forked from ronekko/deep_metric_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_n_pair_mc.py
231 lines (198 loc) · 8.26 KB
/
main_n_pair_mc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# -*- coding: utf-8 -*-
"""
Created on Mon Jan 09 20:49:04 2017
@author: sakurai
"""
import os
import time
import copy
import numpy as np
import matplotlib.pyplot as plt
import six
import chainer
from chainer import cuda
import chainer.functions as F
from chainer import optimizers
from tqdm import tqdm
import colorama
from sklearn.model_selection import ParameterSampler
from functions.n_pair_mc_loss import n_pair_mc_loss
import common
from datasets import data_provider
from models.modified_googlenet import ModifiedGoogLeNet
from common import LogUniformDistribution
colorama.init()
def main(param_dict, save_distance_matrix=False):
script_filename = os.path.splitext(os.path.basename(__file__))[0]
device = 0
xp = chainer.cuda.cupy
config_parser = six.moves.configparser.ConfigParser()
config_parser.read('config')
log_dir_path = os.path.expanduser(config_parser.get('logs', 'dir_path'))
p = common.Logger(log_dir_path, **param_dict) # hyperparameters
##########################################################
# load database
##########################################################
streams = data_provider.get_streams(p.batch_size, dataset=p.dataset)
stream_train, stream_train_eval, stream_test = streams
iter_train = stream_train.get_epoch_iterator()
##########################################################
# construct the model
##########################################################
model = ModifiedGoogLeNet(p.out_dim, p.normalize_output)
if device >= 0:
model.to_gpu()
xp = model.xp
if p.optimizer == 'Adam':
optimizer = optimizers.Adam(p.learning_rate)
elif p.optimizer == 'RMSProp':
optimizer = optimizers.RMSprop(p.learning_rate)
else:
raise ValueError
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(p.l2_weight_decay))
logger = common.Logger(log_dir_path)
logger.soft_test_best = [0]
time_origin = time.time()
try:
for epoch in range(p.num_epochs):
time_begin = time.time()
epoch_losses = []
for i in tqdm(range(p.num_batches_per_epoch),
desc='# {}'.format(epoch)):
# the first half of a batch are the anchors and the latters
# are the positive examples corresponding to each anchor
x_data, c_data = next(iter_train)
if device >= 0:
x_data = cuda.to_gpu(x_data, device)
c_data = cuda.to_gpu(c_data, device)
y = model(x_data, train=True)
y_a, y_p = F.split_axis(y, 2, axis=0)
loss = n_pair_mc_loss(y_a, y_p, p.loss_l2_reg)
optimizer.zero_grads()
loss.backward()
optimizer.update()
epoch_losses.append(loss.data)
y = y_a = y_p = loss = None
loss_average = cuda.to_cpu(xp.array(
xp.hstack(epoch_losses).mean()))
# average accuracy and distance matrix for training data
D, soft, hard, retrieval = common.evaluate(
model, stream_train_eval.get_epoch_iterator(), p.distance_type,
return_distance_matrix=save_distance_matrix)
# average accuracy and distance matrix for testing data
D_test, soft_test, hard_test, retrieval_test = common.evaluate(
model, stream_test.get_epoch_iterator(), p.distance_type,
return_distance_matrix=save_distance_matrix)
time_end = time.time()
epoch_time = time_end - time_begin
total_time = time_end - time_origin
logger.epoch = epoch
logger.total_time = total_time
logger.loss_log.append(loss_average)
logger.train_log.append([soft[0], hard[0], retrieval[0]])
logger.test_log.append(
[soft_test[0], hard_test[0], retrieval_test[0]])
# retain the model if it scored the best test acc. ever
if soft_test[0] > logger.soft_test_best[0]:
logger.model_best = copy.deepcopy(model)
logger.optimizer_best = copy.deepcopy(optimizer)
logger.epoch_best = epoch
logger.D_best = D
logger.D_test_best = D_test
logger.soft_best = soft
logger.soft_test_best = soft_test
logger.hard_best = hard
logger.hard_test_best = hard_test
logger.retrieval_best = retrieval
logger.retrieval_test_best = retrieval_test
print("#", epoch)
print("time: {} ({})".format(epoch_time, total_time))
print("[train] loss:", loss_average)
print("[train] soft:", soft)
print("[train] hard:", hard)
print("[train] retr:", retrieval)
print("[test] soft:", soft_test)
print("[test] hard:", hard_test)
print("[test] retr:", retrieval_test)
print("[best] soft: {} (at # {})".format(logger.soft_test_best,
logger.epoch_best))
print(p)
# print norms of the weights
params = xp.hstack([xp.linalg.norm(param.data)
for param in model.params()]).tolist()
print("|W|", map(lambda param: float('%0.2f' % param), params))
print()
# Draw plots
if save_distance_matrix:
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
mat = plt.matshow(D, fignum=0, cmap=plt.cm.gray)
plt.colorbar(mat, fraction=0.045)
plt.subplot(1, 2, 2)
mat = plt.matshow(D_test, fignum=0, cmap=plt.cm.gray)
plt.colorbar(mat, fraction=0.045)
plt.tight_layout()
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.plot(logger.loss_log, label="tr-loss")
plt.grid()
plt.legend(loc='best')
plt.subplot(1, 2, 2)
plt.plot(logger.train_log)
plt.plot(logger.test_log)
plt.grid()
plt.legend(["tr-soft", "tr-hard", "tr-retr",
"te-soft", "te-hard", "te-retr"],
bbox_to_anchor=(1.4, 1))
plt.ylim([0.0, 1.0])
plt.xlim([0, p.num_epochs])
plt.tight_layout()
plt.show()
plt.draw()
loss = None
D = None
D_test = None
except KeyboardInterrupt:
pass
dir_name = "-".join([script_filename, time.strftime("%Y%m%d%H%M%S"),
str(logger.soft_test_best[0])])
logger.save(dir_name)
p.save(dir_name)
print("total epochs: {} ({} [s])".format(logger.epoch, logger.total_time))
print("best test score (at # {})".format(logger.epoch_best))
print("[test] soft:", logger.soft_test_best)
print("[test] hard:", logger.hard_test_best)
print("[test] retr:", logger.retrieval_test_best)
print(str(p).replace(', ', '\n'))
print()
if __name__ == '__main__':
random_state = None
num_runs = 10000
save_distance_matrix = False
param_distributions = dict(
learning_rate=LogUniformDistribution(low=1e-5, high=1e-4),
loss_l2_reg=LogUniformDistribution(low=1e-7, high=1e-1),
l2_weight_decay=LogUniformDistribution(low=1e-5, high=1e-2),
optimizer=['RMSProp', 'Adam'] # 'RMSPeop' or 'Adam'
)
static_params = dict(
num_epochs=20,
num_batches_per_epoch=500,
batch_size=120,
out_dim=64,
# learning_rate=7.10655234311e-05,
# loss_l2_reg=2.80690151536e-06, # L2-norm penalty for output vector
crop_size=224,
normalize_output=False,
# l2_weight_decay=0.00579416451873,
# optimizer='Adam', # 'Adam' or 'RMSPeop'
distance_type='euclidean', # 'euclidean' or 'cosine'
dataset='cars196' # 'cars196' or 'cub200_2011' or 'products'
)
sampler = ParameterSampler(param_distributions, num_runs, random_state)
for random_params in sampler:
params = {}
params.update(random_params)
params.update(static_params)
main(params, save_distance_matrix)