forked from ronekko/deep_metric_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
138 lines (121 loc) · 4.69 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 27 12:47:00 2017
@author: sakurai
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import AffinityPropagation
from sklearn.metrics import f1_score
from sklearn.metrics import normalized_mutual_info_score
from sklearn.preprocessing import LabelEncoder
def ap_cluster_k(x, K, preference_init=-1.0, max_iter=30,
c=None, iter_finetune=10):
'''
Clustering of x by affinity propagation which the number of cluster is K.
args:
x (ndarray):
Data matrix.
K (int):
Target number of clusters.
max_iter (int):
Number of trials for bisection search.
c (ndarray, optional):
Class labels of x. If this parameter is specified, the function
try to find the better solution by random search.
iter_finetune (int):
Number of steps for the random search.
'''
# first, search rough lower bound of the preference
assert preference_init < 0, "preference_init must be negative."
p = float(preference_init) # preference parameter
p_upper = 0
for i in range(5):
ap = AffinityPropagation(preference=p).fit(y)
k_current = len(ap.cluster_centers_indices_)
if k_current > K:
p_upper = p
k_upper = k_current
p *= 10
else:
p_lower = p
k_lower = k_current
break
else:
raise RuntimeError("Can't find initial lower bound for preference."
" Try another value of p_initial.")
# search the preference by bisection method
for i in range(max_iter):
p = (p_lower + p_upper) / 2
ap = AffinityPropagation(preference=p).fit(y)
k_current = len(ap.cluster_centers_indices_)
print('K = {}, k_current = {}, p = {}'.format(K, k_current, p))
print('{}:{}, {}:{}, {}:{}'.format(k_lower, p_lower, k_current, p,
k_upper, p_upper))
# if the current k goes out of bounds then retry with perturbed p
while k_current < k_lower or k_current > k_upper:
print("retry")
p += np.random.uniform(p_lower, p_upper) / 10
ap = AffinityPropagation(preference=p).fit(y)
k_current = len(ap.cluster_centers_indices_)
print('K = {}, k_current = {}, p = {}'.format(K, k_current, p))
print('{}:{}, {}:{}, {}:{}'.format(k_lower, p_lower, k_current, p,
k_upper, p_upper))
if k_current < K:
p_lower = p
k_lower = k_current
elif k_current > K:
p_upper = p
k_upper = k_current
else:
break
else:
raise RuntimeError("Can't find a preference to form K clusters."
" Try another value of p_initial.")
if c is None:
return ap
# Search further better preference in terms of NMI score by random search
p_best = p
score_best = normalized_mutual_info_score(c, ap.predict(y))
print('initial score:', score_best)
print()
for i in range(iter_finetune):
p = np.random.normal(p_best, (p_upper - p_lower) / 2)
if p < p_lower or p > p_upper: # where p is rejected
print('reject')
continue
ap = AffinityPropagation(preference=p).fit(y)
k_current = len(ap.cluster_centers_indices_)
if k_current < K and p > p_lower:
p_lower = p
elif k_current > K and p < p_upper:
p_upper = p
else: # wgere k_current is K
score = normalized_mutual_info_score(c, ap.predict(y))
if score > score_best:
print("update p {} -> {}".format(p_best, p))
p_best = p
score_best = score
print('p: {}, {}, {}'.format(p_lower, p, p_upper))
print('score: {}'.format(score_best))
print()
return AffinityPropagation(preference=p_best).fit(y)
if __name__ == '__main__':
y_train = np.load('y_train.npy')
c_train = np.load('c_train.npy').ravel()
y_test = np.load('y_test.npy')
c_test = np.load('c_test.npy').ravel()
c_train = LabelEncoder().fit_transform(c_train)
c_test = LabelEncoder().fit_transform(c_test)
K = 40
# K = len(np.unique(c_train))
y = y_train[c_train.ravel() < K]
c = c_train[c_train < K]
# y = y_test[c_test.ravel() < K]
# c = c_test[c_test < K]
ap = ap_cluster_k(y, K, preference_init=-1.0, c=c, iter_finetune=30)
c_pred = ap.predict(y)
print(normalized_mutual_info_score(c, c_pred))
plt.plot(np.vstack((c_pred, c)).T)
plt.show()
# print f1_score(c, c_pred)