p>egg_rho: correlation in egg fecundity through time</p>
</div>
</section>
<section id="m.cv-coefficient-of-variation-cv-in-interannual-stage-specific-mortality" class="level3" data-number="7.5.3">
<h3 data-number="7.5.3" class="anchored" data-anchor-id="m.cv-coefficient-of-variation-cv-in-interannual-stage-specific-mortality"><span class="header-section-number">7.5.3</span> M.cv: Coefficient of Variation (CV) in Interannual Stage-Specific Mortality</h3>
<table class="table">
<colgroup>
<col style="width: 26%">
<col style="width: 73%">
</colgroup>
<thead>
<tr class="header">
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>M.cv</code></td>
<td>The Coefficient of Variation (CV) in stage-specific mortality (<code>M.cv</code>) is based on a beta distribution. This parameter allows for the modeling of variability in mortality rates across different life stages, contributing to a more dynamic and realistic simulation of population dynamics.</td>
</tr>
</tbody>
</table>
</section>
<section id="m.rho-correlation-in-stage-class-mortality-through-time" class="level3" data-number="7.5.4">
<h3 data-number="7.5.4" class="anchored" data-anchor-id="m.rho-correlation-in-stage-class-mortality-through-time"><span class="header-section-number">7.5.4</span> M.rho: Correlation in Stage-Class Mortality Through Time</h3>
<table class="table">
<colgroup>
<col style="width: 26%">
<col style="width: 73%">
</colgroup>
<thead>
<tr class="header">
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>M.rho</code></td>
<td><code>M.rho</code>, the correlation in mortality through time, plays a critical role in modeling the variability of survivorship across life stages. In natural populations, the occurrence of good and bad years is often correlated across all stage classes, excluding eggs (<code>SE</code>). <code>M.rho</code> determines the degree of this correlation. A low <code>M.rho</code> value suggests that certain stage classes may compensate for good/bad years based on random sampling of survivorship, while a high <code>M.rho</code> implies that all cohorts may experience good/bad years simultaneously, leading to higher volatility in population dynamics.</td>
</tr>