forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinitial_basis.cc
441 lines (396 loc) · 16.5 KB
/
initial_basis.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/glop/initial_basis.h"
#include <queue>
#include "ortools/glop/markowitz.h"
#include "ortools/lp_data/lp_utils.h"
namespace operations_research {
namespace glop {
InitialBasis::InitialBasis(const CompactSparseMatrix& compact_matrix,
const DenseRow& objective,
const DenseRow& lower_bound,
const DenseRow& upper_bound,
const VariableTypeRow& variable_type)
: max_scaled_abs_cost_(0.0),
bixby_column_comparator_(*this),
triangular_column_comparator_(*this),
compact_matrix_(compact_matrix),
objective_(objective),
lower_bound_(lower_bound),
upper_bound_(upper_bound),
variable_type_(variable_type) {}
void InitialBasis::CompleteBixbyBasis(ColIndex num_cols,
RowToColMapping* basis) {
// Initialize can_be_replaced ('I' in Bixby's paper) and has_zero_coefficient
// ('r' in Bixby's paper).
const RowIndex num_rows = compact_matrix_.num_rows();
DenseBooleanColumn can_be_replaced(num_rows, false);
DenseBooleanColumn has_zero_coefficient(num_rows, false);
DCHECK_EQ(num_rows, basis->size());
basis->resize(num_rows, kInvalidCol);
for (RowIndex row(0); row < num_rows; ++row) {
if ((*basis)[row] == kInvalidCol) {
can_be_replaced[row] = true;
has_zero_coefficient[row] = true;
}
}
// This is 'v' in Bixby's paper.
DenseColumn scaled_diagonal_abs(compact_matrix_.num_rows(), kInfinity);
// Compute a list of candidate indices and sort them using the heuristic
// described in Bixby's paper.
std::vector<ColIndex> candidates;
ComputeCandidates(num_cols, &candidates);
// Loop over the candidate columns, and add them to the basis if the
// heuristics are satisfied.
for (int i = 0; i < candidates.size(); ++i) {
bool enter_basis = false;
const ColIndex candidate_col_index = candidates[i];
const auto& candidate_col = compact_matrix_.column(candidate_col_index);
// Bixby's heuristic only works with scaled columns. This should be the
// case by default since we only use this when the matrix is scaled, but
// it is not the case for our tests... The overhead for computing the
// infinity norm for each column should be minimal.
if (InfinityNorm(candidate_col) != 1.0) continue;
RowIndex candidate_row;
Fractional candidate_coeff = RestrictedInfinityNorm(
candidate_col, has_zero_coefficient, &candidate_row);
const Fractional kBixbyHighThreshold = 0.99;
if (candidate_coeff > kBixbyHighThreshold) {
enter_basis = true;
} else if (IsDominated(candidate_col, scaled_diagonal_abs)) {
candidate_coeff = RestrictedInfinityNorm(candidate_col, can_be_replaced,
&candidate_row);
if (candidate_coeff != 0.0) {
enter_basis = true;
}
}
if (enter_basis) {
can_be_replaced[candidate_row] = false;
SetSupportToFalse(candidate_col, &has_zero_coefficient);
const Fractional kBixbyLowThreshold = 0.01;
scaled_diagonal_abs[candidate_row] =
kBixbyLowThreshold * std::abs(candidate_coeff);
(*basis)[candidate_row] = candidate_col_index;
}
}
}
void InitialBasis::GetPrimalMarosBasis(ColIndex num_cols,
RowToColMapping* basis) {
return GetMarosBasis<false>(num_cols, basis);
}
void InitialBasis::GetDualMarosBasis(ColIndex num_cols,
RowToColMapping* basis) {
return GetMarosBasis<true>(num_cols, basis);
}
void InitialBasis::CompleteTriangularPrimalBasis(ColIndex num_cols,
RowToColMapping* basis) {
return CompleteTriangularBasis<false>(num_cols, basis);
}
void InitialBasis::CompleteTriangularDualBasis(ColIndex num_cols,
RowToColMapping* basis) {
return CompleteTriangularBasis<true>(num_cols, basis);
}
template <bool only_allow_zero_cost_column>
void InitialBasis::CompleteTriangularBasis(ColIndex num_cols,
RowToColMapping* basis) {
// Initialize can_be_replaced.
const RowIndex num_rows = compact_matrix_.num_rows();
DenseBooleanColumn can_be_replaced(num_rows, false);
DCHECK_EQ(num_rows, basis->size());
basis->resize(num_rows, kInvalidCol);
for (RowIndex row(0); row < num_rows; ++row) {
if ((*basis)[row] == kInvalidCol) {
can_be_replaced[row] = true;
}
}
// Initialize the residual non-zero pattern for the rows that can be replaced.
MatrixNonZeroPattern residual_pattern;
residual_pattern.Reset(num_rows, num_cols);
for (ColIndex col(0); col < num_cols; ++col) {
if (only_allow_zero_cost_column && objective_[col] != 0.0) continue;
for (const SparseColumn::Entry e : compact_matrix_.column(col)) {
if (can_be_replaced[e.row()]) {
residual_pattern.AddEntry(e.row(), col);
}
}
}
// Initialize a priority queue of residual singleton columns.
// Also compute max_scaled_abs_cost_ for GetColumnPenalty().
std::vector<ColIndex> residual_singleton_column;
max_scaled_abs_cost_ = 0.0;
for (ColIndex col(0); col < num_cols; ++col) {
max_scaled_abs_cost_ =
std::max(max_scaled_abs_cost_, std::abs(objective_[col]));
if (residual_pattern.ColDegree(col) == 1) {
residual_singleton_column.push_back(col);
}
}
const Fractional kBixbyWeight = 1000.0;
max_scaled_abs_cost_ =
(max_scaled_abs_cost_ == 0.0) ? 1.0 : kBixbyWeight * max_scaled_abs_cost_;
std::priority_queue<ColIndex, std::vector<ColIndex>,
InitialBasis::TriangularColumnComparator>
queue(residual_singleton_column.begin(), residual_singleton_column.end(),
triangular_column_comparator_);
// Process the residual singleton columns by priority and add them to the
// basis if their "diagonal" coefficient is not too small.
while (!queue.empty()) {
const ColIndex candidate = queue.top();
queue.pop();
if (residual_pattern.ColDegree(candidate) != 1) continue;
// Find the position of the singleton and compute the infinity norm of
// the column (note that this is always 1.0 if the problem was scaled).
RowIndex row(kInvalidRow);
Fractional coeff = 0.0;
Fractional max_magnitude = 0.0;
for (const SparseColumn::Entry e : compact_matrix_.column(candidate)) {
max_magnitude = std::max(max_magnitude, std::abs(e.coefficient()));
if (can_be_replaced[e.row()]) {
row = e.row();
coeff = e.coefficient();
break;
}
}
const Fractional kStabilityThreshold = 0.01;
if (std::abs(coeff) < kStabilityThreshold * max_magnitude) continue;
DCHECK_NE(kInvalidRow, row);
// Use this candidate column in the basis.
(*basis)[row] = candidate;
can_be_replaced[row] = false;
residual_pattern.DeleteRowAndColumn(row, candidate);
for (const ColIndex col : residual_pattern.RowNonZero(row)) {
if (col == candidate) continue;
residual_pattern.DecreaseColDegree(col);
if (residual_pattern.ColDegree(col) == 1) {
queue.push(col);
}
}
}
}
int InitialBasis::GetMarosPriority(ColIndex col) const {
// Priority values for columns as defined in Maros's book.
switch (variable_type_[col]) {
case VariableType::UNCONSTRAINED:
return 3;
case VariableType::LOWER_BOUNDED:
return 2;
case VariableType::UPPER_BOUNDED:
return 2;
case VariableType::UPPER_AND_LOWER_BOUNDED:
return 1;
case VariableType::FIXED_VARIABLE:
return 0;
}
}
int InitialBasis::GetMarosPriority(RowIndex row) const {
// Priority values for rows are equal to
// 3 - row priority values as defined in Maros's book
ColIndex slack_index(RowToColIndex(row) + compact_matrix_.num_cols() -
RowToColIndex(compact_matrix_.num_rows()));
return GetMarosPriority(slack_index);
}
template <bool only_allow_zero_cost_column>
void InitialBasis::GetMarosBasis(ColIndex num_cols, RowToColMapping* basis) {
VLOG(1) << "Starting Maros crash procedure.";
// Initialize basis to the all-slack basis.
const RowIndex num_rows = compact_matrix_.num_rows();
const ColIndex first_slack = num_cols - RowToColIndex(num_rows);
DCHECK_EQ(num_rows, basis->size());
basis->resize(num_rows);
for (RowIndex row(0); row < num_rows; row++) {
(*basis)[row] = first_slack + RowToColIndex(row);
}
// Initialize the set of available rows and columns.
DenseBooleanRow available(num_cols, true);
for (ColIndex col(0); col < first_slack; ++col) {
if (variable_type_[col] == VariableType::FIXED_VARIABLE ||
(only_allow_zero_cost_column && objective_[col] != 0.0)) {
available[col] = false;
}
}
for (ColIndex col = first_slack; col < num_cols; ++col) {
if (variable_type_[col] == VariableType::UNCONSTRAINED) {
available[col] = false;
}
}
// Initialize the residual non-zero pattern for the active part of the matrix.
MatrixNonZeroPattern residual_pattern;
residual_pattern.Reset(num_rows, num_cols);
for (ColIndex col(0); col < first_slack; ++col) {
for (const SparseColumn::Entry e : compact_matrix_.column(col)) {
if (available[RowToColIndex(e.row())] && available[col]) {
residual_pattern.AddEntry(e.row(), col);
}
}
}
// Go over residual pattern and mark rows as unavailable.
for (RowIndex row(0); row < num_rows; row++) {
if (residual_pattern.RowDegree(row) == 0) {
available[RowToColIndex(row) + first_slack] = false;
}
}
for (;;) {
// Make row selection by the Row Priority Function (RPF) from Maros's
// book.
int max_row_priority_function = std::numeric_limits<int>::min();
RowIndex max_rpf_row = kInvalidRow;
for (RowIndex row(0); row < num_rows; row++) {
if (available[RowToColIndex(row) + first_slack]) {
const int rpf =
10 * (3 - GetMarosPriority(row)) - residual_pattern.RowDegree(row);
if (rpf > max_row_priority_function) {
max_row_priority_function = rpf;
max_rpf_row = row;
}
}
}
if (max_rpf_row == kInvalidRow) break;
// Trace row for nonzero entries and pick one with best Column Priority
// Function (cpf).
const Fractional kStabilityThreshold = 1e-3;
ColIndex max_cpf_col(kInvalidCol);
int max_col_priority_function(std::numeric_limits<int>::min());
Fractional pivot_absolute_value = 0.0;
for (const ColIndex col : residual_pattern.RowNonZero(max_rpf_row)) {
if (!available[col]) continue;
const int cpf =
10 * GetMarosPriority(col) - residual_pattern.ColDegree(col);
if (cpf > max_col_priority_function) {
// Make sure that the pivotal entry is not too small in magnitude.
Fractional max_magnitude = 0;
pivot_absolute_value = 0.0;
const auto& column_values = compact_matrix_.column(col);
for (const SparseColumn::Entry e : column_values) {
const Fractional absolute_value = std::fabs(e.coefficient());
if (e.row() == max_rpf_row) pivot_absolute_value = absolute_value;
max_magnitude = std::max(max_magnitude, absolute_value);
}
if (pivot_absolute_value >= kStabilityThreshold * max_magnitude) {
max_col_priority_function = cpf;
max_cpf_col = col;
}
}
}
if (max_cpf_col == kInvalidCol) {
available[RowToColIndex(max_rpf_row) + first_slack] = false;
continue;
}
// Ensure that the row leaving the basis has a lower priority than the
// column entering the basis. If the best column is not good enough mark
// row as unavailable and choose another one.
const int row_priority = GetMarosPriority(max_rpf_row);
const int column_priority = GetMarosPriority(max_cpf_col);
if (row_priority >= column_priority) {
available[RowToColIndex(max_rpf_row) + first_slack] = false;
continue;
}
// Use this candidate column in the basis. Update residual pattern and row
// counts list.
(*basis)[max_rpf_row] = max_cpf_col;
VLOG(2) << "Slack variable " << max_rpf_row << " replaced by column "
<< max_cpf_col
<< ". Pivot coefficient magnitude: " << pivot_absolute_value << ".";
available[max_cpf_col] = false;
available[first_slack + RowToColIndex(max_rpf_row)] = false;
// Maintain the invariant that all the still available columns will have
// zeros on the rows we already replaced. This ensures the lower-triangular
// nature (after permutation) of the returned basis.
residual_pattern.DeleteRowAndColumn(max_rpf_row, max_cpf_col);
for (const ColIndex col : residual_pattern.RowNonZero(max_rpf_row)) {
available[col] = false;
}
}
}
void InitialBasis::ComputeCandidates(ColIndex num_cols,
std::vector<ColIndex>* candidates) {
candidates->clear();
max_scaled_abs_cost_ = 0.0;
for (ColIndex col(0); col < num_cols; ++col) {
if (variable_type_[col] != VariableType::FIXED_VARIABLE &&
compact_matrix_.column(col).num_entries() > 0) {
candidates->push_back(col);
max_scaled_abs_cost_ =
std::max(max_scaled_abs_cost_, std::abs(objective_[col]));
}
}
const Fractional kBixbyWeight = 1000.0;
max_scaled_abs_cost_ =
(max_scaled_abs_cost_ == 0.0) ? 1.0 : kBixbyWeight * max_scaled_abs_cost_;
std::sort(candidates->begin(), candidates->end(), bixby_column_comparator_);
}
int InitialBasis::GetColumnCategory(ColIndex col) const {
// Only the relative position of the returned number is important, so we use
// 2 for the category C2 in Bixby's paper and so on.
switch (variable_type_[col]) {
case VariableType::UNCONSTRAINED:
return 2;
case VariableType::LOWER_BOUNDED:
return 3;
case VariableType::UPPER_BOUNDED:
return 3;
case VariableType::UPPER_AND_LOWER_BOUNDED:
return 4;
case VariableType::FIXED_VARIABLE:
return 5;
}
}
Fractional InitialBasis::GetColumnPenalty(ColIndex col) const {
const VariableType type = variable_type_[col];
Fractional penalty = 0.0;
if (type == VariableType::LOWER_BOUNDED) {
penalty = lower_bound_[col];
}
if (type == VariableType::UPPER_BOUNDED) {
penalty = -upper_bound_[col];
}
if (type == VariableType::UPPER_AND_LOWER_BOUNDED) {
penalty = lower_bound_[col] - upper_bound_[col];
}
return penalty + std::abs(objective_[col]) / max_scaled_abs_cost_;
}
bool InitialBasis::BixbyColumnComparator::operator()(ColIndex col_a,
ColIndex col_b) const {
if (col_a == col_b) return false;
const int category_a = initial_basis_.GetColumnCategory(col_a);
const int category_b = initial_basis_.GetColumnCategory(col_b);
if (category_a != category_b) {
return category_a < category_b;
} else {
return initial_basis_.GetColumnPenalty(col_a) <
initial_basis_.GetColumnPenalty(col_b);
}
}
bool InitialBasis::TriangularColumnComparator::operator()(
ColIndex col_a, ColIndex col_b) const {
if (col_a == col_b) return false;
const int category_a = initial_basis_.GetColumnCategory(col_a);
const int category_b = initial_basis_.GetColumnCategory(col_b);
if (category_a != category_b) {
return category_a > category_b;
}
// The nonzero is not in the original Bixby paper, but experiment shows it is
// important. It leads to sparser solves, but also sparser direction, which
// mean potentially less blocking variables on each pivot...
//
// TODO(user): Experiments more with this comparator or the
// BixbyColumnComparator.
if (initial_basis_.compact_matrix_.column(col_a).num_entries() !=
initial_basis_.compact_matrix_.column(col_b).num_entries()) {
return initial_basis_.compact_matrix_.column(col_a).num_entries() >
initial_basis_.compact_matrix_.column(col_b).num_entries();
}
return initial_basis_.GetColumnPenalty(col_a) >
initial_basis_.GetColumnPenalty(col_b);
}
} // namespace glop
} // namespace operations_research