-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_test.py
62 lines (49 loc) · 1.8 KB
/
cnn_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# =========================================================================
# Smile detection CNN TEST
# Filename: cnn_test.py
# Name: Tran Minh Chien
# Date: 2019.12.22
# =========================================================================
# Importing all necessary libraries
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.models import load_model
img_width, img_height = 48, 48
import cv2
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
# Testing
model = load_model('model_c.h5')
input_img = cv2.imread('test/0.jpg')
# input_img = cv2.resize(input_img,(48,48))
pred = model.predict(input_img.reshape(1, 48, 48,3))
print(pred)
input_img = cv2.imread('test/1.jpg')
# input_img = cv2.resize(input_img,(48,48))
pred = model.predict(input_img.reshape(1, 48, 48,3))
print(pred)
input_img = cv2.imread('test/2.jpg')
# input_img = cv2.resize(input_img,(48,48))
pred = model.predict(input_img.reshape(1, 48, 48,3))
print(pred)
input_img = cv2.imread('test/3.jpg')
# input_img = cv2.resize(input_img,(48,48))
pred = model.predict(input_img.reshape(1, 48, 48,3))
print(pred)
input_img = cv2.imread('test/4.jpg')
# input_img = cv2.resize(input_img,(48,48))
pred = model.predict(input_img.reshape(1, 48, 48,3))
print(pred)
input_img = cv2.imread('test/5.jpg')
# input_img = cv2.resize(input_img,(48,48))
pred = model.predict(input_img.reshape(1, 48, 48,3))
print(pred)
input_img = cv2.imread('test/6.jpg')
# input_img = cv2.resize(input_img,(48,48))
pred = model.predict(input_img.reshape(1, 48, 48,3))
print(pred)