forked from IntelRealSense/librealsense
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdepth_auto_calibration_example.py
285 lines (231 loc) · 9.58 KB
/
depth_auto_calibration_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
## License: Apache 2.0. See LICENSE file in root directory.
## Copyright(c) 2021 Intel Corporation. All Rights Reserved.
#####################################################
## auto calibration ##
#####################################################
import argparse
import json
import sys
import time
import pyrealsense2 as rs
__desc__ = """
This script demonstrates usage of Self-Calibration (UCAL) APIs
"""
# mappings
occ_speed_map = {
'very_fast': 0,
'fast': 1,
'medium': 2,
'slow': 3,
'wall': 4,
}
tare_accuracy_map = {
'very_high': 0,
'high': 1,
'medium': 2,
'low': 3,
}
scan_map = {
'intrinsic': 0,
'extrinsic': 1,
}
fl_adjust_map = {
'right_only': 0,
'both_sides': 1
}
ctx = rs.context()
def main(arguments=None):
args = parse_arguments(arguments)
try:
device = ctx.query_devices()[0]
except IndexError:
print('Device is not connected')
sys.exit(1)
# Verify Preconditions:
# 1. The script is applicable for D400-series devices only
cam_name = device.get_info(rs.camera_info.name) if device.supports(rs.camera_info.name) else "Unrecognized camera"
if device.supports(rs.camera_info.product_line):
device_product_line = str(device.get_info(rs.camera_info.product_line))
if device_product_line != 'D400':
print(f'The example is intended for RealSense D400 Depth cameras, and is not', end =" ")
print(f'applicable with {cam_name}')
sys.exit(1)
# 2. The routine assumes USB3 connection type
# In case of USB2 connection, the streaming profiles should be readjusted
if device.supports(rs.camera_info.usb_type_descriptor):
usb_type = device.get_info(rs.camera_info.usb_type_descriptor)
if not usb_type.startswith('3.'):
print('The script is designed to run with USB3 connection type.')
print('In order to enable it with USB2.1 mode the fps rates for the Focal Length and Ground Truth calculation stages should be re-adjusted')
sys.exit(1)
# prepare device
depth_sensor = device.first_depth_sensor()
depth_sensor.set_option(rs.option.emitter_enabled, 0)
if depth_sensor.supports(rs.option.thermal_compensation):
depth_sensor.set_option(rs.option.thermal_compensation, 0)
if args.exposure == 'auto':
depth_sensor.set_option(rs.option.enable_auto_exposure, 1)
else:
depth_sensor.set_option(rs.option.enable_auto_exposure, 0)
depth_sensor.set_option(rs.option.exposure, int(args.exposure))
print("Starting UCAL...")
try:
# The recomended sequence of procedures: On-Chip -> Focal Length -> Tare Calibration
run_on_chip_calibration(args.onchip_speed, args.onchip_scan)
run_focal_length_calibration((args.target_width, args.target_height), args.focal_adjustment)
run_tare_calibration(args.tare_accuracy, args.tare_scan, args.tare_gt, (args.target_width, args.target_height))
finally:
if depth_sensor.supports(rs.option.thermal_compensation):
depth_sensor.set_option(rs.option.thermal_compensation, 1)
print("UCAL finished successfully")
def progress_callback(progress):
print(f'\rProgress {progress}% ... ', end ="\r")
def run_on_chip_calibration(speed, scan):
data = {
'calib type': 0,
'speed': occ_speed_map[speed],
'scan parameter': scan_map[scan],
'white_wall_mode': 1 if speed == 'wall' else 0,
}
args = json.dumps(data)
cfg = rs.config()
cfg.enable_stream(rs.stream.depth, 256, 144, rs.format.z16, 90)
pipe = rs.pipeline(ctx)
pp = pipe.start(cfg)
dev = pp.get_device()
try:
print('Starting On-Chip calibration...')
print(f'\tSpeed:\t{speed}')
print(f'\tScan:\t{scan}')
adev = dev.as_auto_calibrated_device()
table, health = adev.run_on_chip_calibration(args, progress_callback, 30000)
print('On-Chip calibration finished')
print(f'\tHealth: {health}')
adev.set_calibration_table(table)
adev.write_calibration()
finally:
pipe.stop()
def run_focal_length_calibration(target_size, adjust_side):
number_of_images = 25
timeout_s = 30
cfg = rs.config()
cfg.enable_stream(rs.stream.infrared, 1, 1280, 720, rs.format.y8, 30)
cfg.enable_stream(rs.stream.infrared, 2, 1280, 720, rs.format.y8, 30)
lq = rs.frame_queue(capacity=number_of_images, keep_frames=True)
rq = rs.frame_queue(capacity=number_of_images, keep_frames=True)
counter = 0
flags = [False, False]
def cb(frame):
nonlocal counter, flags
if counter > number_of_images:
return
for f in frame.as_frameset():
p = f.get_profile()
if p.stream_index() == 1:
lq.enqueue(f)
flags[0] = True
if p.stream_index() == 2:
rq.enqueue(f)
flags[1] = True
if all(flags):
counter += 1
flags = [False, False]
pipe = rs.pipeline(ctx)
pp = pipe.start(cfg, cb)
dev = pp.get_device()
try:
print('Starting Focal-Length calibration...')
print(f'\tTarget Size:\t{target_size}')
print(f'\tSide Adjustment:\t{adjust_side}')
stime = time.time()
while counter < number_of_images:
time.sleep(0.5)
if timeout_s < (time.time() - stime):
raise RuntimeError(f"Failed to capture {number_of_images} frames in {timeout_s} seconds, got only {counter} frames")
adev = dev.as_auto_calibrated_device()
table, ratio, angle = adev.run_focal_length_calibration(lq, rq, target_size[0], target_size[1],
fl_adjust_map[adjust_side],progress_callback)
print('Focal-Length calibration finished')
print(f'\tRatio:\t{ratio}')
print(f'\tAngle:\t{angle}')
adev.set_calibration_table(table)
adev.write_calibration()
finally:
pipe.stop()
def run_tare_calibration(accuracy, scan, gt, target_size):
data = {'scan parameter': scan_map[scan],
'accuracy': tare_accuracy_map[accuracy],
}
args = json.dumps(data)
print('Starting Tare calibration...')
if gt == 'auto':
target_z = calculate_target_z(target_size)
else:
target_z = float(gt)
cfg = rs.config()
cfg.enable_stream(rs.stream.depth, 256, 144, rs.format.z16, 90)
pipe = rs.pipeline(ctx)
pp = pipe.start(cfg)
dev = pp.get_device()
try:
print(f'\tGround Truth:\t{target_z}')
print(f'\tAccuracy:\t{accuracy}')
print(f'\tScan:\t{scan}')
adev = dev.as_auto_calibrated_device()
table = adev.run_tare_calibration(target_z, args, progress_callback, 30000)
print('Tare calibration finished')
adev.set_calibration_table(table)
adev.write_calibration()
finally:
pipe.stop()
def calculate_target_z(target_size):
number_of_images = 50 # The required number of frames is 10+
timeout_s = 30
cfg = rs.config()
cfg.enable_stream(rs.stream.infrared, 1, 1280, 720, rs.format.y8, 30)
q = rs.frame_queue(capacity=number_of_images, keep_frames=True)
# Frame queues q2, q3 should be left empty. Provision for future enhancements.
q2 = rs.frame_queue(capacity=number_of_images, keep_frames=True)
q3 = rs.frame_queue(capacity=number_of_images, keep_frames=True)
counter = 0
def cb(frame):
nonlocal counter
if counter > number_of_images:
return
for f in frame.as_frameset():
q.enqueue(f)
counter += 1
pipe = rs.pipeline(ctx)
pp = pipe.start(cfg, cb)
dev = pp.get_device()
try:
stime = time.time()
while counter < number_of_images:
time.sleep(0.5)
if timeout_s < (time.time() - stime):
raise RuntimeError(f"Failed to capture {number_of_images} frames in {timeout_s} seconds, got only {counter} frames")
adev = dev.as_auto_calibrated_device()
print('Calculating distance to target...')
print(f'\tTarget Size:\t{target_size}')
target_z = adev.calculate_target_z(q, q2, q3, target_size[0], target_size[1])
print(f'Calculated distance to target is {target_z}')
finally:
pipe.stop()
return target_z
def parse_arguments(args):
parser = argparse.ArgumentParser(description=__desc__)
parser.add_argument('--exposure', default='auto', help="Exposure value or 'auto' to use auto exposure")
parser.add_argument('--target-width', default=175, type=int, help='The target width')
parser.add_argument('--target-height', default=100, type=int, help='The target height')
parser.add_argument('--onchip-speed', default='medium', choices=occ_speed_map.keys(), help='On-Chip speed')
parser.add_argument('--onchip-scan', choices=scan_map.keys(), default='intrinsic', help='On-Chip scan')
parser.add_argument('--focal-adjustment', choices=fl_adjust_map.keys(), default='right_only',
help='Focal-Length adjustment')
parser.add_argument('--tare-gt', default='auto',
help="Target ground truth, set 'auto' to calculate using target size"
"or the distance to target in mm to use a custom value")
parser.add_argument('--tare-accuracy', choices=tare_accuracy_map.keys(), default='medium', help='Tare accuracy')
parser.add_argument('--tare-scan', choices=scan_map.keys(), default='intrinsic', help='Tare scan')
return parser.parse_args(args)
if __name__ == '__main__':
main()