diff --git a/docs/javascript/RHINO3DM.JS.md b/docs/javascript/RHINO3DM.JS.md index 1ce9c1ab1..b8de23f56 100644 --- a/docs/javascript/RHINO3DM.JS.md +++ b/docs/javascript/RHINO3DM.JS.md @@ -23,7 +23,7 @@ The easiest way to get started is to reference a specific version of the library diff --git a/docs/javascript/api/assets/navigation.js b/docs/javascript/api/assets/navigation.js index 70b554eb8..42c1738e6 100644 --- a/docs/javascript/api/assets/navigation.js +++ b/docs/javascript/api/assets/navigation.js @@ -1 +1 @@ -window.navigationData = "data:application/octet-stream;base64,H4sIAAAAAAAAE5WaW2/cNhCF/4ufgwZtiqLIm6/ponG88CYxkKIPtMRdsaZIgaJsb4v895K6rChxOMM8GeY55xN1ITWk9q//zix/tWfvz84LK575rmEFP3tz1jBbuUauurp9G0g/VbaWTn8Sqjx7//v3N3NeKW2ZFVp9Pja8jRhLGeEYo18qzkoYs1DTlAvW8kYLZb9xo9eQhZhmXOq60Yoru1Elf/UHXINiB0bTphSKWb47tpbXMWupI6TOPPPrZya7/nruRBl3LLYQvDsj3Hn0bhAW6ARpKxqhDpesAW8gYEnzrnjB5C1rvDsiLUSCsTX6H174zsOYQEdIom2kGwO1uxC7F86be95q2fnUjTZ1J1kMpyPY8WzFjTu7W24rXQLwpZ4mXatnYbTyvbhgxdPB6E6VyDWh/OkjbVRrmSr4Fd8LJbz5S1O6ZxoaPZg3fYSP4lDZnT3KiDcrWFrxS2EKyTfKctMOJxSTIBdBPUrXzg3JBXw4ede420z2N3alqakhRY+mW95W0L2c2tPJu0f/9Fxqqc1OdyZ+y0QGiuVGrjbgjLXWKZK/ftb1HuvY0kMRb91zbASTGHHpIYk6nuZnhUpvpaav/cqUw3zg/aAjoKGLokJP16yk01vJcoZKwoZwdWuv9/vx+NGQWckIJz3dZs2s99zPGpcVU4rL1t/ziANY0rzhGtAXLOVLkz+7P50Bp/xAIvNfnl8ezDAhJTCBA6EZptq9e9nei4MowU5FjgzaTtRCMiPsEUUubWnuF/cChOvCWcmpvX1pOxMKV1+0PCy+vb7k/PzLsvougLgpiExf1YHBXiHSlXhmj5Jfif7BYuYIkiIXTh3XCRBqlLD8Bf9XuKEEn1Ygogxha9YA8b4dTfp6yz3VF/oViM8izgCzeMZwqL+ulUpdlwfoQo1KTvqjaG2a4FWKcrNYuoaEm2jlCqfTfZhUirLrzB4FBQaK9ZUb9x+MGbQ8Qrozs46RLllR8XKcc+dlahszU06Uzv1LpWbmCeCdNJTQV+pAum9Hk7qutRqqCyAfqAQl2AUAOYGOkxR0Hq6VSLXWdP202Jc3IGJpQXnwrEfOd8HSPpEeRJph9CvwDpg1lDCur4D8qGDpfjcgjvbNaE7U5+rg1vPAcWeNIPglRgIwSET+bhxvIGESCcY9KwV4BSaJyHPVLorIID9IWfnV+j6CAKv8NWneeIE4s4pTxh0WCDFKaN6wQvvhb3ibuCwrx4/Q7prVaiIFHY0Y+5oZW52rotJm63dGY+jagdLcG3un95Yr8NotZJQjpWiggnYU0Gz9yMuSlzcCepJCFaXMO2EAZBZRxqubeuHbf5KwvO/ju7KO06OQkR1Kzs++fk5iAk8GsZ8RceBsyeGJuh/UBDJ0ZVDD24yTI2cG/YPRHXFRZ0sGL94QxeEJf8aRPrIjNzh8tuTwxs0xAhm6MqjTBhlOXbhyqLytbnUp9m4NB0yekCuDmioiF3I2Bz/jwJNB3MrusFFXzLIkcLb8EA/v5cqXQ5730nDy0pdBvi+frnTR+ZkavRArXw552HPTbqGiiG7H1gz+jlu73KpfUSdDDqvq/Da2//TmS2m8t5A55xjWF0UEevZkEL8K/oLzTo4M2oMRlicrJ8BEMe/5nhuuoK2HhYxyNFRe+FYs9YHrmltzhPf8QhWlDB/34HVjIFIMYOOob8ZyfzBbVHGub8Zy8YsvhsSeHCJyNyMLzoN21GdUah99SenfwXG8b0ZznIEr4KEdTfoPNUDQN+M56PHxrVQqsdtwkqg8Mw/aPO2lfoEhs06R7GIjP2TYaO9+mZ5KkDg9KWjalRpA0rVSqfSeZahSlE/a1EymObNOkaKdvzQUtJJ83WipD8f0fjHkoqjDLmj/4TMNXZnymBQuh+TelFtmmJvLwXI1sqA8XXJ52o4EYAsdI33qzGObGLqzlkf4U2kLX6nYk0fsNygo5MlEMsc9+wRsVHMpxNmuXLlU6ozXNow7LC/OravSHjtwn3/twGjb6tiKgknZVyJleqpMGFE2XLWQ9crwI4DUXQ1VlAJvlJG7Y73hHfBlchQysvCdDkSScSl1l+pCr+URNosv1jFlE323BkgfjEh1xUt4Xh4T09BJovISrF0mJSeN9EDm1DHzghaCTBpGWP70I6Ys9QzSsEpNggaZ5qD7p5Hlh3jJsww9NDE9IS11mpReqi91mjQWRynQKOOc5+T8NmsowZUV2hUEHbTwDkSMsWN7fuMLk5hwktD8aQ8CAJy0PEJijK4MKOvJjWZweTQpaLr/BRWQ7dvRZPd4BeRcK54CFp6uEc8kHpmM52WqMOBvt6GKUfyjHad9K5W60omgE6gsONYyRtlouV3/Sm2FuIV+o7YiVaJ4SnwumzWUMP3kDABMEpb3m2gbtddxfFKodKONTRMmFaOUfM86GdzHfaeG30W+HaVl+rdfv//9P/hJHWjCMgAA" \ No newline at end of file +window.navigationData = "data:application/octet-stream;base64,H4sIAAAAAAAAE5WaW2/cNhCF/4ufgwZtiqLIm6/ponG88CYxkKIPtMRdsaZIgaJsb4v895K6rChxOMM8GeY551vqRg1n96//zix/tWfvz84LK575rmEFP3tz1jBbuUGuurp9G0g/VbaWTn8Sqjx7//v3N3NeKW2ZFVp9PjYxYqEiFGP0S8VZ6W1tRFmoacoFa3mjhbLfuNFryEJMMy513WjFld2okr9CxxQ7MJo2pVDM8t2xtbyOWUsdIXXmmV8/M9n1p3MnynhisYXg3RnhjqN3g7BAJ0hb0Qh1uGQNeAEBS5p3xQsmb1nj3RFpIRKMrdH/8MJPHsYEOkISbSPdE1C7E7F74by5562WnU/daFN3ksVwOoJ9nq24cUd3y22lSwC+1NOka/UsjFZ+FheseDoY3akSOSeUP/1JG9Vapgp+xfdCCW/+0pTunoaeHsyb/oSP4lDZnT3KiDcrWFrxS2EKyTfKctMOBxSTIBdBPUo3zg3JBXw4ede4y0zON3alqalHin6abnlbQddyGk8n7x793XOppTY73Zn4HRMZKJZ7crUBV6y1TpH8+bNu9tjElh6KeOvuYyOYxIhLD0nU8TI/K1R6KzV97lemHOYD7x86Ahq6KCp0d81KOr2VLOdRSdgQrm7t9X4/fn70yKxkhJNebrNW1nvuV43LiinFZeuvecQBLGnecA7oE5bypcmf3Z/OgEt+IJH5L88vD2ZYkBKYwIHQDFPt3r1s78VBlOCkIkcGbSdqIZkR9ogil7Y094t7AcJ14azkVN6+tJ0JhasvWh7W3l5fcn7+ZVl9F0DcFESmr+rAYK8Q6Uo8s0fJr0R/YzFzBEmRC6eO+wQINUpY/oL/K9yjBB9WIKIMYWvWAPF+HE36esvd1Rf6FYjPIs4As3jGcGi+bpRKXZcH6ESNSk76o2htmuBVinKz2LiGhJto3wqn03OYVIqy68weBQUGivWVG/cfjBm0PEJ6MrOOkS5ZUfFyXHPnbWobM1NOlM79S6Vm5gngnTSU0FfqQLofR5O6rrUaqgsgH6gEJegCgJxAx0kKOg43SqRaa7p+WezLGxCxtKA8eNUj17tga59IDyLNMPoVeAfMGkoY91dAflSwdN8NiKP9MJoT9bk6uP088LmzRhD8FiMBGCQifzc+byBhEgnGPSsFeAYmichz1S6KyCA/SFn51f4+ggC7/DVpbrxAnFnFKWOHBUKMEpo3rND+8Te8TZyWleNHaHfNajeRgo5GjH3NjK3OVVFps/Wd0Ri6dqA098be6b3lCjx3CxnlSCkaqKAdBTRbP/Ky5OWNgO6kUEUpcycMgMwiynh1Sy98+U8SlvdzfFfWcXoUMrJDyfnZ189JTODJIPYrIg6cLTk8UfcPNYEMXRnU8DLj5MiZQf9gdEec1NmSwYsbojg84c/4pI/syA0Ony05vLE5RiBDVwZ1apDh1IUrh8rb6laXYu/2cMDiCbkyqKkiciFnc/AjDjwZxK3sDht1xSxLAmfLD/HwWa58OeS5l4aTl74M8n35dKWLzq/U6IlY+XLIQ89Nu42KIqYdWzP4O27tslW/ok6GHFbV+Ta2/+rNl9L4bCFzzmdYXxQR6NmTQfwq+AvOOzkyaA9GWJ6snAATxbzne264gloPCxnlaKi88KNY6gPXNbfmCPf8QhWlDF/uwfvGQKQYQOOoH8ZyfzBbVHGuH8Zy8YsvhsSeHCJyNSMLzoM66jMq1UdfUvp3cBzvh9EcZ+AOeBhHk/6LGiDoh/EcdPv4USqV6DacJCrPzIM2T3upX2DIrFMku2jkhwwb9e6X6akEidOTgqZdqQEk3SiVSvcsQ5WifNKmZjLNmXWKFHX+0lDQSvJ1o6U+HNP9YshFUYcuaP/FZxq6MuUxKVwOyb0pt8wwt5aD5WpkQXm65PLUjgRgCx0jferMY5t4dGctj/Cn0hY+U7Enj9g3KCjkyUQyx559AjaquRTiaFeuXCp1xGsbxh22F+fWVWmPHdjnXzsw2rY6tqJgUvaVSJleKhNGlA1XLWS9MvwIIHVVQxWlwI0ysjvWG94B30yOQkYWvtKBSDIupe5SU+i1PMJm8Y11TNlE31sDpA9GpKbiJTwvj4ll6CRReQnWLpOSk0ZmIHPqmHlDC0EmDSMsf/oRU5Z6BmnYpSZBg0xz0P5pZPkhXvIoQw9NTC9IS50mpbfqS50mjcVRCjTKOOc5ub7NGkpwZYV2BUEHbbwDEWPs2J7f+MIkJpwkNH/qQQCAk5ZHSDyjKwPKenJPM7g9mhQ03f+CCsj242iye7wCcm4UTwEbTzeIZxK3TMb9MlUY8He3oYpR/K0dp/0olbrSiaATqCz4rGU8ZaPldv0rtRXiFvqN2opUieIp8XXZrKGE6SdnAGCSsLxvom3UXsfxSaHSjTY2TZhUjFLyPetkcB33nRp+F/l2lJbp3379/vf/lyHuGcAyAAA=" \ No newline at end of file diff --git a/docs/javascript/api/assets/search.js b/docs/javascript/api/assets/search.js index 78856ea95..113188a50 100644 --- a/docs/javascript/api/assets/search.js +++ b/docs/javascript/api/assets/search.js @@ -1 +1 @@ -window.searchData = "data:application/octet-stream;base64,H4sIAAAAAAAAE7S9W5PcOJIm+l8qX2cv0z1nbWzeslJSlc7okqNUVXX3PqxREchIjhhkDMlIKWvt/PdDMi7Exe+AniTLcOD7AAIOONzh+L8/9d234ad/+9//96evdbv96d/+9Z9+aqu9++nffrrdjPWzezhUG/fTP/107Jvpb6497of/4f3y35/GfTP9vGmqYXBTRT/99P/906Wuf/5f18o+dC1Xy81Zxqvqn346VL1rx4gNiPC+27pGwvYmkDSi3Vc7Udfc+IIaLO87tG03VmPdtZ9fDlPpCDD8Vfo9fmsHNwqqurkIItwjbiDWbVPvWreVoK2iOXjt7thUvQjvKpqB96qe/h2dCNCTzUD8VG3ro2Qk3Fwlc9BmEdn3W0Uz8D7227qdqpEAerI5I6bfvHOtaMBcJDPQ7iZZ17+v+q8SxEA6A/Wz+y6a8Ge5DKR3rtrKZsNVMn+2//Ugal0grUX1dHI/LZtPE3tQJQc/5qyQaUXMIhnSgjX/4Pqfm26TDD4AzJe1Iz50Tb393NdVu2skTYzl7civumRQAHgnKTvK51rUmWexjH586vpR04+RvB3548G1i5wA1Ze1I35ym1HaTl/Wjviua3eKzo3E83Bdr0QOCiixVy32czW4Q1e34z9c30XIwW9SHfZL3x3b7Tv37Bq2uptQGG5EyBDe97uqfXCVEDSSNqOeVuWPj6+rfnziYWNxHe76xe66/WFaANrxbbt13+cvG2GnAtJv97Z9rma9K67zJiwBNwkgDKL/3LvD764f3XcheFAgH/v1didttieej/smNSEp3DeUIanBndTHXoF7Fs/Hfdd1BwXuWTwP970bnlRjKyiQj/25O3RNt3tRc0gKluOiGO9AsXweinHviefjfth1sZ1H4Z7F83DftsO0P9m4V+6xbuvZsLiflgGxkkUK53G675qXzbF/dg9ut5+LytgAxXJ5TMvdXdMdt8v/xDTiUnks5q3I4b3bf0nMVoxBWCIP/fX3sT8O05f9uRvHbn/fd491shPEiKCFC3GaZr6RUFCyEJs/qqZRqC6oXEEmD8f+Ua7HkKKF+NxVByOdoGQhNvdVsitmeZzL5DF4OH7ZqtbZoEA+tmJweuL5uIr11BPPw31V79/Vrat6jepOCmVzmI+4q0bJISyUzeF8rKgkEZXKZnE5DFfSiItl85iPkJUc/CJ5+B86hQl7FTZg+lZ5d+7Ch5dhdKlhFf4stcj/6Pom9rqAdd1cJLFWRPTgE43pn74SwV1Fs/CaOrUEQbSTYA7Ww6Z3iX8HRruKqvG88TDvkF8/V81xcSM81NtkPKYS0lExGQLVsUmmFlLhzSqONAjgClvvrknOf1HUi3Am5u2X7lnadTcXYQtm9O0+9vVUahGE0L2f5f727WzAJV5UsL4bX5pojk8TmWPd5uu3egD7MEH1pbNQu+N82qkETwupOURf8b4+1O1u2t5CTjpAIsNTh9VGu+sgliDim6YCJzyEeJbNRPy5SzbQGOBJNBPvVbcX9+lZ1oL4r54a3VTN++owC8ZjI/gtY1Sk9dDjIeQEn5c0VZuEtgA4Vzkz0t1LM/2prydBHi4UNmM+HJ6cENEXNeP99jsPtMjoEKJRdt93/+k2s64CB5r3c+5Yi6sSDDefHKx7uv5b1cfrFgy3yuYg/lxNS4AU0hPOwuySAwsEryNOKQgsb0zUw6GZ7O/5/PThm3OHT27omuNcYOq//WQRJsOEL5G3e5QCsLtJSduQnd4i5z53zWRaLOfdBzftghIbUkyVrLEEe/+LjrMyanfv3fjUbdPPF/4s/VYP9f7QuA9duoUCa7wJ5bEmRlSR/Ub3sn0YXd1+cf1OBJ4UUeOv/fm6fa77rp0/wzy9d0ugAK5FOXFpf4Nrq6hybrllG6RaDWWU+AXSxur1vortdhmhc8GSXNJdqowKtWW1Mbk9jt1+skc2Jj5+6ZKs3tW7p3GS+hIrEBmtoHhJXnfHL+69cRitZUsyml0A82S567thyKGHVFSS669dX//ZTeZvPlu0qqJ83X5aWHN0WVxDNrt1rUn9678dttW0bUgPkSlR8Zo+AkqCrfjmWgxuOdkIRIt/cdttchzFM/EKluLyrm6/uu1tuzWTgmooy85IKZfHv4aq/GF8Sfzw6w8Z1mNUCW03elQIT8Kruj/Nu2TOx2CQfA4y5HqCMWmPkwzt4ZAEmcNgZ0Eb1uLhkXcpIJ6BK+nQQDADS9CdvpwN6Xb/pU5Nyxhnlcpoz8nZLWnRVTID7RwKD1x/AyFDcQWur5dad1f3m8a9nc/vh9OIS8AhoSx9hVbI6S6QLmJ/AxH5FPK1QD72+2Mz1gcVulfEiB991eVM1/XcdwXEcr8sVqXg20KklV8XRZd8XzE+9YVRBrJvLObw8dn1TWI60BTWMmYG4ThbDio47ZEKZY4xpEJ+hAF0deMLQxaMLik2MbYwdNHIIvHXr4q41Qp41BTONIMfTeVCs3rP9I4zm89M6y5TesrETjLSP7bcLUgt7cuf87waQS2s6+JKBbmP2KZ3mkOAq4il/ttpk/4y1MmUCRA8IQvGfe+eaxfH8IQQq4ytFS9MA140Na/j5OOX+RDnrmu6/qE79kmsa/K7dOQsRd703f5d9ZJ8X7jWm6QM3KCUM83gJK+kcC1UhsP7alLtdaJLOBZesTI87k8FdSyuhfQc4pH2ym26Hor/in/OWMvAqug1LSGHnTH24/X6rwg1KZKD/7rd6tCjAjnYs3teBx6XUKPHY2feKI2TIiMUVSgiHUOXUrS6Auq+gUpS7YyawLIhVBdHR6TAtHwI9cHxESkRlE88Fi6KkRgLoYh0LFxK0WMBqPsGKkm1NWoCy4YYCxwd0VjQ8iHGAsdHNBZQPslY6JIw8PUH+TrS75Hl+VrNzVWI5N1hUde/1tttEi0fY1yFbBjvuk3qVYkxrkI2jNTHQo3NKypRTMEj/vr3TcfuXyMZedzKuRitDKDab8CyVDPjdvCMiE7nKYm6Xs/pFOkVGytSUmvpsqwIVcWTEikrnBM0Xv9wy9k/PWB9Ic2IPZXjh2xS/w1cmmt20BgBK2bYcrTEA1fLixkkHC/xMEF4xeMEOL1Zf8i2jvybeqxdxGQZYABo36UI4SFJqQmCPBAJNTmc5XoDA3KRsSHAt8hjDO7GOIcyJ3dhIM4itvrn0ySm/rOIrf7FK8oAXGRsCGsaQgYmELRhpVseBhMskIf9yT26qQg78iB5G/J85zjNEBjjrVI2lF/65J5rDHEWsdX/yo1VDVsE/uH3WciG8Ws1brjpdJExzteuPzzdde3Yd1xbIlGrlvvyilVxi4hdvwG5riAdR+a44ted5mXoH9/UTZqAOF18Qlkb4pyyQgQXCNpb56R4ibB95QAziEDrB5M5RIIFZAyBkMhMIRIcIEMIhENmBmF3JxXblrOIcTw8Ve3YxfkVkoFwlTK2oqkPs/OXbYonZ5xLl9w33FTy5Ky7iRfCoAk8dCLLBfXULR3ChnQgUhn2AlUjbTxgjMWWBAlNmxUq7FPslgb8WsKK7n3XbhhfPz6eP33sp45+lX7H11XfxIcwUFU3F0GkHRE3eLc3jYFzLIIEMRTPwH1XJZnsQcCznBbJ+0LoBbkyN4x1l4uN94rVV4qtt4n1F4ktd4h114e5uyqnCJO7aXlrXTPMB87xlwYkpF8cu8GGVSm4tAbxRU41hnRZR4Gv0hbUtTdPio9dqjCxjJlEVklPK5S0eLWiwenlSocOrlc0PLNg6fDh6FaaABfdKmCwjrD56ODYQ1fJvF8yxlFcCz10fDaw/qrH9G5vgnGVMqK8qh8fj8mN9gRmFbO25rjn23KSMSJ87qt2WMQ38SYmQYpkjYgfD9WmHlmwVcyIA9zxTkDI69wswv3Pn/7PnO5+cUZxULFwBubD8csAHnCDoIF0EdSHTTWOSwIEHX5QrjAT8DUpMR/mhSkRq/durJom2XqAHDzZnH44uA1wSwpu9SpbAPFzuiSTqJ+pBVmE/Kk77p5aN4g+sS+cgXnb1kM39t1B9lFD8TK4/+cT7D/hCPjlcr73U5pyEv7QT1TCSTmWeGB5whmYd42r+k1XiTB94RKYqiENlspgcV5e38oWrkA6H1XVcqBMBoPX+3oADitBZE82ZzafbuB+3Gwa6JgUnslpmQwGfkooCXokX2KsSzayUAENdmKz/Pb87Y8ePC1LBaQWzCd3cJi6iKu7uQqTzfBpImf5FdZ7CeRF1oD4r6FR8Nj1+0/1DnxNKRUQ999c4JObLNQB+CxwtTdJIaR1KW3ECh0XCSG6J56HqwHNQAS+40O9r6dt2KRGqY8ZSkm/qJfGlv2uAMINUp5peNQi7DuvYhpKccECXLxW3vducP2zvZuCCqzc1lHyW1uPYM739YeM852oEvp4x6OCeAB3w7TB3ccbhxjEl7MhfajabnnkmIMKBG1Y7+tNnzo8YqBVyooyWZyiJoWSNrT5sUAZWihpQ3vlNjKwQNDYj6IuzG3P10rYHk/QhvWr24yyoR5K2tD+vW5kYIGg9UvtZL0YCNqwfqmFWIFghr6o281T4joDdcZV0qw3BArDXv9bSUPe5rXhjUuimmOEs4it/r9XfZIxNwa4yJi/guBrNxl9dN/Xsy9ocZ5xSLFsHmK9SbJFY4BnUeuaflzSWkr6MpY17lfmXci0P5hrmmXZfQsgb0Ne4rb/PhnTHGQgaPyO1exBZD/hVcq4o1g85pJeDCVtaL+1A6syLjIahL94kRBPddu977ZHz798rup/eL+Re+//55//cq1vM+0Ox/44rdE9W99NKIwEIXgEvSb8z7/8yzrAN2P97B4Ovi8KxQyF7ZjXuwJhFBeOmxSwY4cPkvPQsbwZGX7nHAWOxc24xGvdKDhYJoMB8jIZgZ+UsKNjbynh6GmJPHTkDSCaQFLIzAF+ZQZFj8XzcKGAQBo6LGFHV7xwgRMSVZLBEXmzgSCUlDCji184QNkIajCzE+XERpkxpc2sgAzIKIdANgORzG1KoCPl8phQ+ThpLnDJLDZE3CTJBSxnZiJXrSW0apKtDkdbJc1oab4qFhYqkokPZMJi4IMSmehILiWGQVIqkwWSxYdhkZTKZeHnj+GwT7KZiFjOEgY8LVaAB5iLQkAkKpfJRDb7A1kzIneTCoXHC9q5ILd/cA5JATu2ZltUaAdE3bRAseFCZg7s/QSUCFHSzAaKZUcJhMK5mFAsCgcdlrEzwKM5cAZQmXwGSBwCTyMpaOYCeLtR+EC2wHnVfCijOa46y2ecVm0EcD1x+UmEEeZzoYDorC4ytKf6ufrSuFf16VmQ/kWEDJXKPwVUHABmnf25P+tJKcu6ORS2Y4YXaXA4+iqNBGm2+icd5z+Eh8MFwhmYIqw8DD89EA5CZQgSogTpF0gkMgODAu1dPYxyxLN0FuobkYvBk8xGk7fRk85CPSekkgOHBbKwo3QhJCyTMUSFKG9sIG8/Ua82T2573mGtjgLJsTpe0s7GzVvbfdV/FeD7snbE8EIrjkbfYpV5jvZJulLKZ7Rns5Sq/VUi3FA+A7mV9CsV/yhDOTlu50DQIMELBZkUyfNICTBz9x9LBa+fq+a4bIUfasnBEVyohPdNiH0VzsTsu++CfW0ga0c8n6wL8FbJPK8eD3URy/CN7W+jR+QIr5gnm4Po2kF0uOGL5uMJ/UmJfA5y9CQgBcq8CSjD+3hebUWInnAO5nwrWDRWPdEi/mYJpOCKlsaDLIFcRe14fbXp5iW3d4NwqqQliqF/PEgDC9CCZi6vq358um03T10fZjhBSQAl7OiTVfbQPY6uFX37WNyO2zT1QXIItgrasc7vKL+pJdoxkrajrjENAtBA2I6ZpODDEdksfAK8uY/+uhUcoK6CuVinY6bP8xmeGDYsk8tg2ZHoCARFsvHr/bJwKylEpXJZ+NNExwQqmcvml747KgdFUCQXPw0T0pHBy+cyW14U0JEJimTjn8MXlBSiUrksLuELOhZxqWwWbniaBOvH2r8exLKISuWykB7ExOJlcHVfICyTy+C+Oe7etq+qsRITCIqUw9f1Qloum8ka0aBjkpTLZfJp+/VVtznOOx/Vh0nLZTM5RTx07bS7VXYLWDSXz4MbR1k4YFogG/vpOAeezYHj89GSrjeQwtmcxtnoVFIJyuQy+L1233T4folc9D/6enRiSxUulMUhfdSCROfftJDgdhLz6SxlRvnFzVeM+xdZXEYkbUc9hbnLzu5D4SxMgTP6ImbGCR/ZQHHodzYEOMRjLyio4r0XBQPF7JC/+iLC10TTFYuaD545Q+Ho98wkOK4SeSSucnak4BEkHIh8B0mEI5nuZ6kslKr/o+u/PjbdNxleIJ+FLPQN+qJZeKMoiNCTNKMlb4qjaOwz4hI0/+EvHIl6+0uIIo9ziaSzUKe92X3VV1G+DBI6LpKFf3pbVt7uQD4LOYkekZPAiubx6Q5d0+1e5DFdSKksFqfInuW6hZxEWqgABy18NnK3dc01BEWAHMubkT8c+y+DUGEHsgUQ/73tRllPg2UKMFgcaFoKfqE8DvH7lDQ4906lElXZ+2mpIiy0XwAoZuZxOl68Hce+/nIUxf4BJczo908vw5zgpVksya18a4EXtHORWaHZ9ufpOpd01EfSdlSZYz3bm75U8FfBbYBVMBdLNnNC4TzMu6Y7Spt4kS2A+FZ0UyeRz0P+pa+lTT2LZuA1L8Jl2BfNwmtEtqgnmY2maGFTwjpcHRYSUE/WjBhenORRE/lc5JMXQgx8Fc/EVcW7QEXK4Yt7PSqTyUC+gCfymchyV1Ein4l8NkalwKt4Bu6zeP8QyJoRH6pH92Y+cuABfVE73tV/JgD0ZQsgCvVzWsCO/XXS9KKjV0/SjrbcIxdgXeTsSP6j3DgO9S63CEVyhf6YddYvnm4l5trZupPde4ikzaizWuLRzlJZKK86IdBJMAtLpJcLaORzFfF7tBwk9yCtBPmp3nwVhi4HsnbESyICAaAnasabAwjeto+CRI+eZBbaoetHOaInrUL10p8yaRHCnxfkEGyt9S//81/WarduA+UYAqq7uYqutY7D9r/Vw3+r2/mqw+i2fpMiwiu+NAkrxAHLw2oiEnzUKsh6KiKTFIG/rQx/G1w3epva0+AnSQvlcOjrzROo5CFsTzgH89BUdSsG9aWLoP5Rj09vatcA2SBJ/KBcJhPgdAHBJk4XZGjjRP3tsKTJcbIhFpdQogfK5ttUi/hTe8I5Le7wJF4Qagfn8crXL/Xwys3LHBgYBzGJCpTk8lQNSx4GaIGGqITymUyCETGiGwVwLIJ7hUIsGui6JMqiie9L5rMYNpVwaFwkS6L3s4wM/ipaEn/nRiqzDcQjKVKSz7766pQzNilSks/2eGjqjfQT+dJltdjvVQMc9sMK7CL7AxjM6++7LjVoCCJrkZJ8joPrT/HTd9NYlC1taZmSI8W14i39VbSoNu3+34ePH2Sq9CJaVI+68bdrB8v0aVSisF5TsolL/DA2si1vUqToqrP9+rd96goAV52LaO7s9Y1qIOPf9De5+bzp3aRk3/TdPnoIKK7tBpBEtrUTJ4OxfMURvFQSQsgU/KV+SKuL60ayKXmVM3mUiNr78En7pO6efrSeqHlbnwIp8bo9CXXtiAF4qZqx+vB6N64lOV9/19c8faPjHovjXwEiMTVO49rdmEb2XgGuv6trHsaqH+Fwl2vtgYwaYV9vmfo9CXXtruVq9yTUtVftrnGvun1Vp16TK0AoZPsCt3MdzBe4yFj6iKnfk7D10ZLGBrhmFnbSKpXRS6/crndA6B3QWauouc9YtFTQOMo4oEqPEpn2NXC2cKn9/Ku61i+UpXqp/Isg9yqBsTxHdUtM8VVA3ytTtzq6dl9EXf+m6Sb58XoFgVgkUkkzGq0RIyk1Sr+8tk2ok1XAMErRY7B1qHJ+Mqr+johfXyE6QeR6NKPDzTQKsPxg2VYjO/S1vptYFqV9IidBXEYjqJQw3GuJXHR8hwxC89tlFa6y4VGhHA5zgF3fNafAVH4U3eClhOYhwwrziwYktB7RFFNh3vmNt3hBU/DYOOv2h2bSwaIhCIiLP7/QbPPQeNuNxOA2ax6SdMfG4xFbmxhPsL8hB2vFKslKpxpD8xe1BPypkFoCOaNxiyYHjWDBzKA5yMOhapGT3ADZlyvU5mUUsCrnLFRs1s/bIvC8J5ztF7FSuPdToW5bcwM3ECyDfd43P8wGE4MeiRbFf91yvR4IlsG+7uolrU+EC3PgeyASLbO0b57mWvH0w9Fam0iXYVEPSE7gePwD+YDzcNErLcnMg2605GCP/csvbhTiJ8Kl2s+bFBeZkq3mUX25Um2V7uXSPVx+i0XYkWipdmOJc+OGQ3lzM2dXU7WCWX0VK6nTTov0IvjgKvAwIdFsaZkyjIjjEn9jD5yZZPXD2hrqEfKoI7BCP5ITfJVYQiy9XZzDjjhmTLcixVAHd9pUoGd2/k47ki3G4DXhRQnxX0PelCwNSR3AQhugcqNx+rGaLxaw2KFkGfTH+ZiXRV6lSh3m9PXUlPqZh45Ey+ODL7PgHJI3WXJ47NzplOx62j4f4i1nvnNoJ3la79GT11KMdVr7cvwYsOBZC2sptQeCHU/B3qcut94Oh6bmzyxOMoVayDgV/JZinoVS+PMFQckxFVamjGVLxZoHNCxR5uyJChWtGu0+LVGqDD4ZUx7Am6LJ2dlGONCCKaeOIJcgw7HjKbIuapyb8XC8eDjjdZHi3J4eiREPt/TK6HBe+5Nx4bGSN0WEMxy4WPCAgzUKnNtD4PHf4eZBH/nNahY0JDBQKspobxkqGucNgasjvBkObGx3QMIc1c18eSyeOwDXRnKzayscwx0tprrobd4ioyKlY5vMEiPN6xoxA2OUtoYB5zu0RmZzWh6JyQ61vDIaG5hpYegI/045JCQPKTlNkLmkvOKboBDqPU2pk0EFSg5BoXwO3+Zvc8nNrqARlzMxUYQ7IDSE4e0UiXDgYU/TX3+RD7GdG9FbAH5lN74g1oQLL0vnBWCyHkvh/G762f1Zux629LzfyK6S0o/rEzXAJ6gOKUgQ4agCJR62bUrQuBsVIqxPy9EwkFULgPNkzYibU+TVJaswtDuCPmRaRsNAdHCdwHJxsgIs/Lg2QePjZgV41CFt2q3IOa22jdRxTtpMSayoAHW2luRjN5LOQv3QtTrgsIAZu27n2MXhHPQlmK+xvH1UMYEP6cgiYh+U2PDxZIKYnlAK9JK/UC1vWKY4y5/LLE9rVbKV6cQIUaPf6i1ww8nHuEhYan9yYMo4v/qriKX+L/U4h2fd198dMIc8lEjQgjXUf7qPjw+bChi3HlIgZsd5u692wNxMgC5yUiR/qBKnWt5v8u3nsQUndVTVzUUMoeyx0oVGJ0BAdDSPJJ6GMZpoLoKQsl1bjMfu2nisPeCuSHD2xP06CUbFj66bk5AZA7lpmn4iR944FSBNounbhwnOWcqM8tw1x71ggF/lzEjbutrBG5BkMq2S5olL3pNKv5bkvpQAtW4fQfdIOqOugrlYf/v7P8RwJ1l7n042TVUD1wogBXWRtLdvmHaBrnW9rENDaTMq7lxLIPlbahK8bvYPCsAucmYk5Gg9QQJO19VtAg/UgTYlZ+oCnRJsKyCFT28j5IuuarE1LLLixVW/GEkXIe3iI1t09IuNdJFBhxx6QHKpmj0YMS8luiXEpHgUCgedKqCWmf4o33OP/ctd1z67fqQru0kEEbLzj+xlTfDBuxUrEczBIs0UABLzv0uR77yaKMRYLqeNd/MVA+gBTaiBnnAOJpJiHUJksqzzeP9xrLZCvEA0q087ILwZ7M+OyG8jwyIeO4AQBe8dCL+hAjQf8XNf7/cOeQk5hoyE9ZiYlX/FUV5+jrDEW461XYZLzxFotAl56MBNyBVxlRB1X1T7+6qtH7uGBvCELBj8AKzZ5/CoQTAXBEyba+2X3/U1DydWVOWeiL5+t92RlV9+19c8r+E1zdwTMfR5U1MbifPP+tFCBKeutRsCU+kRSoTN+YPUEDBH4VLBqCusJRCV+nLEdtXbB2oDUFlE+HQlRFQFnpLzFgw69SatKuCUQkKCTVcoZaAphcUEma6YxgBTCpsJLl2xjYGl5CKPBpV667w6oJTWCIjp7ykDXSCpAA0LIk1AtQGkFDYXPLqCWwNHyfUPOdlaF0BdwCiphZCzrVUF6QJFSf1Dhmh6esgUnsnoCBGyLTBUjEztO4wBoaQWhoNBPS2sCwSNZ0x0HDM/kQ6CzT/Ij2WkOaWCmrNzSl0boDepVhIGsyrC1JhWXuON5lUEHmY6mV8cW/rw7fDpdNMb1vwrDaRIGT5IJqPoA+juhLGYeLhNCKvOMMIh45mMQmR9JiO2zUhoUzTQVZmMOEw0k1GIqs5kxOOimYxiZHUmI3Z+UZmMonllyWQkxIfy+IDomiw+HDaTySjEN2YyEnPge8CUyYhbUNiAvlDDGzMZcSzQTEbx+FdmMuJx0UxCyczTZhHisJlMRtG3t2Uy4tsP5RSKm67JJyRrNY+qz2TEtxXJJpRod10mIVmLRdimTEZ8u7FMRnHDtZmMBLMLzmSUzC1dJiOZTuMyGUGazZrJiGOEZTIKOWgzGbH9IMtkFHVEXiYjGyfcIcUR02Uy4tih8Q7QVqQYKp3JKNppmzIZCRigmYwSfHUmI1ZD4ldj4A1QudFIXZIJR58hkxGHjmUyCpG1mYz4IwQik1FsXxkyGWnwwUxGOAdVJiOOhzWTUUivdCYjAWtTJqOEddFMRvweCMhkFO99FJmMWH0GXxWKziw0mYzYFpJX38KWWjIZafDxTEY4EX0mI86yZZzFKw2jw5g+UWHcYf7u0+gQo/A55/EKb3Ug07ONciL7U87iSGaRUWdyhKx2KJMzHnUqezNe7Vgm9/S4c9nb0usdzIz255zMgZK3OpopDgJn88ohw+FM7iFIp7O3eTA5nmnNgjuffaWid0ALUCkndAJucURTHCTO6JVEjkOa+vKEU3oFNzim6bUVdU77i6naQc1YZIyrOLDJjO5iRteIGdgd1mIGsNMaoaBzXJNaHndee1pe78COZxrgxH5XD/gsm38scyEnrlB2M8fniF2jIdWEj0em8YCR4oEiwDlJ6doTfZY3WKTs/IM8toDw4l8rsnjxF3q2IbDiWr34EXhoC6wHdowbf+WBlcE/YMQgutm+dX3zMukGKuB5RYfkbcinkJDX36c+RT1sXu8n0jbU686HH7I3sWwmoqyDAXEb7jSt0ctMK9wqZUMZRCiDHkV8oWBFgS4VKGdn3DbivCBoneGMgBwzeJSHrwjVUR5ka8mYFq+1ppgWCpnyLqy4Fu8C2ceST2uIWGLm5MPUfb87wXoTy5Zh0M4mZ8N2tidWBpc6019hLWf6FCoZueQrDkPkEo1LRi75yKbIJRr7YVqdjw3iXw7U5SpYCnt2Rpwqrcc0B2ZMIJYuyAJzbUfwWm82jdvh59w+bqc/46Zwz+fVsv1FIvwjOHzuGtdXrZKMX6rYPMQjLYJZqI+0YOYgfic4mIHpfeBMfUfdtw40HnTXOhMbu5cc4MZ3kvMwP3c98MRtDHqRKreKn0asxUcarvDSeooxh/2bMQ+eubieQpYy7TXzzGOb14y2PphzfX+oGU/1KXzOa7bCW71mpGYnvWaeLjd5zVhk1GsWIau9ZqQthHrNPDtI7TWjEAmv2Qpp8Jox2oDzmgVT3uo1ozgIvGYrhwyvmeiERno0U1Cz4F4zX6novWYCVMprloBbvGYUB4nXzDt1zPCaUV+e8Jqt4AavGb1TRr1m/sZY7TVjTrIYn1VwmmX0WTG6RszA7jUTM+C2jBleM1LL414zT8vrvWbxTAPcM6jX7PJjMa9ZUKHYa3blqPaaxXic1wxAEnnNQhzOawa1J/os580y+mW834t9nLhO8ffxyao/EYDKfSUYT/ShEjTuWyFtiz7X6XEFEPH0UxFHp1eVxdV5JmkbHD621d2ZEAhTMi6/vm23fEfehLL416MR52xE+BbDx/Mlc9AmxmgSoxhvlbUiNt0Gv77iw3mCpb4mY5T76EaznMZnDXOfgdk0pzlwxrlPwWqeJwwUBrqPbzPRBeiokZ6gq810Gh031H1kvalOoxLGug9rMNdpXIHB7uNnmOw0D4HR7vPIMNtpHrThHqykJtOd0z648R4qHr35LkKmDHiAgMWEp3lIjHifSI4ZT48EwpAPlly9Kc9oP9yYD1Sf3pxn9B5rTgf6z2xQs/pIwcJu1itY8NuuDNOeWRVw4z5YFfTmfToLQdMENSTXn4vZkVGVYjPSY6q2IlNM2WbdYkPGWJwJCbfL+0x31ebJbT+77/Nl2buu66dleVqP0vGKCRb5dGTloo+ItkP1OTke1IfVMsDTRNEs+KcqtUz21eEwKZ236Z6BZuKXK8OkHj65avuxbdIYHZpKUNDMBUp9oh0kXrEyPOZwiO8fH7Udci1VhgX66g07dekncCQjxFdXbn7LY1/1X1Mi15+yD7yiqrQHXh5JgyqMsC0HXiCBeH15VQ+HpnqZUzQBXzVikcojnxNCDt9UadvudE0APKCJgRPxjB6A1e/D+NI4SPfFgyAtUIpLX2+e5inAcvAES2FP37RuReC+ZHH02Qp8U7tmy49FuExBRkC4GMBBES/Go06btPHt8Ec/rahAWHCMHkuX0grfphpFQ8ETLNUDxKFtjG44tOXxyUPbmIHp0JbnQB3axhQsh7b8CMAPbZMxqD60FaKDh7YguurQlkeHD21jZN2hLY+KHNomml93aCvaAVCHtsAGwHJoy/NgDm1jHsZDW54HfmibbATUh7YS7QMf2qaKR3doK0bGDm0RAtpDW54Hd2gbE7Ee2vIjATm0jQkoD20F2g8+tE1Un+7QVqD3yOPSRP+ZjktF+kjBwnZoq2QhMossh7aCVQE+tE1WBd2hLTwLffMaTnt6+nOZk761Ktm53omRVm16KNzLojRCX21r4CaHD3AVsdS/rZGbDT6CJ2TBQEwaDyA1Z+S1I8+vBh/6ImKp/wu1S/FAviDbEznS6XYpCXIVMfXU9Otx/+gmYeAKWtBhkaQQLbqE9BZJ1BrOjrdAUlY5CnZJOhhdzKuzNAKebtTHgJONylHINJvBXHRIkk051uWRXPRWUzAUUuEcTDBnLIRHvuDLfDHciPS/GPuOrwAFNhZjFPKReRoFSwUdLABAImhFO6hUlEFTsESUtAbyl/duv+/aj8vxSQrl/Zh/gh5XBp2hB7x9aoZtRYIn2lzAoLItRoLIbjTkaKg1hoFC9pgWm7XAEnDKBhOgi6yuBBSwu7RYmKWVYAG2lhaLsa4SSNy+0iIzFlWCjNtUWcjA5pmGJrbSAmzMckowAdtJMmNCdXro2kkcDhwPfy5jPaVVShWdzxSNifCl4KN4kABQLIdHLe3Om5qMwsfRgo8I7ZCnPxb6YK3G2J25YL4BV++eIKV8AbgK6OvGjNxr3ZyJS9SNr5+t1EAnav9SDQ7Z017r92X0CNXBfecQfBkDwvea6vvzz4Z6213j3rafpm9XQYEbK0IsaMZ6teT+EmCtgiIsTV6ZFYvIKSPHmp1sJMZZQNZnoeI5KQT0QZVEopRKAmqV6qeIsu7ECUZmDp+kmLu+3j4cqg282QGRwyKZ+ENbHZT4YZEC7Z+Dc7DNO9oDfqFMDuNTvfk61/emd/91nHbqQBwfTAQsmclm6w7j08/Hx/kcDVyAICJxoUwOyz9C6LOsAdFXK/A5wvxXuVUvfU13rVb0lG7QnuVX5anCCqcNyYvQxMrSa6AlEC+ClbxN6zcyTfMorx0PL/YA+FhiCgPPzelhwIk55e2Ac44GQyFJOCquHc3E6NUPpmFUIKA5FwMMMOGiGIV8F9bDQR+F1SJB75+mOPHTp2IU5q1XD4l46FWPxrQKfdJVrNi491t9fUM83irGQ19qDcYe8EyrAgF9EzUc39BjqGIU5vVV/xvhT68q2gS9eBo0J37qVNkSpn74OVUFf8yRH2i19OFSZSt4FPSJVEVbsPdQg8ZAj6FqxjCcjzMcwWkyTuW85944TWY/9cCpGBt1Ya1orAeLbJvs3VK/cfyjpZnoiEHNUWA84RQP1BGeLIq2+ulXR/39FvrkqAYLfV80RAIfF5VrEdy1Dyy6xvFBvBnqjwfkwVAxDpZJ3MOA0ogrTCIqQMHfDUviE6RI4IufCFry3KcY0fq2p0fE8rCnhp/pFc+Qn/oJT8VqDLzXGazCtXHtgF/mDKy7+FlOOWsy8MFjL4p7kCLhr20ikPBTm2LbgrrXsgJarrTQVicVU+/vaizB9BQyeYdlBTZdX6HnABp05E8E9aUVFhMOQYowdVdVyBkJ31LxZqTuggq5c0TupngbR+W1FEbLkjdSAmVquoxCoXP3UFZ06xUUcs3Fb594i63+4gmtIxDPrK8elNdNBHhobFMCq75kQqGz0U0rvPlqCfWFsfimFVZ7oYRe8eAIJ3+J010jYewFKtIosBgs1zYYrSHDNl4ZEWMDXm8EXHFRhNTOSKSTp52V10Pi+RO7le7rA9rJp9/KeKij+mS+aY8gthVD9nw+FHcMQSNggTQxChdPwyMNbrefhAVYnqQZbY6fGDEviQ+2Cpqxqs1ki1eQ5zgG8yTNaJvqgO/NgzF4FVRhJVOo775jTZt/+kE+2rVukaOW1RKnZhi8tx4Riws3xtWpFK8TrM7cmEDoG5t/XMSIZ1NjKkghapRRHCivst/5uhcEBbi0T8uHBl1aeeiMJ9pD178TKWg74aMOBrzqZUwel/Zee8jqlwQl2LRfO0BXvyYomGusx9ufY5jbuwgH1GucMogdx3n4Ei+5x4FwlRfiIekJ1Imet+iIPOv+CkC41/OY0D73YF4AjvdcbNpHHs5KyEmehy/x0/tjAXfW5/YD6mEPuiB2sZdovQQZdvDntpnyx4erQeqQL9FyIT4aFJDbfjJSIOgAKFwge+YRMQThvNO96inVfaLogkQDUiEGeazIuAOPBxR8kNkfiogEv0P4sIQfwYuIVWDJpQELeQzJKIZ0O1MQWRDf4O/i0SCHbBZ05EPIAQx/yNSkdEwEtJEqOUKPTLSEPyKPcMhEHgMyjsJD177JLjm24CIsAlsOCbMoxwGPvUB4JAEYeVyyojI8ipbQjGzm9niNkLk6aCN3H4VFcgT7p7rkOk3EeATnJnGgR2ZL2egPv8VYCEg5DkxcCEIGDg7Js6a5iBGPijVshDnZ4fzgwW7W6gonObBRJB4FcygJMxPJeJJgOpqCSnh0PLIkRteHl9AaAY8x8TWCPtCEtheIaBPfXDCEnHCrBRt3Ei4K5uATkockAsXjkROGQu9B6FgUf/NhC0hhtA8RlRIoHkNoigSZjE9JCZiCVEgeokgVj0hWuAo5EqiYFY+AJXCFWZfx6JVgIdaHsHDWHxdLEtp/1oASTh8pWGSEtchZYGEGCA1lgAu9KhBRLv6qYAh1SWah76yfT6S3kI1w/qFMpItfmSzM5cJLqz4DJDblCovypm5raIWIYK5iNhwst2jYbY7OLspgwOlXAgQ6BQtT/zjtV5pfkew9AUwoaUM7ZQH6ZwZplcpB+YsI5S9mFCyaKgDhQqlSjPDAa/FCQAc+4RhbxWw4WCKZaADQyWRYDDoxToQlS44DfCNPTb5yGyBj7vLXIgpyrUmkHU90sIl4emTq7VRN1W6gJ388NEjYgHl+Io1CWkUM9R/6bj4BgLwbHkQgZWvF527qCuhAMmyJJ2b5QrMtu4gC4X/+xwnlDEhdX++Aox4P4yphqP3ZzaP0t3S6e/V7MmaE203fDamCTFCucgYkJO+ch8EkniNrR1S8Vzuj32nuXf/nwzfnDnB8jN+GWDIHDYqCgbCoLBLM1+9HWbsSyRw0pl2RnAFpSeE+vK/b3yicQMqOUn3/XYBykhKi+Atjvb9td8cGCAhYf5IH+yIhtVFV2pBaj6RhaY6wLSG1IIE0xA5QEBH4VQz5UiwOpogiHE4bsThL/kMW5iKlQFE97xjjSZ93lLSPfN4xbajpeUeeB/u8YzJ1rM87CsYW9rxjMrq0zzsK5g/6vGMyhdTPOyrQiecdUR6G5x1FjIBgG4CDIqyGR6Wfd4zRbc878loBfd4xJqB+3pHvAcKpGaMbnJo8PunUjBmYnJo8B8qpGVOwODX5EYA7NZMxqHZqCtFBpyaIrnJq8uiwUzNG1jk1eVTEqZlofp1TU7QDoJyawAbA4tTkeTBOzZiH0anJ88CdmslGQO3UlGgf+FQ+VTw6p6YYGXNqIgS0Tk2eB+fUjIlYnZr8SECcmjEBpVNToP1gp2ai+nROTYHeI92Jif4zuRNF+kjBwubUVLIQmUUWp6ZgVYCdmsmqoHNqwrMwPJRAbkddfylxJOHVZDiRODM0HUj4yMbziARead76FOzWLc1CYtwGHyHDtqWZUKatz8Bi2dLIpGHrQ5vsWiE2bdaCLGxWLcsHNmojBjqblsZkTVof22zRJhzEBq0Pb7Fn6dbT5qyPbbNmaXTOmPXxrbYszYAxZX0CRkuW/vKkIRuMPIsdK8DGzNgEW2vF0tioEevjqm1YGhM3YQMNr7ZgaVTegPXR7fYrzYI3X30WduuVZkEar8FCb7FdOV2Dmq6hmlFbriJcwnAF4A12K81CYLb6NDKsVnoE4EarD6+3WRlNh5qsgZpTW6yMjuNMxUDXWS1FVvvIOZitVQUHdoNpt1UZ7Y+aqoH2V1uq6byDDNXFYMHBl5/LmaxrdWa79UQ4w3j1OGRZsDER/lUqiMJZEPUGC7Cqvu++/dx0m69vt2lcKgQalyiFnsarcuh47KoMvXHV1vW3Xo0iCmCxHB7D8XDo3TC8/j6epGUfAixWlIfsk4DFSvBYuljXF9cixfB1fXAtkjUrmtH17bRP/Nk13bd3UKoecGpAxXJ4bPvq22yYv6+GrzK1HBbIn5u/VsO7arEbFDMzKJTb/skw/lb1MsUQyucgzycyv82B3XPiJRl4UiRbL79z7W58kmvlq3whnazAh0plt38+FVIsiRfxIriKxfAiXqjX6VMzuM/J1KsyBqdrQvuq//pQ/ykjkBTJnXG/VEBMODLVTrK5iMjFIwyUuX0k/dbzBHlTiTe6UYEiK9s7LQmsZNYX6BrXz/dHfjscXP971RxlAw8uV4TJu+6biUlQrgiT01h7oE80ISphwRwu89Pw82qGvdsM0UjL5M7RTx2SoAybpV6BrF3oWG2+ar8CUCh/XTjvptTrcVwuh4m7GBfzvvZqaYjIoEWL8fn4+Dg4mRqHy2XtUi9S+p5Bi+bweay/u+21MsWgQQqW5vJR1jdo0Rw+T9WweJc/Pru+r7dw7H9CBSqVw6Ie7p7qRmZWrLI5iCdx4fmKJ6zEjA9o33SUU8CDXGVzEAcF4lAGcdbxp7G5LP6y8QSVymGxmdR9f9s0hqGNFs3hcx6zHx81I3yRzptVjCsuwDT64yQMWKdcSsTsmSP5iN1zHqFsHx05MjhHnb9QG711JD7nsgv20za/HaehJI6zUE/leM84Da1kk+nLk7ORaa9crx7Jh3PteTys/r1k9oZOPiRR/vWXEq49ryaDV+/M0OTQ85GNvrwEXng51ofm78YmKNrLpD6c4i4p3To+1taHtcfa0iwksbbBEEvlCzGhYm19BpZYW2acUbG2wVCzxNoKselYW5CFLdaW5QN7yyIGulhbGpONtfWxzbG2tBagYm19eEusLd16OtbWx7bF2tLoXKytj2+NtaUZMLG2PgFjrC395clY22DkWWJtBdhYrG2CrY21pbHRWFsfVx1rS2PisbaBhlfH2rIrPBNrGy3wxlhbmgUfa+uzsMfa0izIWNtgobfE2nK6BjXwQzWjtu1FuIRZD8AbLHqahcCY92lk2PH0CMBNeB9eb70zmg413AM1p7bZGR3HGciBrrPaxqz2kXMw2+cKDhITx2iVM9ofNcgD7a+2xdN5F5rhH/tJmSMq7/JbCVM8qMtgjF95mszxEN1okAMUhCZ5CM8b5QCS1iwPIRWGOddK3jQPoe3GOcdEYp5Hwy7DQOfYUCZ6yMJipLNjjzLTo+FnMdTF+LSpjjCxGesCTrC5nrDQGewcLmuyh/hmo53TEpTZHlKwGO5cL9Cme4hvM945Bpz5HnKwGvAcC8aED0kYjXhuJJBmfDQaLYa8CB8z5QF8rTHP4aPmfIitNug5XNykj1YEtVEv2CEwZn2yQTAa9hwT3rQPmdiNe44Jad5HGwWLgc/rI9TEj1WR2sgXYhNmPkjBYOhzTASmfkglw9jnRgRu7ocU9AY/qxFRkz9Sh2qjn9WFnMkd6USr0S3QUBoeZuNfxUNmShkPANjVAj0CiFYL9SEANCfDY4BP1baGXnO4/FLiCMCryXAAcGZoMv99ZKPxn8ALTX8fmjf8ExSt2e/DKYx+unW8ye/D2g1+moXE3A+GWIaxTzOhTH2fgcXQZ8YZZeYHQ81i5AuxaRMfZGEz8Fk+sHkfMdAZ9zQma9r72GbDntYClFnvw1uMerr1tEnvY9sMehqdM+d9fKsxTzNgTHmfgNGQp788acYHI89ixAuwMRM+wdYa8DQ2ar77uGrjncbETfdAw6sNd3aFZ8z2aIE3Gu00C95k91nYDXaaBWmuBwu9xVjndA1qqodqRm2oi3AJMx2ANxjpNAuBie7TyDDQ6RGAm+c+vN44ZzQdapoHak5tmDM6jjOHA11nNYZZ7SPnYDbIFRwkJo7RGGe0P2qKB9pfbYin8y4ww2djbeP2Dpxz64+kMS43i6MKZa8s+hyxbSJ0BzIGI2+C8hjnNxoFQKukHe3LJPD1frbeBYCBsB3z29M0fqSYgbAd89AN4x+TlXaLvFQVw8byduTHqp6nMHh9Nkb1ZbMR5Xh5aHVbNe+r728mOUirJZiRfCFkWf8mJezo8xvQk8b7j+O0URmBhz0T8KSAHfv8uurdU9W2DlLmMXZSIAPbDU/v3b7rX97V+1oyhdMSdvTePc5ZKkZ3kIy1UDobdT50G+tn2eeGytgZDPMTlJ/c0DXH+fxxtr6PTSWggRbUcQkW83HeAoAK5vxLoWXcr024hl+oId3o2tmSg6yfAGsVM+Ls3fjUsTBXKQWK/yH6atPddfslgx6YuyISkLs6NudCsipvPHGkKTFVBvfjYR6sWvi1VB6L2YVzEvr5ZXS3fV8BEx5kApcsxqYa3P/6F8yI4QiFhdWcxNMW+USC2SvskLEzdERSSM2BmnrS8XqWK6MfibpN/X1pBKLTNqvkO/cMbTtoQknpIqymjXo9C0zbqnas/1y8cz/XkMeSYkfUUoTl2VS767rZXz2frObxFdVXhHk7n342eWzROoowrNtNc9y6DwuIkllStiSjz8FHmr6RjRxYTUmev7t+Gk93XdP1NoZRBWZunoJ9XfXj0227eep6+KQgFiiiUsFKRbo04YttQGe5eSVaIibeTZNhPAIHwTARtHBRTl27yyDllS7J6nXjnuF0ghJWfukfwuofru/ymJ1ryGO377aumetWzJmbpFABDpNCBbLXEfiXAgWwX1eDquln+Tzk5R8Z6Fk0D2/rhk1fHxQzIiyhRg/dV7Pcu26zjNy3wwOQxJEY/HHBPC47N76fP+O8tFSAxQoTSUuVYfG5W0p8RuMZaDpAcf048ZfR7c49dI+jayFLKfi1zAKa1ChbPQOacucLAEeNbgnKoOitG184A3PzVO0fnaw3r6IZeI/Vxo3AKRiAt4pm4LlJaHGkfH6aNn9PHZBDE4AGS+W0uus3qslwk5RQovsTsWnqwwAsEae/l5l8Xl2yaXcmhVDef3Hbrdu+qQGPmf+j/Fjxse/2+JFaUudNLI80wydq6LYEVtR3MCiQMl4A2NBJeyVYj9NvH8BNSNqrq6gKL4rVrIH4pRTsImdHWnKdSr7aWU7Xh/6Ab5/rvmvBIAXvtzJzNapPNuY8gpg/v9p83fVz6NxijvO4aYEC2Pd9N0fJgptTnEBQSsMiCTS8Vvl2X+2AURpzAMuYGQwGBmAZ1ZfwB/L3aSSBHqHrLwpXUO+gSMWwppurFML5yohE+bn7LuV+A5bIQr97aer5JSAlBahYFo/7+uCUHOIiRnzkhlMEqbzhBKGK1WTUWMMNJwg+SrI+Pj2Mkz3FofuC8g5OsF63wPY3RTqJZeB8rtoduJSlWKuoEW8/9Xp/P99IOR2l346iHsWLFeMh6G2skJFDPbyfK3RbYScA8vnIgmYn0mbUhw6KKE/gLmJmnLvlvtHt+HM3jh1wtBIDJvLZyJ+79KkrFPYkbMTcVAc4RD1WiaucVVf03WwRiNAiWeMyM3bzDSIO6yplRJm2VPfVfEi2/Y3FimSNiNM28v7UQdcDPMRnEaIT5bKZ3IN3CVEC98mtQjXu1I9iUE/W/pU/Hmf9feIv+NCRuBG32m7ftq0YNxU34p5n4F/5PYQnaMWaPs98wfru2D+zLYyFjZjfqqaZD9Q4OE8uA+nh2M8nnBKwVTTvy72dbIX0/hv88S6y9tn43g3AAVQyEc9i9jkowRkK4Lzq9lXNKlRf0G4lRKbRrncC0+gsVQh1OFStaGH2BQthL/7pW35LcBUr1dOiT7wt/H2nSfAw9eHvTmKHxsKFOLRn84OD9+QKIT/207888CpWCHfaLDfdALmikk31Ra4Y8v1UqtvWGx7bkyyG/lC3u2MDHWwnZtMqWQx9MjXPtUKXGRIKsXhJHq4SWHJXuWLInWhT48kVQh67D8f+yyDceCTSP4TF58sbtDo6frFys3IyBySz4ipXbkYepnKCEXGVK6cDzyfIAi24SpZD73hb7SpVDPVzN0nwsBexgqv8afDeV/NaNlmCb/puv4zq+WrU9a+SHYC0onLc0+pn0JiIgLu4okJn7ER+nYicIb+O4PyOyPmRDDlDxg+WAZVfJyJgya/D63s8Hi3S8Or8OjJsML8OhK3Kr8PbT2B+ndh2UuXXYTGR/DoRqDK/jkQ7UPl1UhVgya/DsmDy68SOF1t+Hd6CRPPrxEakOr+OQNfA+XUSNaPLryPFxfLrwPDa/DosCy6/TkTDml+HHQFIfp0IXplfR7CrBvPrJJtoVX4dyakYkdsmPRkz5LaRaB85B1t+HR0HdmtpzK/Da384v06s/XX5dcB55wX8vFkO+tPF/fz3UgGafnXC2MwLM13ASQAEhJvQCNLgkgBFEn+XQoWh47P3/uEUwXbX7ecArXQYBqBICRN6dTitZVNVYBxoAJwK52L+1qeDHoM8yeYivnJjVQMXPjHUVd6G3G+e6uf5ruMAuXRD1FjWhHgK7Uq3EuG4vQrlYPzMTHZfzIQzlRlfb2u2OYFcJhLXqEjShNa755ofD56UUU1OuqljmrMKmTCmncEILpyhxlqlTCgn854BWYVMGPtpqPY1dBc8QPHFTDhN3brx5eAYHF/MhPOlHvcVkO8oQFmFbG2pXhxw+zuaL2cZE8Ic2sw14ipjmyX1fpgTojMgvpgJp552CvOx96s5w1MNJ/4IEOECJuzn2n1j0C4ipvrnf7a/8yCBnAnp0Bx3b9tX1ZhmsQqQAjmbZkMsgmgrlhoCCgznXS9hkGJRE94ktXX9XdeOUIhvtPiEorb2wQZ12LDUnFYjYIl0ACAu2xODN3ZCQycUzMUSNRCUzx6Xc7SdYmxexG3a3o3+javbc/opRv2jhUpymE3+DTNnuKK2OQsfDYSTNT0YYHaj6THAz8tW4DN4ApuKFLnOhlSrsap91pixAp4p4thUkDKJGg8jMeaOSGggR6y2qJWUIJ5kcxGnfckWDkzEcP0SRdDlTb6KW8ZTOl1euU3VkLNllSg5WaJaNXPFo2yZKimyYKaAmNKJEiMK5gmPxw7aGFU8ZuH+BYZOvV+eYKJHjy9UdAAlFavGUMDdNIwgfMlIQpDFgynFlYwnCSqheQFUge4VofIDOcWWj2UxA03TZToYHWPpVPK3W+R0SgRLTim4cs20StthmVooD8H0ohhIpxiCL5hmYnRiqiHogukmRmenHMJBPO3IcZAO/1/mky9y3K8SJQd8VKtmpHuULUM8RRaMbRBTOqhjRMFo5vGIYRzjCcYvj7d1jQMCWxDIq3QRVHLCwNCiuSLGF3e1J5+JzCqKGFqsIWTYlC8Xgpa4c+GZmyqlt8m5NamhEPGS6oqC0OgurGUWRcZwEmg1no1UxZFcBPpOyWS51RqXMHHDairM1sqtMBNWqZB8xBrGwsrWRTJzQDDrUiX0bvY6knpnlSipaqJaNdrFo2xRKCmyQIeAmFK1ESMKNAWPR0y3GE8ww0R4i5AC9CKficyt0zGydJ2WIZOKBIIW6Q4htvgTyzQEPHMApXCOqaD1gi9UVDUkFau0Q8DdpCAgfImOQJDFaiLFlWgKCSqlLFJUib6QoNLGFAAss6dE2PzUTeHls1fMQNPtwjksxSZVJowu0poi/L7b345jX385Qu9yECzigmW4LIpPPRzigja9k6rX9+fQOFK9BkIl1WtasUa9htwt6hXEF6hXDFmqXgFcgXoVoRLqFUAVqFcRKqviAGyxipMz0DRdpuLE2G9EagbhkRS2jXtges8Pcnbb+rEmYj4DoaLTO6lYNb0D7mgkKPHeNE4jKpbPw5HPL+BE4nL5TManevNVSyMolM9hM2fSuK8POhJhqXwWw9NxnJZCHYmgUIGeWK5TkK+iEx0CFS7FiX4whCMVly7F6rNl9AJFS/G5s41koGwpRg+WUQ0UNfEBlpiPyxUOjMvp15KLilejZjU508R2TezK7cNW4qWaRt25bu/GHo1K9jE9WR0i+snILb8nUv7j2bb7PmvLZh/AFmz1YVTpRj/BFGzzBYjTtn15C+pvf/+HGDksU4qBGr4g9l3THdEdP0rgUqoAi9nO1uCf5Yu0v5nzQ6nQvTIFGNz2aTo9AvwkXgD3ru43crV145cogI497kTAr0UK4COZywh4IIeZve/BRHpU15MZglXY89u4rzqVvlmLlOh5JI0f1fVMHmHdyLsmhtCMPa9QAQ5g6l8CnswBrEIGs8gTyGQ+eRWyBrUMomRDHeJeSxRAv3ju9SySkgX2VVSiK2KLhWW8svE4h5iNDk27knAIiuTi00ebCbbsYBPZTafGwj17e3eVKGkqRLVqLAWPsrBppC0Uif2YRtpsorgFFrsI4SCwjXB0qX0EYgtsJKLdwGfuhvH14yNn8kZiRT8zULXqM0ctMH1mmIPkM6Po4s8MYUs+swyZ9T6B+GL/k4YFqqZxCqyqJr5+Otg/bb++6jbH+bCY0tmRWMnBDlVtes8NaZHpzjVISnYFG8eHut9PwUCqm1Sy6EeAa9coHaApFr2DMxGoHpKDdKuOMRDs2OX4hPbD8AUKUI5Pax+MgkwB0SMhnQQPTIKpy+8lB3xQp2aYX8kig3vfTZt5IuddCOxJ56POqSjIU1YA2y+TxcBV/fxM2uap6xUcgFL5/XD7Zeia40i8XoD3B1S2AKPltfpLlZ+qbV3hmV4gVkj50sxeLa8U2Zmt5fOZfXJNNdbPpq8Ilc1idKh2zjissKL5fOyDiipemJdqSFHFs3kZBxRWtMAq0dbjw8tAHBRBi4VfKLtPtBSSMloGQK4y1fJ/k5RR9wGwAbkGOiweCHIfDskW3Zhg9as2KVCDLLtxio1gP87wkO6IcRaCPbGGA2EV4BwEdoGGA3s6gTMRH1Go+Ri6RWYrcCMVmKxLPkZ6jq4iRadmVK1qRnqsTRMxxZbMPxBVPO1iTMlsEyE+V81R/PVuvAK52IOitUOR1m7PZ0HzmwKzhxl+/gLjgJXOZkXeb0ppiG43IWM8ncJzelhyAl8FSk7fsFLN5F35WqZugiv4hBCidNpGeIJJy6IR0yZCE0waFo1YhSM0wdILfrt0SP4xHyczKVh9mZIDM6lXMzYD4sjwfKafJkjxn2XvE0iwh+rZzdqL8i6kBKJSJhbRR/7kHt1UEDH7rr+SHxaIr57v4rw5Ns19NcLBLmHNN2ApvH0raxGL23Z7sVXv0aS+JCOgBh07zeCPmQiHPQQbDLpHxQd5tH6G6LmHtc8kqJG8Etkf2h208kx/LKOhLhXJvs3MBemg/zpW/ehG+GrvFSWU0qPMAXQMhCeir//QDePDpq8PXEMSQT1WX2+e5j3fLMOgAaJ6vC9dA6y7V4zzz/p667FqgMe015qvAvq6j/Nh0BylTDEPhPQY8wMAX93HIzHNbnwZQw8Nr9tdXz1Pu2d6Ot+kkha0h5f99DVZqEDMhFPPZ7mTWdB9dTxaKmzD3B/np0KpARFKWbRA3Y4P9Z+0AlhlLHpsXzcvrCbzhGQY3sLxy/mG0OwBTED8H+U7IuTRtqQy6OU2KrIjoKpfxFJ8S3gJQkL6mnFKAnnQWItJvmGcoqLPGGtxqZeLU1js8WIBanhdGX2vOMWEnyw2IYKvFCOIyUPFWkT4beIULX2eWIuEvEicQgGPEmuxmPDsFFMYmC3BZl4fTrGJB4i12Pibw4BeBJ8d1msE+KVhSBnoHhtWoGPvDaMktE8OS7hwrw6nZKwPD0tGAvJUUkpC+fywSIvBLxADKkz3CLFIn5FvAAN6zfQMsFAHqZjYHiRWM0mPaRgq8meJRasAHAoLrAK6x4mxGepvQvtZw983FXA31futyFlGXJ/oSMMniEW+tfMaAajbGG8VNGMNT92332ZzdqghTRIjxuJm3KoZ6/EogfQk7WjHsbuVI4bSGX1bbbtvH9smTbAAdKwna0a8PDR6uQoHuNkTZLCMmcHovo/H3n18fIRcPAl4LF4G9123+SqZP3ChXA6zja5kEBQpga9CLoD5ad7OQx4hDNcroMKOVH16KXf5a/4Jw7UW9dHCwsq2mBwyDhMi2OAjtdCxjwfYUic+ZM2QUbDWW9PDGa8VjFbyKyZjkui6MVvGq11rxAjwUOslgVWbLRQ6a6+s8GZDJcIXWSgrrNY0odAwm2RF0xojFBpjhaygRvODwmbsjhXbaHCIsQFLAwFXmBgUOmZbrKhaoyKeP94S82s1blLv6/LX7CVmrUW7xJxY6ZcYD9GyxMSwUez3OG0jWzjO1AOO5GAFLkFCdxwpGLvXIPG+oJegPCRfyNIm0F71W3IWsPfXA3gGnHbWA3kGHCOlx8z3p2oopEjO0CbCLeLhIP4Q8xgnHSMeLuoRMSNTrhEPGPOJaHCFzhEPFfaK5GGC7pEYM/GLmDFhB0k8ZMtgIS4SDwzwjZjRGCeJh0p4R8zojJvEQyf8I2Z03FHir72ghyRDR8DmRaAedOaFBA8zL1JYrXlBonPmhQdvNS/IL4yYFx6s0rygNRNsXvhqSWde0DqJ3OL7usm0xee0hgzbZl7IsVPzAgOXmxe0dobNC18768yLZP545oXgRbtUJNvwQKrUWiEAeb1JgnGx2CckoUBtbd2wRFIqOvwmLAPvWeUMwBM5DJo8npNjAqsShkgc3Mnxhu7Yb9xtv3mqgaydGHRcKpfF8bCdFnfQVMAoBEUM+LE6O6W6e7tNlRnGICqUy6EeLrIXDyrgGELHAlw4ezQiGyWchm7XpGaCbaEYQtr9lGLkMpsrdPgad1ry8YRsuzBCyj2YnAeyIcN4KHdnch70Vg3VdKa9k0rzGFjZdnRGViqNaNnryXkhGz+Mj3IXSM96YEuIXy5LJIptCKMbRcb9YM4VLoRJzm6QvWh1KvF26x6JRTEiFJWh10KWwXfwhA2B/k7GH4sxiRNUBNhwmipmQ56sInxMp6xiRtSJK0LIcvpK8RGexCJs9KeyOi7gCS3FRXVaK+YCn9wiPHSnuGIOyIkuQkJ5uitmwZz0ImyMp75iVswJMMLKeBosZoWfDGNrofqUWKH7aEMoUXs2O0jKgzODYDpWK4hlJTWCIlq5NhA7ghgTKKJjtIB4TUwbQLEattk/vA4WGRqxLs6yMyTaUM8pz/bRccJNH4qU3vLhVy/a8IlXL5vdwyUdeNuOrh+m/SV8JLv+KDd25vvZ4ANZSXU3nii2rfboMXh4NkgcmE8DKWUA33yAke/JoBIJ4hKWIoUMhEtg6oELoSOvYCHIzAtY0i+LPDwGf1rmzTEpprihgXBmO+dH4rYOOhwAW7qK23GHhbq4tZF4XnvhzTrUVOrSKoImP3iJASV3mRBQX7G/q16AT7n8Nfvcaq1Fe1Z1YqXvJg/RciYVw/IuQQ+Q9AKSNaPJi7za2aRFJAJgvnh1E95EstaT1CICHM15ALGgpQU7N7xzzy7dCPkN8YQMGJuu4cZUQ8w2uq+abrzj6veFjBh/uHr3lJphEchVyoAya7rx5eDgUGIPKBY0YPVL7uf31xtwDCIsbsB9rocaOg7xsFYRSx/C18/8zqNvm5G1u++Hamo7Wb8nI0MIFP5TNdy7fs60eOj6Ec3n7eGhJQzop+SkSgJUIQOHw1oRP61TWQPiZJDfK0Bh8RK9zUKjJQzou6UZQz3MT8v8Ps+5uqnH9MKuB48XMfe6Ch8vYsA/tgYGVKHcbzBfg4WObLAPsMrn9r4AGZHP73cBNlrCsttBzpz9vY7ynFmCh50tp7Da82QSnTtD9jvZeG5MfmvkrNhfLXXnwyQacibsoSnPgbkZRJyzhlPHcLbK6Q0Ztu1cV45NbgyM57ckOnJm629Vdee0yfzxTXhXQccxpz/nG/FrNWor/kTMYMZ7mCY7PgZOkzkCQ8IDvYogujuuPx56c2rW5brhXwAd7uEkokK8MHlK254vUILhIj5eIlqiP7f13rVz9vCH8aWBUpoEQygVLsHhkg+XxPaEioyjpqpbFtSXKoo6L8FvatcAYcsgfiBfiAlwvB9ht6VG2ZyX5O3wR18dDpBl66HGkkb0YE5/m2pjP7UnVKLFRAiYj2qI+6JxyWAvH9kU4UVjU2FdPrQllov+wngAVzC21FFbAlQwVCtBVcVn0ahwUJaPqIvEotGQ8KtAM+tirtj1lwq0itZfS3QVjc+EVPn4xjgqGh8PngoWYnXEFKc1EJM1UBhKm1WCiBqtKbDaaiXxWbPVI2C2W8kvjRmuHrDWcqW1FWK6+qpKabvSeoo2IH19ZbMgOT0iRDfar3J0eotntWBprY2YsL7WVtqwyWzyjVjYbTX/Nd+EvdaitmAXVgYDdkU02a8RbPJ2BJx/1EP1hRCbksJo5h8XC40CCaQMKPWwGL7cp7+J5ExIr+r+FAdRNQI8QNqE+nDoJM3zxUw4c4xa1QuQQkET1qepZ6p2d2xEgIC0ZTx2GziZlD8aVxkDwvbyxUnt4QkZMA6uP7hps7mZe+OVBBAtYfly7TifvECeI++DeUKWFnbfXP9HNULHa16rfCkryrv5mUwe5ipmxbmb3eRN+pJdDLTKGZCq/ZfaQVvIFWQVMY3ux8cj8OpLMLYvIob6h4NbhigF4MlYemicBuZxmeC/O27NhYRNrerG5XH6T9W2rujBBsgaEV9/P3QtMxgiOQPSUzfOqw4FsopYNLZrd1BEm6evLxKG2r/VW7ryi4DlGyyZvt9KtGUqasCD4wpXEDquMKo5Np9u15lANiSWNKDtxGiJpA3tumuap1zNACbChi9FHciuYJbzWGbvShwmBbtWw0kSqSOow1hPT1jOYqlvSxzFrqiGk1gWEz6IjTB157Dk/ISPYb1pqTuFpbCwQ9gVTHsGy8xO8gg2mJqmE1gKnTuAXdGt568UOnH86u229KevtI5ADl999aA8exXgoUevCaz65JVCZw9eV3jzuSv1hbFj1xVWe+pKaibk0NVTS8ozV2bPQB16BlsGy5knozVk2MbzVjE2udO3nraS2hk5bPW0s/KsNZ4/wVEr5LavCz26dK1IdENp4YJdi+k7aAdwqf78s77esSNqXX7U14maO5d6WWsHrxtX7i2Rc0BaO3Xwdalfcu6FIxzbevxctTvYpr1ghFIilDAgfz4ivqUQVgl97dSWtCUzulC9FE3Kqv+j678+Nt03EGX9udhEjaoUT1mPKXZ21rv7vtu4Yfh8elBo+AiPsJgCUrAMl+Uigp6JV6wMj1+q/R46UqRIXMoUZKDuiLVUFotuGPUdkRYqyUHaFVAxLY9o2t8deyD/6vUXuftz07vJorjr2rHvmsVlJqn6Bi8m3Wtc2qB1ywY01K7ZFFWj+vwOEGq9GC65FskBNVQOCxZh2+2rGh6mfjdepOzdCEf3ssCeYCHs4VC1mIkXYPuCpdrtdr0TDNqzVCHUerhrugH07Qe4nlwx5PupVLetNzy2J1kI/bw3exirnv3YkWxZBq9btu8DyULo42nnK+yBRLo0C0EvRLKFlorN01ztK6nOScUL8bhESvBz4SpXDPm+a14kq0kgWQh97F9+caOUQSJdrA9ue4EaOgkVbbkA1xcs1l4keVCq9dO8QQVaLUOPZIu1/XXT1AcwOCFq/CpYbq41VSuZ5Ve5onrutIYvgg+ugs8WEm2XFirEqXfPc7YgjsUqVqov1gZ97OcYF8yBHHYGVuqHsoJTmomopbnNsvhR513pZqUc7uBOuw74ycV4Xx4Jl+Mw7TqkDDzRUlrzsvcRb5IKjsvpx2o+F+PRQ9FC+I/99C+PvYoVO0To66k19bMAPJL9AQweasmBRiJfiMnOnY5o7qu5l0fXv+m7/Ydj/2WYgzCuf+UIyqspxzutfgYNaQh4C6sptkuq2cX5LFNKwx2aWnDqcRIq1cpu6VXRmWEk+wMYPBy/vBIdeGGFCtnEZNBXQMQU+MWeypCBLNEu1RTKwjCgg8ACArZAMHbuUZ63YALqA8Ik2EhQWIqtDAzjNAASHBZqAGWAGGcBYEFioQGgDRTjVwU6WCxW/raAMYYFGzQWsDAHjnF7DCJ4LNxcGALIWF2DxxkEakYbSCbDxYPJIHh9QBnDgg8qC2jYA8uYEYAGlwXw6gAzduVFgsyipVYZaMbbcWTAV2zJmYK+eO0j52ANPNNwgILPcBKaADRO+2NBaKH21waiAfMucoCP2OZq/kHu/v7S9WAeLL+im6sQ7oRd6GAYL0jC7BDkKmVFuT+JcjBXMRvOxrWYubWiXIWMGF071u2xO8Lj2sPxBW1Y22p42oKXmnygVcqOgnhoQxDy9jWD0YFXKAOEjrw/Sdf/VG+3DjatVoSrkLENeNiH1wp91EeEqQn6CEab4Vp+Ai65yeXDMpe56PprOP91AFDTSa8ZhMN8c7Jv3+HRrCtSLGtDHNxuP0nie64VMBK1Dcr5KtipHgYtELRhDVKsIR9rTnbWbmVwsawNsXf7bnZBSRBjWeNS0riqvz8NO256h6LG+TY8vAyj2991e/RKbjD3APkymgWxyjxonT1GL29jdffpjl3fLlJlUJcPBuWOTD+rJmkk+4Vxk9f/rnqLV4BKGbwJuMXepThIzN2VRI61S311wthdwQ22LoVJmLorpsHSZVYCxsgMFgOjjcmse2IGditXzIDb3GbYuOSahZu43mKlt3DjmeYZuJfXSBLQyw+K+O5pXZlQb6flu4JfsAvqvIHk4ZXwSlK3lQ/hlFt5AFO6lY+bqd/KA+DAwzP3zXH3tgVWpZBAIizuZN58CJFI84Grf3iqgdiVEOAiY0NY3CCL9CbNmxECRaI2vMXY+fj4yT32FXyHLQSF5G3Ij70bWnd6YkhBgChm49Ffq/il6YZh+nhDqlrj0QoWMeM3To0PFcn6Dp+udXLoYAEb9rYeZufPctUWWlQj7ZhI5/X4M5SbBu7pZyo3DYd36N1z7b7Bj/6EeJGotVeXPFQSvEjUhnfOqyXBi0RteG5fD3OsugQwljXq/XPiLQliLJurFSSYqXTu6iP6moC4tbXhq3OnF5WFuwawmHWT9lgdm9SUi3dpFykbyvnJiiPwEGsIFAiasX6ux/0pq74IMRa34Q5RRW/qxgl2Z0SxMjyU+Fn9ftwrej0Qtrd1rUbR42ChEhxU2Dl9/bp9rvuunc9GxV0OljG3Oq1N/gHIsgUZWZhkaTnPQpFrPLCQuReA6uQfhi5s4/Rg6Re0kI3D4ellqDdV07z8XEFXZaNNaSJtQx27exUuJG+0clk3RGTlmt0QLBOu0YpDcnY3g7ghot2M0g3BoWJuiOjESemG4L8w7IaIv6vODSFExdwQILjWDcFx4NwQIQmrG4L76ogbIjLGdG4IXp+AbohYiajcEIIVhXACJAuIwQkgWFfFDGxuCBUD7rTI6IbgOCBuiMg+1LkhoJnmuyHckAZ0zH9UuB+WPDHzPZv5msU5X8wHB0zaS7U3RBFkLZxpojPm81Pv3H8O85x47/odtAZfoWFpPeraBK8+UZNDeT0y5nS5QmkdLiGW2NmyNs3iaAlBZclOVkgwz4m0/qdquKs2T2573nHedV2/rdvp8wDz/gpJlzKxuJ/Ux6Y+VM3d5UYmQwAuoMeehMb6dLIGrq5XzERQP1zr4X3V1o9dQ39PT0iP8ewmmhuy9zwRi4o5dE23e3m93ZEgsZwe6bGim3H5XV9zO19Kaai6VwnbF3DfTwnxmK/giRm+hGbKgsIGVT9v68+z/tVkWFCqMBU14j0c+/lbS/BCUcuCMqnv7uXzefCSK0ssaUeDsmilSHEWLSXK/UV/8VC+qB5vuJ5qy4YmJm9CNqxmdCk9i52JBV3KMHPmyJYNufO8SuhrP8XHEpVfBazbyesYpDoNEM3cNEu3y6a9BnFReoUx3JGmd5DElU1/12G4q8ns6dBL0cFGTn0fmvyW6FVo7zuqb0GziOAF6AhRdfeZ1HLgtWdPn6luPFNIyGXnFUp5z5nRmtQV50BRWm43U9jMxeYV23inmVyd0evM3rKsvslMawTkKNVTBspjVB4NPUKNQdXHpwQ2e3R6BTcfmxJfFjsyvYJqj0vJNYxdvHTHpPQuizqg9PdVlsNJWkeIkI3HolJkZhtnOg6ltDByFLpqYeUxaDRjoiPQN5P99K4e4Nly+ZE8EtUcmwUVitJMBxyRib9Bp3uMxx3lcEj/day2uHIJ0XxZO+I0sqr5FUUpaiyf0avVZC+AMZVpx66iKrx40gmgdsxZuQBlFvmdOjdLEKMS2eh3DrxmjmJf5e3Iy3mJ5FM2cfJeLdL5VEGAtUra0art9nNfz1ICwEA4C/M/psktB/Wk7ahLAIu0pYFwFqaipaF0xljt2vm4dK5r+Nx9Pms0yVzFS2az+XBKWFr1dlpUFdn8rpV97pbq5bSAkhlsjk3zyu1c6/rZ64ce6kdMwFJ2FvXwK5zPIYX2RO14T9XwYTIWt7ibJASN5XWrdLSFm7ae1xSPMHggIfdvo/HTYJV8IHXCFXUFDeOnUzC4Q5z0AHxSKpPFtH9rpj2NnghUMJPLuWtv26p5GepBwwYums0HNXZBConlK0XVGBcAstTCwODDrfjpqP7TnMJYSiAqk8ngP6vdzm3nJOfSeX4TFsnE791j3bpfeuQ4CYAPSmSiD/X+0Lgla7i4+VGZTAazD+U4umsMgnwYJuVymSxBIB8X58H9+gSXmBBaPJPXbvrS72siugIgE5UpwaD6rmewlinA4HbeUGngLwVKYM931sZPc459FYOgWAke09SrH+eTbMwNjTGJCubq7a5xSHYARGl7BTKx93Vb74/7z1oKQLls3d0sqdfVVKCCZXpl3v0imbXobgkK5nKpvhu5AAWLrK8q3REWydzWEX4FcJqwrnERKuE5AVABN4q4ryPD6cMS9oWefq8/Fzv/jqoU7089puoz8BSTW+VANNFZbYzFndbySIMQachGwk9Ikx5kz0h5NOqUNMaTnJPyiNUW3rXHaCe5rJ48bXc/EHGX6aCMiuTgzy9n13+q8JMiOfiPTX0QoZ4FtfM+UmNJCBmq0UDJYsoNr12s5+CmqFUeyYTTfhwHkSIkGHA6UYWPqUcCn9OUKnxMqRD4nH5hx0A8/L3Qc3zkR0LlBj1UsXy8x9z1Qx3BZ0c5jhxuzpbfoTRZKLhXxNby6AP/vobOo983kin2eaF6xV83Jq7+uAg6922luJSDH4aW+PlxdJHmBIE5nSnExLQliMnpSSEmvq2Eu5jdWwpxMc0MonI6mRhR4GRl5ukPmKLW2ZkzMfVzkkI7Du5Vd/zSuPvebeo5yxUZpBJTIIsreSXXLMQd4QnnYNLKQasX7CpBqw1yFIFeB1jtyxhPYl/yiLTC0eoas3c/hhP593nMJ+h9SwjvKX7Y0jAmn7pvskF5Esxt120Dx5tCTTvJ5rZOirjKZs28Y9P81h6xi9XJ9PPFs3C7/ZdpH/x2Gn3jnPdGuJQkhbSrir8kd1vXEHlygp81kSHwkW1anfpOfkjYsCUAOJju6WNEtKmIAD50QiIDC2BgQ7DEgMZwZCmIoO8OJCLSI6Lph6CvDCQhsnxR5L4M+B2VN2c0DNA7NDgR9W0aER/2Xg1AyHzDRjQqMI8RQER760aEj/nJAHztTRwRPnMnB6BhvJ0jYsPc0wHYGG/s6NkAphNHR3GLR8QHu88D8NDe7EFnr7cBIF6wXn+SL/xrMh/wUDCq8iYRhzWzR5LFve03CtiTdD7qXd1vAKc8DnwtkI/9umnqw6ABX0vkoQshs3HOebDuu7odRWP1Bi8nmzs8M2SLGxNRbm9BXOnWNukEwUkXCBimKQAfCY2x6FdCeZR6WCLLWsAKiqECUSvenGrA/VlPWv1QAUklYsxE3Dqg63YemoN75XZQnpekrbG4FXe+q35fu437Vg/u1BQWHC5jZdC7wyXopv6Tb3kibsXdzY8sNI27hvyw0FCJbPRZB8mRz9JmtXm6uTMP1s+d8GvDZawMDnML+Hl1FbPifG2hh19jmIuUVVtsu31Vp+eJibK/iGUo++htj71rByg8NoH2JEuhD9NQgE26GN2XLNZ2mYbcppoxDxdNspiuQ0CqxVzs+6lYt635PWwgWgp/mY6348NY9fxHj4QLc3jd8l8gEC2FP853ceS9kIgX5yHpiUi41CZ38zTX+0qshVL5UkzqYbYQAQdZOi+uguWw77vmpZEYtIFoKfyxf/nFjWIOiXi5fpAY1xepsq2XIPuS5dosNO09wbItF+JHwuXaLz1e8CULzrzlQrxk3l0Ey+q+0xK/CM6XJIUaMC1VitVkILhe8DVWuWL9sbbpYz8/6wbf20o6BCv2Y3ktVzqN5C5lSzE8b1Ok25mCyIM7bUtk1mcsXZDFtC0Rc/Bki2nSy/ZIvpEqOUIv93oF+KFsKQaP80GGAH2VK3dM2tfPy/1AAXwk/CM4PEBxOhSPhzheJ4/LnNh3/v16tjSfxy/F5qynijMqcT0Fmaf1L66MgIeEubCecvuoml+4z0LFdN6hqSXnJiepYi3t5P68m0j4R3CYHzGRHZ1hpUpZ00Sy5cSVoU+5LDnZIVLKprtZQ1pZmc8DS8IMOTy0qZglMxFLyJxOR21aZiE6mJwZRFelaBZoBDBRc6IRVOmaBfYCnLQ5MRd0qZtFqwWVwBlYFCxpnGV+L8XMM6Z0FuxB0MTOyeZDnd5Zon3goLVU8egC1sTIWLAaQkAbqMbz4ILUYiLWADV+JCDBaTEBZWCaZF0Gg9LShVgVkCay/ojwL8D+M4R+ifSRgoUtAE3JgndbGgPPBKsCHHSWrAq6gDN4FoLBZv/ediN4CSwVKXIRDKlWGSJzZa26EIZjUxeh5KizH7LaH9yWc1iF8EmxYjxohxXCInZciTmwF8MwaOpymBwRuiCGIVKXxOSIY6eZOTdX8Vzcup100ThLyb+uXyQXfw7ieH9sxnreH0H3kjEWQMFcLqf4wt/ml/n6/b8zMSjRtIeKluFziQiwEIrLZs+L48H1j82xOw6qIZOWs+glcNFZTpWZuXOVKbzshPUq152VuHHhSdBlK48A9xxg27zsuhbJj0Z1AlTawkqxCEQkZKsAi0kvAxGmbB1gMU++xmnh/MPVuydyxsc9n5bMZjObzoIY3ohJVKoIiw9dayMSFjTNjljxnJ+ghHmcf9Rer+ArEwXeX6jxlxs6zJUKYHoFSmA/HCZDQ4d+LVKk7XMQDRoAj7V/LZTL4dOxmXbo0kF0Axayc6AuOQS4lmsOKbZqWQ3bbbjBi5BQXUsISEgvJjCYy1WK3wR4V8FMrN+lWL9nDSZ+gQgQ5SuDAJddEhJo8VrAoIc3OCSfNS1RCl3yodMSdvQl7F7S5KtgJpakgVdBOxZ1uSHAklxvYDXQQ4ce3Ufq5yKZpf/ibS3lwA3wfdlyDKhrANESpL8IwLWevgARtt52BUIy0rDImXSoacNmuL6XfnrLxRcGe7LL5qtIvzvhDiCWL8ekXZKsij6CJ1oOnwzeCuBN4VvcCkJeh4kUkOVCDItPX4mJGNguxbAcHup2d2ywQORYDa/CJTnMsWinitHDz4hIXKIwGzQeOqWhDoJm8TsiyCnCv4qWwz+HK8kNs6TAj+KCv9/AkYIfcCgwf4kQ/nj2GoL4+bkrPULwRIvqT/kRQiBclIPsCOcqWBL7c9cfJZvlVbLsLuIkYQq4TXYY0rqKtiBFWI65Ii6yFojrKneGwoVehucMxuBL1origsCioWgNAmN4sCGYAQ1zECa3YtBhmOEaYQvElDDAQzFTBvpgTM62w8MxQ7tOH5DJIFMhmQG0JSiT1yZsWGasMsyBmYJzOdWszAnO5CxdOjwzNHZtAZqshiJCNCPlZAjSlKGTYZoQCVOgJsNFFKoZkMkK1mRGBhWuGZCwBGyyO3s8ZDPayOuDNvmTPy5gMj79s4ZM8jpLxSQjeFPDRLKlzQng5FYRIoQzXEUMQZzADEUc23QgZyRULqYGqlgeVBNz10fVIPhsWI0QWRLSCVLQBHVquaBhnTQTNrAT5yGL6gHh2bAeISoa1wOisoE9QlQqxBMElgR5CrG5ME/4awsDPYUcZKGeIBNdsKeQjzTcE1YLyoBPFSdByCdBShH0KZ0vkrBPeO5oAj8J3YUsVEzwZyxVfKmyBoAm9M2LlT4IVIVN+/khcJnDX4ZOe/4hdFkIgD3YFIaWrksSXCKjBgouyCwpZcAtjdqgVymuOI7IHGqqYSKNLMoJN6VmgqfuPi5np7fjZG18OY4uXQ5iAXngKRIICFaoDQZMaOsVLczDEhRIkAmfBZd3x556j1qKVw9vp8bM3rlX84ve9TxsTmWFLMgK8rg910MNneDBRFbpPNTlHxnkWTQPb1MN4/DwVG27b8KZdRMVycPv3cbVz05JIS2Vx2JOKTi+HNxDd+wBHzNMIimU+SXmdwZVBMISeeiHphvv1AzSUvksTpc31DSiYpl6KT0TQPQPfgogxZphZGAnycyRXr24/m27dambBBnlfoE87H01pz2vGg18XKYMA9XoSgrlcTj5gpdZIyQQlig0z7UzPBt5Ww+HaTB9BB9eQLZcYZFSukWtVQp981fTDrKH80tSHz4olsfjW91PG6V2gA6fYAphidwdlft26PoReNkM21R5BfKwq82c+O7hAMW1weBhiTz0Xd8dD7DfDwYPCqixhWERMDQcGmFBfqqGV6cZPD/a9PHZ9T2UpxCmgRbO47Ttq28a/efLZyK7TdVIN7hX4TzMvRuepu6rH2vXS6HjMnkMdm78ZR7L4BklMvbDInn41Xb7uVuqk057v0Aedu/23fNydVJDIC1VisVt0yxVyq0sqGSuxQ8HhGDmvS4oRMkCCwwhyWiDQ8R2ABMggtgExiAR6ehBAkVgMspgEfEKBgeMIMuXLmhEyoEOHIGp2IJHFJpVzcgWRGJiJFUyxmASsfaDA0oQhacLKqFmtneAff/0MsxvWjcvP1eD274/m5MJJ0SuiM+OqlvktcMagSiz4XiYN+7ABSuSiV+sEI8vA3KbhSHilSvM5GFTjbNsu/tUbWvgEoGQGVBPEaZ7N06ywM00kpdXqkx/HdwGvJtG985aqgiL3j02bjEE3378pKMSFy3aK58hH6moZz5TnlJt73TH3VPrBuUQ9osV4VG19dCNfXfQDtqwYGkunzrkNREpJ6+CMqPnyTklm0uRcviGoesVK8Jj07iq33SVkodfrCyPT7aJBJYvwqw7VHOYmVrpBeVKMjHRKMzB+JWA0kVYfZmE4KMsko5frAgPt6+H+V08A5e46A/baRm4UdWYefpmAfiW0/JXeQTLt65vtn/7O1HNzSqCsF54GEyKFUJkQEQwSVdgt879H7NDe5LKtGE9AVVjpwX4lnAehIQow07KQJthB0EXZthJ8fUZdiQMkAw70ABQZdgRtR7NsAO0Xp1hR8IAy7CT4msz7Ij6XvrplRl2JNh0hp2Ugi3DjoQJmmEnJaHOsCPBxzLspPDaDDsSdDTDDqSAlBl2ZPhohh2IgTrDjowDmmEHVMPaDDsyDnSGHYiILcOOmA2UYQehocmwI8NHMuxA+MoMOxJ8JsNOysKYYUfPBc+ww5HSZ9gRzl84ww44e3UZdoRzF86wA85cXYYdof7EMuyAGlSbYUfIAcqwA+JrMuzIsOEMOxC4LsOOdBdxvp6gzLAD7zCkdRVtgTHDDtiCwhl2JBYMkWEnpWjIsCOzoohcHtBQNGTykPCgMuykNCwZdkQrBhpKBqwR6gw7YgZghh2EgSrDjsi2AzPsAHadKsOOBBnJsJNCKzPsCLUJlWEHVBmWDDsSLkyGnZSLMcOOyNJFM+wAxq46w45MQ8EBVZBy0gVTKdCxQCqUhDaISsKFC6BKyViDpyQjAwmcSkkog6ZkO3swYArayKuCpYQnf0RYEnj6ZwhJEuosFRNbcJSaiWRLawyKEq0icEAUsIrogqGwGeof84M3u5e/5h/sX2tRn+gvrAxH+SuiyP8RwYS3sroNEimwgngyBgRqM71iWHbRFCq9fV5xbftmCpncMK/App1yhCvdIq+ohr0xiwlviiNM3W6YwkS2wSuecv9LYWEb3xVMu+Ol0Lit7opq3eNS6NzmdkW37mopdGI76+lX/T6W1hHIBtZXD8qdqwAP3bImsOq9KoXOblJXePPulPrC2LZ0hdXuR0nNhGxEPbWk3IGSOone8Hm6ybbTY7SGDNu4yxRjA9tLBFyxryS1M7Kh9LSzcicZz594C/lXRFn8dSvfRjLr9LkqwWXICyPjBvICJN5CBlBA14AX7bzfylwniOrT0CeTXlVYtF8CWHEhfgI0XAOHbaOu4QpwvnDbCR/tC7Kj4DHZBF4JFpW2S4ABpcpKMKgEWQKMJcRV8I3OYmacU6pHHugqZ0Y63aqE4jJiLE/SjFZtUWW5Ap2EzBisLvUyekr1KTPubpvmb6KxdxbMxAICLGEsIsxSivUPKdY/ssbF4eBaydC4yKm0X7ws3TXdEQFbfipz/LNWZToDOpE0LoYetimiEyIgXawCbHatIlGe6u3WtSc5ESBQwIo9P5xeTfp1CbJGtrFhN4fiubgfliA8OfAqn4s8mZlHJwe+iufi/rp8vDdNhVkNAHhYRsEgXdalHzqQzUIUf+JQOAtT1clpASv2SXF/cN9YUF/SinbaFknQfEkr2t71O34NuEiZexDbOvl9x+2cOIRF6DTSJGCheC4ucisGgWUuvyhbq8MOy+QyWBSoGPsiXbDdOgJAwQwun6p2d0q6y+ujRLwMrlQNY6XKsBAuP0ihoj1hohKXLcNIuBdBCv2AXjERgmvIW92ES1s2jmZJgEoUQJcpZ6BAsZarGZRZIbwKZToaKFC2D9Q0Cq4Wp1qXaSVkcJG1ItKHYx6c7GyMxLq8G8DrFl/SiobeyIuwoPt46nZJF9hANANPuH75khlowhXBl7RbcN1UDHmTIrXeAmEr5th9fuqd+88B9516oLG09UyACxDyIK1RQiQ+HyrkKxtzvBB9+sUFDfkHX9bIIfrb00fp/ne3xRDx6HggUYyujyYi0YmQIg/ZEFdErzhEcJG/3hgijDg9xoYZhcrMHGtEn6UIAo78Q5WMqCOSBxN65J/t2+KPGO1DBCEFiscQiSRBJsORUgKmmCSShygwySOSFZ1EjgQqRMkjYIlTYtZd4YKrj1ii9R4fOuTrP3v8EKePFCwyopjkLERbPHM8E70qEEFN/qpgiGxKZiHoLH07OmoPMP9cLpInrFIezLMyNcW1R7CyAHcWk1pLVzAmuIZFQUKUIhQmPIlF+VOE8mcmSsudNa1QrfSQicLbMGc7/kiUHedQaCcPtQjuKpqD98wc2Kxwz8LjGQqtBt/SgdBq8gUdHC1WT7/02D5p/qVMJMe1JlMgx8LQqApXZHMYRwSvsrJXeKuRTaHzNvaKbzexKQashb0SMBvYEb7Gvl7RjeY1i41b1xG23rimsAnbesU1mNYUJmVZr6AWw5pCldjVK3qOWU2xkFjVK4sco5piwdjUnpa1mdS0riEsal/NGAxqAS5pTyfwJnOaYiGyplcaWcY0NQIoW3qFt5jSpKYjLGlPzRkMaVLH8Rasp+vsBiyjfeQcMoxoMQfEhkZIKE1oUvsTFrSn/Q0GdDzvgg1q84Lkd7v8It+gbno3acS7rh37rjntjwVV3+DFpG28tEG7cQ5oqDfOKap84xx2gGnjnMKHSZ3dbu9aNCg5IBDJYgYPg1gPH9wAvmASonlyRqRpp/tLlT4PFuFcpeQokXo89YpkDEeyRsSTj37uHVgZBpCxsBHTfT80gtmxihlxTkGz72ooPV4IFUhmod32QC5TCOwkmIUlGiahaBbew2nEyRBX4QJzgUiEh08KOOOdisPhIiAmAJbI6wEsSTfYciBLtwUTfv4ZhqSffWY1K5aIOloqlVmoWdR6P7+YCx57h8CeYKl1Ek89HnWwPu84224k5Xq8MdHlW+fX6Tsk0XS8Tt8ps0zzyHiK6Rhbn1+aQz8Hij2MFRiaGmmOQLYsg9fgPUII/3VbsPfHOdRQ3AOJdGkWgl6IZAuZA5unudpXUp2TihfiUQ/zHge8rB3NhatcMeRZpBHsxQLJQuhj//LLHB8qY5BIF+sDwe7wIlS05QJcX7BYe+/qfgMercZa/yJXtNUy9Ei2WNtfN019GASNXwXLzTUkLXsy05Q52WV67rSGL4LwOwKQtksLFeLUu2fX899hFSvVF2uDPvb1VAiLsgg7Ayv1Q1kh71xJqF2KFuKHh+BDm5VyuIM77TqwKPLI8AmFy3GYdh1SBp5oKa152fuIN0kFx+X0YzUee/heSTgOA9FC+OhDPCG2+hUe/qC4r6fW1MiFmsgqC2R/AIOHWnJoncgXYjJfPQmOTqTPOYQE5dWU4w0/vaA7OpJXU2yXVLOL81mmlIY7NLXg1OMkVKqVp4dwRIelkewPYPBw/CI7z8MKFbKJySCngIgpyIk9lSEDL6JdqinsgvfnEEFOsVPHEOTEzj08yCmagPogJwk2EuSUYiuDnDgNgAQ5hRpAGeTEWQBYkFNoAGiDnPhVgQ5yipW/LciJYcEGOQUszEFO3B6DCHIKNxeGICdW12BBTpGa0QY5yXDxICcIXh/kxLDgg5wCGvYgJ87niwU5hS5fbZATu/IiQU7RUqsMcuLtODLAKLbkTAFGvPaRc7AGOWk4QEFOOAlNkBOn/bEgp1D7a4OcgHkXBTmhR83zD9oQp7ftsOnrL247V7BDzpGuFd+ghXAn7UKXDrOq+81xb+CBFMzhMp+/aCiE8jnIs0WG5qRIgQNxMa4mrMtDFF0KS8DEy+WKBK2WGhQ2VGyFEkeK0a0iHNB+swD/swance1ufGJQrkK2YXghOe8V6pZ4ExZsWlrKxoI6qF1R+UwpNAp9JLniwCeSqsm9JAbBD1+9WRZI5qCN9NlQDDnKYorI/uQOQ7wuxc5CdHgXCRlkLG1DnV9zPWkNTkeHkja0s4Jix6gvZ9MuROr9YLRAefe53QyJK1DTaVbjHEQ6Hb+Pi+XiV6LH44cfN8XQ4BT94cgph4Yl6w/VjTb2g1yvsMx8wfKU5uXLwSRylPmoYIayHFw4H60PGWejzUGjDxE9vWo6Q2TGLJLePxq3SW7/fFQo0X+K+vfCqFDK/xT1H+VGEpb8PxhMaeZ/rdYFjFZ6qV6NZoX5KruhE1Zf5JbO2h79TZ2IjuG2DoSuNe38DlHYd3xUKG18xcEWMvuLj+0QA+ZhDY4I5YjgPNkMxM/XzasEM5DO+JJE9Hw8fPUeRB6djGiNCZjiWVkOdDR9/KlNEfV8P+BR9YkSUUfWs+js4UYYa6mPsBcwIKPsEw6mSHuZVqNizSE1Y4k2lzLB4s1hHtqIc5aFIPo+YpIRgS9nI+wVcyQ+q6kl0fjxypsRkc/yIaPyk7ljiMwXMNCsXcYIfZaFIEo/HiP2SH1Bn2BR80l3aKPmhT0hxLdF7gvaT8TPp6uKPn5e2AtyFuZIfkFfUNH8SWdYIvolcxSP6k9nqD6yX6g3JdH9oPbMifBnuVFR/hEbS6Q/3zfyaP+4c/Ij/o3s8Kh/EUV95L/MQiRO7dJNU1l8/hZAajoabwJIuJC3AVImphsBvBZmXXDQpq3w+D3StwPi8Xq03RBgeVC3BCIOlpsCgsMq5rZAYm0abwyomKC3Bgg26psDLKOc2wMR0R9xg0DC33yLIOVf/CaBYLeG3CZIdmnKGwW8pkRvFSSnP9qbBXyrJQ71INbQeMNAxYS+ZUBQst00YG1/5rZBRMh440BwSsVEQie7aGMsNMuEu30QEbHeQBDMWc6BGExcqxeR54DeRoA4qG8k8BoEvZUQaxD1zQTecsFvJ8SGi/6GgmTV4W4ppIuL9aYCy0ZwWyFik3Fjgd/jkLcW4s2N6eaCQGfR4ZiButLfYJDiU7cYYBqWmwwsG8lthohOzo0GdoQQtxoiGoabDYIVH73dkCzx6hsOEvuUuWGQWqjGWwYSLabjYr/xoOOCxx9iZHQ3H/jVBb/9EK8u+hsQ4HwNAkqG8fXj47SZAwhcfiJDSeTBEkF1wkiJKztM+UF6NwQiY+C5+kd4QxwijPE+WIcxv9jSfJj/zwH5kma0ehiRpTsCWwWtWODxaohCXvbg6h+eum88xEVKgRKrC8q2D8EiYSvmoMEczJi+Kvjk2q3r756qtnXAo6fhz0VUAlClSC1ETJHBsYfWfQhyT6WwlWFtjsPY7d9uRd1240trUdMP1rWjAzZawa/yYEAk2C6tTRtsF7I1DxafgSVFNkYj+JzLnwQEznLkN6SR6uHuqW5EYKtoFt7n7vDOPbt0wwFCetI5qLIGZrZtXobBZRTA8mQzEFshWpuNNPN9K+rFq2QGWr8IvW530+5RhpqUyEA/NMfd21aG68nmfMdudKjqDj7kWTDnS1aAyQF9x2qXibTru+NB1o2raAYe8kQcAMe8ECcco49ukgduVYLDcxXOwKyOY/fKNQ44bwJAA+kM1M2s9h+abpQqt7iADhvY+8r2Fze+cB7mm7ofRvHKGBfIw/7gvo8P9ZcGOqeAwcMSeeia5TkUz8CdDIjPisUzFM/AvQ7UjyK1EYrntfdOB52UKNHq2z14REq1/FqkUOvlFMBSeWP9b+/fCYf5STKvzUK0oQyaWHl5shmIj9OfxJC+cAbmdlnbxKihePaahJyNoMsSczwi/a4qZNHBjNBue3gZRre/6/aHrhWux1ChPCs5/P7VWN19uhN9+6toQfzlDrRsf7uKFjwlwBx/4JfQOf40+JjjD6ehdfyJ2HCOP4CO1fEnGh2I4w+goXT8idARxx9k5+kcf1I9RTjbYEVlcLZJtbWOi83xp+cissKNjj8RG8TxB5mvOscfOl+Tw+PX7XPddy34ZlgiUegQOa7RdpDsM7ceJidM7AfKMJ1IJeh7+yYuRG0hYA7Sg+0EOjnctvaC4sA7IQEdehfiwVjaABXQ2C7DRt4hP6AvmIPzdFBCxn8RJsSBesIiOVQv1hfonhLsCfW2UsBCdACfsCEO4YuwYg7mEz7g4XyZcUIc2KcDJTm0LzNS8IP8dJzEh/lFGNAH/AkJ6JC/CA/y4D+hARz+F5oztEMAmC6QU6AIF9ZRkJBBnAVF2EgcCOleCHUiFNkNcY6FdPSCzoVSXFiHA8QHcTqU4sQ7IiBSmDOiFCvttglzUhThwzsuEj6Y86IIH96hgc+zj2V0ot7RAXUR5uwo20uk9wHvKcD9ULy3dNQY50ipuYe7MKBpF7sxSvWRggXgTCn6pbTfpzwTzvGSUIGdL0W48A4Z4OwFdsoUXONJdwmyzAMuk1LjRs0IdeIUOoeQOXaA44g8545kPJEOnnQsmZw8kvWCdPSk64TJ2SP6VpTDB/hCFqePnAft+MHo2Jw/AlYyB1BCK88JJBg9pCMooWNyBolOfwmHEHDsa3AKyfQf64yBFKDZISNbJfSccpxEWk7iU54sZ5GAFekwSo83LE4jZJ5TjiNB95S8LpJUq7gyErBG1NiXavN1Pilrt5IV50whKpTLYfj60tS7p3EaRgoScamCLD4+u76HcsgIuHhlcxn17rFxmzmzlaJbokLlOKg7BSxq4ZNMx/fVtDmtK0w3XH4u5MENqrO5b6+ErWog5GB33AJEonVb07c3gTj1aQFcqac2RDS4aTls2kcbwtsctDwD5pgxJmE8YmR5CDuhdPsZj2w05mzHmRwHwhcb4hscsZL2oyo+bb3a2OPwRf7XkEeW85Xjw3heQyZGtys7HgifazQgDA5XdkTg3tZoPOhdrRw27WcN4W1OVo4B6WENCfz/vL1bd2Q5bu/5Xbpfa+UJ3kDSb9XVLrtn2T69XO2+uJYf1JXKKo1VUo5S2RfPl58IgCkF/wFgX0JnHrzaWYA2GRvcJPEjAO46Xl3+HvyzVfwU9h2sLvVi8VR17sbuI9Wlfqw5T4X9yRWHqUs7lKWTVBifO49RV/Ri8Qz1oie7D1BX9Gb59PSiO/uPTlf0Z9OGZv+h6VJPlk9M557sPy5d6snyWanxDW0+klzxTpZPSS9ey/4j0tVvxj2ENN7OruPHLW9oQ6euPhZd8V3Zp5EXn9T2o8gV72Vt+7uOQtfaZZM13rgPSyegcyf2Hn8u9WL57BOpxd6Dz3XrsXvGqC3Juw4YV4yPbX254rBz2adfd9KJrv11x5yL48Y944Qxs+uAc3G2d083YZbfdbS5bBnvXBPtsedQc2UP/BNNtSP7jjOX+rPuLHPu0HUHmUujxD3FnDuy6whzmYM655fIQHccXq6YyRZPCS+mst1HhCvm+I29uebAclNv1lGSq44ql/rjnlMCKthzSKl9vRdHIt/dPj87r+OL+I2ORKbH7TsSeenw3iORuQ/7j0SUjswY5uc/n26Y+ZfT+d6qrsAfeMciS22/HrR+83j/+HR0klf1QP2zN+zHrx6fnx8vS7Sv6MrLX17Tm+PS88+M/fgVrxryv7z8m2t68P724/NP33xe+3m8KF/T5of7m+fvfrpZ+U2ea1/TqnD+Xx2t+O3NDyYQn9u+/Jvre8D3CG1p/uUPrm+bKwpvafvlD65v+zefHtlD2dL8+d9c34N/vf300z++/3HTCzj/m+t78PXDw6Pc8LWlD/NfXTnf/P7u9q8fH5+ev7v7n3Xf3+XfXNMDvuXhVy9T6e8ev1Xul9G6YfzhNX3hGy/kb14fvKoz1l9e05u7n29+vP31x7tVHThTvsoax3n18a//euMSbrAD/sk17Z/+5/1pdK1q+lz7ql/9cPPxu58eV467V+Wr2vx4+8Pdh7sfvnxK69q+/KNr+iDDVL+aUGt+1r/q1998uP32yT66gJ99pn3V3ubu+bRXNh092NycaV/1W0cE3bqf+qp8TZv3fHHxHx6f/vvD/eO6j+niT95gd+GXIFf3F69/ctU7/2yd/sDr/rxUAnDdL10RRav9Wviza/rx8aUq/LoOzPpXrVMudIRlahd0XNkDHzqqHdkHHVfsqlZAx4td1RXQUenReug4d2QXdFxq34WOsJXaAx2X2l8DHWFmuALzLfVmDXSElff/r96smzyugo5L/XGhI8yie6Cj9vVeQMff3f7tdKmt0YshfSPkeP60fcTxS2/3AsepB/t542U3Zsxzd++Fq0ydONP11qbLFmHaWW/HX54rX9Hmp1M01P2tE3Q7tTqrb2t3bZz51OCOMPOFlv0o86nxfUHmi+0vhGRBF3YGZC31Yt0LeOPfvhBfPg/wfeFfCz1YO9B3BJev+O3mcfvFL9982L7Q+qrI8qkXVwWWL/RmIa586sfOsPKlceBElc8DYUdQ+dJIsGPK53GwPaR8oWU/onxqfF9A+UL7bjz51PyucPLFb8CPJofhvy+YfKEPi7HkUyd2h5Iv9GJNJPm8y7oikHxhB7IURz6Pyp1h5Mt9WIwix37sDiJf7styDDl2Zn8I+XJvtmxX9geQL+9TF+LHcZ+6M3x8oR/L0eP6d7M5WHv5fSzHjuMr2R86vvatuEHa+pvZFaC94e2s79LVYePL35IdtY2f0fag7eV3srL1XSHjKy2yxQ5v24OleHFw6PeFiy/0YTlaHOjK3mDxVWuuG5+tLLu7wrOXx8WmnlwRKL7ol6+LEwf3/Low8aXx4kaJz2NlV5D40rzuxojP8/muEPFFm3iHNWCJPWc169r3j2q0buw7qVnozbqDmqk7153TLIwO95hm6sauU5pFWuoc0gAq3XFGszxvLR6K4MS1+0xkeTbf1pdrzme29GUV5bjqdGahN+7hzOzu7zmbUb7X6WjmL999fvpwo/KGL6L1hzI/PN3eqNRgetQvX9QsOP/Sqa2HP3M7m09+lHbXH/vAb9x15qN0ADcAj/piM7f+qndFyziZ/Prx55s7zY+b2z7XfKvW39/++HS7xuBD7c1+9cebB2shg199pvlWrX88hSV/vdz2q96bve91pn7/1nY+TrTfHV/k729XfWOo/Va9eHh8+vnmfsWLP1N8q7Y/nByHFU2/6r1Vy3efvrl//HS7ZnJ5UXy7tn97/LPH93c/rGj9TPXt2v/uuLJ/vr9ZHnST6tu1//Xzl8fePf99RSdQ/017cnujJewoXRDFt2v7kbMhVrT9ovhWbT8//tvnpz9/Wrkb+uWF+v+Zfvzu8f726UY/DvI6dP53b/iN3t88rPpCXhTf8Pv8ePzDNSPjRfEN58W/39+d9tJrZsZX1Tds/1ENJ79o+/HhbX/37x6fPmv+ETb8Re8tdwGi8cLRvn16/JkH+LfHJdejcZc7hLVPesPeXz7/1Cr2ZE3vVz/prTyMxz//38ft1OlgarF7k+rbeTi/vv1w2lb9+X7NmJ+U36oPP918+tXT7cfTa1/swqz7ZqvAKfvpw5r2zzXftPX7NZ78ueab+VynNLRlf2tovVWrT6f8v+VmX9TecLb41SkH6LiZ+9Xj39ZMCbP6W/Xj55v/vt3w5V2ov5nn+fnj/d0Pa0xxrvl2s48F83Hi2UryV7ZsY3y1A9sZ/lI/lgH+3JH99H5pJJjofu7AZm6/vAM3oD1uuDcS+xWEzUXkF5RtFx9fMR9t6MVeSr+pF8tb0N18fnFVsOA8rApbybz2FZ5h+e/MZM4XiQvl10Lr+Wmrbot47Zoxgdw+nFaEyykU2npV29nOx9unU/Lu891fbv/3w/0lMoH2LtV3tvvh7vb+/T893b1XQpqgzVl1Z3v3xx6zwnJ7s+rO9m74FoaVLaLy9W3+y93Dfy+PHu0Prm/7j9+pW0+77Zc/uL7tP21t+09Xtv1893y/dmCB7tUtrjOyon91y+tMrOhf3fI6Ayv6G1o+X0J++vx8fG3aIv4qeptFZH7culXktXcWh1AGJTT06IzFxeefVt9nbQxCI696e1s6Bcj/x8f3mkuDjU2qu3/Z49MPtysbnHX3tviDXvPoYmD4lY7UdpTQxK/v740iS9jgpf6WX6h+TPr5BMjf+LN6febGb0s6uz67Tm3ybs3Yd1t6unl/p3BktbUX3ata/Pj0eEp3Xdfkq/JVbZr7Xq3Nxd3vyt/5+f7SOdF/pGheN2I+/erzz5dFBfVR80V3c4vnn51V5+WL4G0+tPOHrfvCvvRr61CYWlocAwutSJmo3zw83z580s6M59Yutde3em4S/RhO/vP6QDEjgOvsMVrw1tRP6cgOc5+1scrY2NAqYHjeigYL17fw/s44LZpe1qvSnjasGfqshaWJ2X3+D0elhV/worLn+Q+PT88//fZRm/HPmjjX2tPKp8fPK1o511rZyvRp3N8cfYDP72///fjCb5QihudtXepe0+KvOXpuXYuvurtafHz4cf2PvFS+qs1VP/NSeU+bVgDfeVNa8N76FsxQNRj4l2Fq69v44RTt9emZi6T63/CseE1b5hm51p56DL6+zefH0wmu29KLyr7nu6FFcztmWNH69oyDk/N2lEOTLb9HPSCZf8fF4Yg/z55vMT7/+deXDz/+x+u3F18esjUynLu0Y6vx0t6eaHBodFUc+GuLWgS48/TLlKp//MvN/WcuifvNzQ8/eS/TUN/e7mcGEUd//Xc3P376+uH9dxzY+83j7YcPdz+cyqQrk/ZLL1b98fY+ffr85/d3f9GuMn5t+lxnVQtrI25em9gRa+OPH+es/3wQ7Tjj99r1Imtem90TU+PZ0I6meW1zexzNYotqBA20uCl2xh2nOl1+HaOb4mW8loxImdemNsbIeG0tRMe8trkzLsZreyEi5rXtnbEwXtt2FMzZGrY5/sWfEQxH9mwy2BbzsqI1K9rlotGtcS5e20sRLmdLys7YFs+y1ubspdGN8SzuLGRs1F6noG0xLO7848aNnM1DuyJGFuaIVS3vi1VZ3bK3N9kZn+LOwnpkytksvC0mBb+YaUOunMV9fli/Hf/0+YEvdDmFLn99LwDBfOIvDW1rY/Wwa2P+sAEATk1MU8nPdw9/ulUyIl6e/6qw/dk3f1t49ovC5mf/Rc+ve3n0Xy4z6lY+WaD2cRf++FcNgH9pANV2tqNFLsxNePEK3rt/+Hxz/83jw/PT4/3ijzG0r2vV+2mXipvbYhZqt/BFvPm5N/9z9/Nn78mvCtufvTh13GybLuY4q5ulp59pbH/6F6DoPP5MZfPzn+9+vv1PLU3o5fFnGpuf/v5GDoW+u/nLcQHzhqaieWVr/3r38Fmrg2k0+aq+ud2/u9Pt3/fO48fP1Pkevoj3vCX3nex55k+Pn5+cN/1FvPm5d/Yh5Zdn3y2fTDrPN52XB9t3Wfvl6ifQL1+te7cIPHfaVBk0eGvNDZN17i+Esb8KxtUlMHbWv1gsfuG3sbLSxYoyFxvaMWpaLBW02PJLzOoVK0pXbGjHPOZaKlKx5W2tMIlSjmJDC37tiZWFJza0Zx/dLZaY2NCKVU9isZjEhjbMyhHLZSM2tWLWiFhTIGJTS2Y1iDWlIDa15Nd9WF30YWubWoWH5fIOm1oxajksF3LY0MrS0erKkg27W7TrM2wuzrDtS9ArMSyXYdj2FRjBXosFF7bNHVZ1hTWlFba1pDtIfhGFTS3oFRMWyyVsXKX21UZ4g8II2/q5swrCG5RA2LCjdE9fryt2cE2lg+vLHFxR4+DqAge7qxtcWdpgd12DK4sa7KpocEU5g321DK4pZHBdFYO3KGFwXf2CtyhesLtywZVlC3bWLLiqYMF11QreolTBlXUK3qRIwb4KBdeUJ9hXm+CawgRXVSV4g5IEV9UjeINiBNdVIniLMgT7ahBcU4BgofrA2Fo9Pf7N9EhZ+FaQ8vVhO0mldHU3rjxr/wpmiZ3YAi7PerC1dK/R+jakedb+9vK9a3rgw85pAGwq4bvq1y9h0PNfv7mM75oeLADSs/a3lvJd9e7Xmn5jOd81ba+Cqmdd2FfSd01PlnDrWSc2l/Vd0/4CiD1rfmtp3zWtLyHaaQLaWN53XftL8HbqweYSv+v6sIR152l4a5nfdX1YBXynjuwr9bu6Nw4Kxm5sKfe7rn0fEk/tbyz5u6b9dfj4rBc7y/5u78siWDY7tb3078rv10XO89e7rfzvym/XhdHzl7utBPDK+XMBU88z6NYywCv74ADsuf0tpYDXte2i7anxbeWA1+4iroLesMPYTr7f4Bdch8PnX/DGZYHXeDDLoPysi/tp+YIXtYz4pqG4n/K5/VgBz8+6cQVB91eMJYx+vkbsZenLPfCAOvZgD1X3fTsPrZ/7dXv4utuyD9nPmt5H2pdmkxW4fZ4yrmDubl/WgfezvlxH331PdwnBnzu7ezn8wgzlwvhpctpF5Ne0voDlLzuxk827fVkJ6M86cyWld0eGj+rPOrGP1y/s7D1oP23k95D7JfK3jM9n+refoS/NWZt6chXNX9+TNVva67i+v4q4cP98FdlF+C++0DPMf7oZ8KLh03+8Guu/PGQrzucubcf4r+3twffQ6Jxy8vBwWr3vHh/Uje9rwxeK17f9/u7nU0T848N3z3+/v1VuuD17zZeq17f/dPfDT/4Y+eWZyvXtfby/uXtYaPBc5w1bPK1/356KNV/OBkrbk/ab9ELx6qd2NzjzXkvPR9lvPv3h6ebjR4UEv7aIertaniaKvx6ftWDaM5Xrf6njrL62uMNJ9dp0ndPXVnc5pV67njP62uweJ9SzqO18no2jzU7nYouqswktbnIyvRZ15/K1tW1OpdeS4UyezbTbnEivrQXn8bXNnU6j1/aCs/ja9k4n0Wvbdg7PFtLNTqE/I+jO4PlksM0JXNGa5fxdNLrV6fPaXnL2Xhvf6+R5ljWcu9dGNzp17iykO3NnU9A2J86df1yX6Wwe2uUqLcwRq1re56Stbtnbju10ytxZWHfGzmbhbU4YfjHgfP36Uf9Qjv/9TVywL8/Z44Wd+rbPEXtpda8vNjc9b5XVEpRTqx/d4pMLz3+2tqgvj3/GHeqGp386muHh/c3T382d8EszqLqrvQ+PD8//fKumL0+NTXq7W/pWO0G/aOdbPDbf0MrCpv6lnZ37eqflxa39S9u7d/dO60sb/JfG9+7x57Y3bPNfP4tdO/2lds3N/tzu5v2+06695X/9Njfv+p32nI3/S4M79v5Oiyu2/y8tX+EBOD1Y4QS89OAKP8Dpge8KvK6bu7wBdx6xHYKzKWS7T7DcpucWYNN7PAOnB2ucg5cuXOMfOBZ3XISXpnd4Cd4MZjsKr9PXdl/Bm7sWN+1n+4u9+3Z/Zlnb/n6/YW37uuugd2Cb9+DN5rYD8Tqbb/ch4NsCN+KzEhU3/rvrRmzZ1H/ecmPGl05Zm8W7+9t/O/2/bkNnWrtaOeHk//Cb+KKy+/m/X37+7695/h+Wn/+Hvc///Je//s7d2700A5q7WjPWvJc2nGo9C0+27tqZHr901c5CG88iNj2Pl3ZmxV1tHffvtzf6GvnSzIvOrhYeP3w4Tv9+Cy86+37DOApd+BWvWmtbmRMqjjPEv99+uD1qG57nNJmcq67+VZdT7b/efPxoLW+v4vX85oenoylvMXJzQyu/XHqC+2O/qLm9O8Vzb/nhv1T/7Pp+fImq3t6Vy7+8vjcSZb7DUvB31/TkG37i0Tfb0g3lj67pg0MgseUdIFJtf+PWZTbCTiypdgSm7v/n893T7aff3z4dF4J/4yQyfRuKfbL+cqNZwO8zM660LqyomrWu3Z9uPhmxKtjkF82rfuW6ppb3FwuD/Pnp7/90+zyUzFQQrWnrL9+sN0ZizGJfFuo2revJ0+1fbp8+3Q7lbx4fn97fPVhg5XLYm398TZ8+/VUiSbZ3yPrLq2x13Hvs6431l9f05lau6VnXgTPl62Yim3pdTkPb4dfqHngMzOjIHhS23J81RAw7dA0YWzEubD52MSq2Y7IVX4lNyy4+i+3QbMWcsciuLuaK3QhruTfLJA17sx+obezNug3NFXhtxZpjU7aLFWY7bNO/3nNH8Ke7H/779kG1zIvobcjb/Lh18O21d5b/r/jl0JDnlC8+//3dp2c1cxlbOVPc29YntagKNvTJLQe94o0xDfnfD/eX+foXb+5cdW97f358/um7u/e3yrcGzZ1rbmntfDjbFPCLZD3NOHbl4VmrazA/65dneka3X3pltPQ/t0+PL0oGbZrbVP9iZ+ufH1SENjf4RWlnG1/Oto8d/eOf/nOpsQvt61s1irbYDS/Uw15s2zh8n9u7PH7f1IbNJudmlunk2pbkrSjfst7gq/rOdn++e3paNtuL1lWt/FbPXdCa+u1FGsOm9jgL4nePqxoE3b2j8SftPhAcjT9514Isv8XP9893H7V1BV7hq976llZvM+a2Vu0ylObA4/r6w4e7ZVOd6e1u6TdrF51zzd2t/cuxt8vj4kxvd0v/vnKqmjR3t2b46NiUf4/Kinb+87gMLzcztK5qJf8tr2tIFK9qa9tWxPibnT14uvvx7r1+OAlLzJnizrY+3f18J4Wo1jR4ob2z1Z8Ph8UZklV2Pz8sPz9c8/y4/Px4zfPT8vPTFc8Py+8/XPP+w/L7D9e8/7D8/sM17z8sv/9wzfuPy+8/XvP+4/L7j9e8/7j8/uM17z8uv/94zftPy+8/XfP+0/L7T9e8/7T8/tM17z8tv/+07f3DEfPz7dPPdw83Giuf25lVdzvBp3Oy3zzw8dSyAzwrX+N4nxTc6GzF9778m2t68PFxzS9+Vdzb1uO39483z18/PSnXGGJzs+6GMXqGuX5/d/vX3zx8uNx6fhG8CbGdHrbKk3rpl/FpPWiRknMzD16Y5NLz/3pzf//x5uPtkxqSOTeEuvta/PTT41//8OVJv3n4p6NVv1PBz9y482dX/vJ/vnt/9AvX/vYX7X2tfng8dvpX95+ffm1h8rldTf/Klr8+/go1atho+Uz/ypb/r7tnrcSh0e6L9pWtfnfz88f7W/2k1Wh6/pPV7eOx2Unl4+PTUrOz5r7WPq1u7dO+1nAyPf29OaF+Ea4/OXh/++Hm8/3z7x4/Lj/wl5Oy/Qteuui3+dvjwv3x9ofnO6UQsdn2/EfX9EE9eNfa3XTsbrS9ZSGb298TN2d0QiNP3xz/9XTz7ZO1Cs2dUf9okxHsPmxt/i1a/vbp86fnz5dHcGbTr39wTdunaOH7+9v73z49nlJmNXKl9UD9s6v68foxbe2K8ZfX9OZ3f3387SmLfH+vlp6wv3c/8JD7l+M6tbIzF39wbdu/vnta/SYu/+La1v9jzfJwpnpte39c3dwf36C1P61u7U9v0NrlmbLVmn2evKa1Tz883d4+/NbamcwNTspv0ebX/AVuavnlT659w18//Gj4Ndpb/qJ9baup/Pzzv9w+fDr+34/PP61u/uLP9vfj+ebpuKf9rVqt47L5WfuKmfvy+EqZnO3DqzXbtR9+unn48XS2vGfldP/4Dfq0c71a+vvre3btirr2Oft7enSKvtm6tGp/8wY92LLAqn/0Bn1YtczO2le1un7/Oynvb/PHLW3++GZt/lENtFNb/KK6v73bvz0flS8Djy6be9W8wpF9vL//+z+ubhLU97f7QSzzzfEvbp/WLjnqH+3vg6xgLtHTlrxVSG+lB7nedfw/4b1bmRVmJ7bmVazpy1JWxWVn9uZUrPr69IwK5ePblk+xajzq2RTKONyWS7FyNndyF9QJfUfmwsr5dlNP9uVQbO7JmtlxZ/7Emr4Y2ROXfdiYO2G0TWeJAUJOX5r+8PmBtyyf/teQaLT4v776xSlj8m+/+If/9xenE9bTFucffhHfpXf9qPlBynD/w/dfzsl+ePz551N//mvIvkTT/sP3ovK/Dr/46vvDV9Tf5QP913999f2Xv2AB/wdWC8d/ha9KepdCnNTCpBaP/4pf1fqu1T6pxUktHf+VNLU0qeXjv/JXNb6rNUxqeVIrx38V7SeUSY2O/yKtUZrU6vFfVVOrk1o7/qt9RfSu9TSptUntaJTv+1elvith/gl9fr2ntx0OWrMBDMGWCKrmbItTAM/3QbVGmM1xCsX5PiTtFYbZIuH05kPWfneYjRJOLz+oZgmzXcLp/QfVMmE2TTiZIFRtRITZOqGZ43W2TzjZITS18dlEkU3U1cE9m+gUGfR9VI0Z4XPh70U1ZpxNdIrW+T7qn9ZsoniyQ1S/rjibKJ7scNwvaJqzieLJDrGomrOJ4skOUTVmnE0UT4aIqjHjbKN4MkRUbRRnG51ijr6Pqo3SbKNT9ND3SbVRmm10igP6PgVtICeY1XhaU22UZhulkyGS+sGl2UbpZIiUVc3ZRulkiKR+cGm2UToZIqk2SrON0skQSbVRmm2UToZITdWcbZRPhkiqjfJso3wyRFZtlGcb5ZMhclCXitlG+WSIrNoow+LDq4/6HeXZRvlkiKx+R3m2UT4ZIqvfUZ5tlE+GyKqN8myjfDJEVlesPNsonwyR1e8ozzYqJ0Nk1UZltlE5GaKoNiqzjcrJEEWd68pso3IyRFFtVGYblZMhimqjAnsE3iSoNiqzjcrJEEW1UZltVE6GKKqNymyjcjJEUW1UZhuVkyGKaqMy24hOhiiqjWi2EZ0MQaqNaLYRnQxBqo1othGdDEFR++JothGdDEGqjWi2EZ0MQaqNCLZyvJdTbUSzjehkCNK3fbON6GQIUuc6mm1EJ0PQcfOX3sUwz7Q026ieDEGqjepso3oyRFVtVGcb1ZMhqjrX1dlG9WSIqn5HdbZRPRmiqjaqs43qyRBVtVGdbVRPhqhF7SfsuKu1WauzierJDlU1Zp1NVE92qFXbp9bZRO1kh6p+cG02UWMTde0HtdlELVo/qM0WaiczNNX9arOF2skMTbV6my3UTmZoUX3mbKF2MkNL6jNnC7WTHZrqijVwi8yNd5st1E5maOrwaLOF+skMjTTNPluon8zQ1E+4zxbqJzs0dbvSZxP1ZH7sfTZRZxOpH3ufTdRPdugHtfXZRP1kh65OyH02UT/Zoasfe59N1E+G6KrZOziv3RyeHf3XgznqRHaue7JFV0eTyM51o/khi+xc92SPrg4pkZ3rnizSdafzAJ7sgc2lrt4iO9dlg+n+5AG82QObTB0wIjvX5e/qYBAC8GkP7NQe1NlChGfKAz3onOACPjB9OKgrRUD+IADioC4WARGEMIiDuqYHpBCCIQ6kDjcEEUIiVBaAJEJQxEE3NcIIoREH3dbIIwRIHHRjI5MQKGHgIMASQbiEQYSATIQo9MiAQsiP2H5BnSkC8InAFOL47vUng/0YRBzfvq4M9mMWEYK6AAQAFYFxhG5sIBWBecTRUOogAlgRGEkcDaUrg/2i2E/dKgRAFoHBhN5jYBYhBafHgC1Cik6PEwJAtl5Ul6QA8CIwoghRn16AX4Rkf30AMAJjCvPngfVS9X4eWI9hRYiquxKAZATmFUaPwXYMLPQFMgDMCIws9B1cAJwRGFoYqykAjcDYQt/FhYz0VixnKIPlmF3oO58AXCMwvQg6SwyANgIDjKDjxAB0I2Qxnb5SA+AIjDFC1OdvYByBScYpil97GYA5AsOMoKPFAKQjMM8IOl0MADtCEfiuz9/AOwJTjaAzxlCQwPOnp2PGANQjFHviBOwRGG4cP3S9E2A/5hvHT11XBvsx4gg6mgzAPwJTjqDTyQAIJDDoCElfrIGCBBL76cYGEBIYdwQdUwZgIYHk/ESfBQCHBIYeQYeVgfAQhe2n88oAUCQw+gg6sgzARQLTj5D1fTWgkcAA5PjFq2MO6EhgBnL84r+i8K62MisDIAmMQULWP1dgJIFJSNAJZgBMEhiGhKIvfkBKAvOQoHPMALAkVDkE0y0IvCQwFQk6zQwVT8LYgjrQDIBNAsORUHQLAjkJzEeCjjUDwJPAiCToZDMAPwlMSYIONwMglCAMpfSvcnmXYwVlsCDDEuO4D+zHtOQ4PahjDlBKYGASdCAagKaEJueY+qoNQCUwNjlOD7oyHmay/Ug9BQrAVQLTk+P0oCuD/RigHKcH1b8GuhKYoQTSjQ2AJTBGCaTvz4CxBCYpx+lBVwYLMkw5Tg+6MliQeUqougUBtgRGKkEnpgF4S+hyGK1bEJBLYLASdG4agLoEZivH6UF/Mp5K83GafowK4CUyXAk6QI1AXiLTleNUoivD6TTjlaBj1AjsJTJf0c8KI7CXeBD7GcfucErNgEVfXCPAl8iA5ThF6Q+Go2qhL00/qAf6EoW+NP2sHuhLFPrS1FEUgb5EoS9NP7EH+hKFvuiENQJ9icGcQCOwlxicCTQCe4nCXpo6v0SgL1Hoi85vI9CXKPSl6SMO6EsU+qKz2Qj0JQp96Ub8BthvRIXoYw7jQqIZRRUvAkPYA9SNh6EhTFd0QB4xOIThivGKMTxEwEtXveaIESJMV3T4GjFGRMhL12NUMExEyIuOiyNGikTTd4/AXaJwF2McA3mJQl6McQzkJQp50WFKBPIShbx0dbKPQF6ikBf15wF3icJduroRj0BeopCXrg8LIC9RyIvOuCOQlyjkpasrewTyEhmvxIPx4sB+zFeMYQHsJWaJyNLnb4AvkQFL1IF4BPoSmbBEHYhHwC+RCUvUgXgE/BIZsUQdiEfgL5ERy3GN05XBgIxYok65I/CXyIgl6pQ7An+JWQyoz7PAXyIjlqhT7gj8JTJiiTrljsBfYpGwOt2CwF8iI5YYdAsCf4mMWKJOuSPwl8iIJeqUOwJ/iQxZoh4GGYHARIYsMegWBAITGbJEPcYxAoGJDFmiEeYIBCYyZIlGpCMQmMiQJerUOAKBiQxZog5sIxCYSBIbqVsQCExkyBKjPm8AgYkMWaIV+IgxkmxBI/YRCExkyBJ1UhmBwESGLFEnlREITGTIEnVSGYHARIYsUSeVEQhMZMgSdVIZgcBEhiwx6RYEAhOrvf0E/hKrhLfqxgb+EhmxRJ1URuAvkRFL1EllBP4SGbFEnVRG4C+REUtMurGBv0RGLFEnlRH4S2xiP93YwF8iI5aok8oI/CUyYolZNzbwl8iQJeqkMgKBiQxZok4qIxCY2CRGWbcgEJjIkCXq8ZURCExkyBL1EMsIBCYyZIl6lGUEAhMZskQ90DICgYkMWaJOKiMQmMiQJerhlhEITGTIEnVSGYHARIYsUSeVEQhMZMgSdVIZgcBEhixRJ5URCEzsEmiuWxAITGTIEnVSGYHARIYsUSeVEQhMZMiib8mBvyRmLFGHmgkATDqI/fpXKb7LLYIyxJ0zY1EpVwL8kpiwqEtaAviSDkLPdF2IPWe+oofoJ2AvifmKESYP7CUxXtGDRxOgl8R0RQ93TEBeEsMVPeQwAXhJzFb0aL4E3CUxWtHD3xJglxTsyLIE1CUxWtHjwBJgl8RkRY/aSkBdklAXPf4nAXVJI+ZFdRQTUJck1EWPxUhAXZJQFz0MIgF1SUJd9O1hAuqShLro28ME1CUJddEPvRNwlyQxL/pWKwF4SRLzYuRxAHlJEvNiJFMAekmCXnSUmQC9JIl50Q/oErCXJOxFP+xKwF5SdA6OErCXJOxFP7FJmKgj9EUHXAlzdQZ90V8dpusIfdGJXLrI2BH6og8kTNoR+qIjh4R5O4O/6Pk4mLqTxHUw+gwWTOI6GN0ACybHdUiYwyP8Rd+zJ+AviRlLJH0gAYBJAmBIXx4AwCQBMMb6AAAmCYAh/esGAJMEwJD+6gDAJAEwpA9RADBJAmB03JYAwCQBMKdTt8vQmgQAJjFj0SNgE/CXJPEv+kFhAv6SGLFYqWVgP8EvenZEAvySmLAYmWhAX5LQF9LHJ9CXJPSF9AUF6EtiwGLMzQBfksCXqo9lgC9J4IuxJQH4kkb4i94LsJ5Ev+iQOQF7ScJeqv6RAHtJwl6q/pEAe0nCXqr+kQB7ScJejD0XsJck0S/6CXkC9pIkG0gfcYBekqCXqn99gF6SoJdqPBnsJ+il6uMT0EsS9GJsKgG9JEEvTR9zgF6SoJcWvir0jiqsrYBekqCXpg8NQC+J+UrU4wcTwJck8MXYCQN8SQJfjCUe4EsS+NJ0CwJ8SQJfmhoomgC+JIEvxo4c4EsS+NJ0CwJ8SQJfuu6iAXxJAl+6vgICfEkCX4xtCcCXJPDFcA0AviSBL8YeBuBLkvAX/XA6AXxJAl/0E8AE8CUJfOm6HwHwJQl80U+nEsCXJPCl6+YG+JIEvnTd3ABfUpeUcf2DBfiSmK8kwwUD+JKYr6SDbm6AL4n5Sjro5gb4kpivpINuboAviflKOugWBPiSmK+kg25BgC+J+Uo66BYE+JKYsKSDkUuOyeS8iTmoFsyAXzITlhRUC2bAL/kgef96UjkAmMyUJQXVghkQTJb4Fz2vIgODycxZUtDLoACEyQPCqBbMQGEyk5ak+/IZMExm1JJ0bpSBw2RmLUmPzc8AYjLDlqRTggwkJjNtSfrRegYUkxm3HD18tRvAYnKQ4g26BQHGZImB0WO/MtCYLDRGj4TLQGPyKIainpdnoDGZgUvSyUYGGpMZuCTdbcxAY7LQGHULnwHG5OjEEGaAMTmKAfUnA4zJUQyobgoywJgcxYD6CAUYk5m3JN0tzgBjMvOWFPURCjAmC4zRwy8zwJjMvCUlfTgDjMnMW1IyqlyAAZm3JN2VzwBjMvOWlPRxBDAmS+WUpI8jgDFZiqckfUICGJOlfkrSJySAMXmUUNHNDTAmSxUVPeQwA4zJUkgl6eYGGJOllkrWLQgwJks5FaNOCcCYLBVVsm5BrKkiRVWybkEsq8K8JWXdglhZhXlL0uFixuIqzFtSpq9KflciDP6L+ipswaxbEEusZJlE1WitjFVWmLckPVUgY6GVLBbUzY21Vhi4JJ2eZiy3wsAlFd3cQGOy0JiimxtwTGbikopubsAxeeAY3dzAYzIjl6QT3ww8JjNySUX/YIHHZOExRXXaMgCZXKSYkb5mApDJzFxS0S0IQCYzdEmkOm0ZiExm6JJItyAQmczQJel0IwORyQxdko4tMxCZzNAl6dgyA5HJDF2SsQABkckMXRLpKywQmczUJelIJgOSyUxdkrHrASSTSSpS6RYEJJMlH0kPj8+AZDJTl6QnC2RAMlnykfSkjAxIJjN1SToGzIBk8shHUrdIQGSyBMMYXQYikxm6pKoPOiAymaFL0jFgBiKTGbqkqvLhDEQmM3RJR5vk9C7B2U8GIpOrVBXTpw0gMrmKAfVBB0QmN+dMIgORyU0M2L7K4V3pEZTBgEJk9JP7DEQmM3RJtX9Vjq8uYjfAgk2yIQ66MliQoUs6cUBNGSzI0CW1qCuDBRm6pJZ0ZSw51px1HohMblIaLutPBgsydEmtqMpAZLIkJOknjhmITBYi0+ik3AmfDBYUItOqrgwWFCJjDH4gMlmITGunJ1PHJ4MFhci0riuDBYXI9IPeZ7CgEJke9Cdj3Ti2YI/6k7F0nNT3S5pyASJThMj0/FU+vItUQRkKyAmR6cf3HI/vGUq9ApEpQmQ66cpQRk6ITK/aVFCAyBQhMp3njYpdhlpyAmR613sB5eSYueTDQVeGinLMXPIh6MpQVI6ZSz7EU5d7wd8HBgwyiarYpACQKUFqNKpLSgEgU4IziRYAMkWAjDE0AMgUZi75oM4xBYBMYeaiFuUtgGMKExe1zG8BGFMExuhzYgEYU4JYr2juTAEYU4JYT10vC9CYwsAlH47b7PyuNXhtQGNKFOvp5QaBxhQGLlkP7i9AYwoDl6wH9xegMYWBS9aD+wvQmMLAJevB/QVoTImSEahXiAQaUxi4ZB21FqAxhYFL1oP7C9CYwsAl68H9BWhMYeCSddRagMYUBi45NHXgA40pSQIr1LiDAjSmJLHg8Ts5vDv6HqAMFmTgkuNBO58sQGMKA5d84rLKZwU0pjBwyTHqfQYLMnDJ8biJace3AbpgwFHbVl21C8CYwrwlx6z/PjDgiIxRXfkCMKZIkduoOtwFYEyROrd6ikEBGFNGqVt9HAGMKVLtVi+yXADGFCl4G/tXdHh3HAqgDAYUGKNvswvAmCKRMcYKATCmSOVbPXmhAIwp2azEXrD4rVS/NeYBrH9bgvO1YglcSUwyllasgsu0JaegLihYCFdCY/QAgXJRC5ftl6L+ZLAf05ackq4M9mPaklPWUjkKFsUtYr9yUgbrYVVcZi05kTriAMQUZi05VVUZQExh1pJT05XBfsxactIHPoCYwqwlZ9WxKwBiCrOWnFXHrgCIKSQFp6PeDSxnzPbLSVcG+zFryTnrymA/Zi05F10ZLEjd2aEBiCnMWnLWzQ0gpjBryVk3N4CYwrAl56aOZiAxpYoFdXMDiSk122sPgJjCrCWXg/5gMGCVouFBV8aS1NVZtQHEFGYtuejjCEBMYdaSiz6OAMQUZi3WfgBATGHWkos+NADEFGYtuRTVgABiCrOWXEh/MhiQWUsu+jgCEFOaWFCfNgDElCYW1McRgJjSqrOjAxBTmLVk0ucYADGleZsYADGFWUsmfdQBiCkeiCkAYooHYgqAmOKBmAIgpnggpgCIKR6IKQBiigdiCoCY4oGYAiCmeCCmAIgpHogpAGLIAzEEIIY8EEMAYsgDMQQghjwQQwBiyAMxBCCGHBBDAGLIAzEEIIY8EEMAYsgDMQQghjwQQwBiaIAYla0QgBgSEEOqW0wAYohZSzaK8gOIIWYt2ajLDyCGgqQGqht4AhBDQSLs1Y02AYoh5i1ZD8cngDEUHD+CAMYQ8xYj0J8AxhDzFvPJYMEoMb7qrpwAxlD0PkGAMSQwRj+4I4AxJDBGL9xFAGNowBh1B0EAY0hgjL7OE8AYEhijr/MEMIYExuiLFQGMIYExpII6AhhDAmNOIVaaMlhQYIyeGUAAY0hgjL7jJ4AxlKK9dBPAGBp5Srq5AcZQ8r5BgDEkMEY/xiSAMSQwRj9tJIAxJDBGv1WCgMZQklts9EkGaAwJjan6/R9AY2jQGBV6EdAYEhqjV0gjoDEkoTE62SCgMSR5SoZRgMaQhMYYUwHQGBIaoxdqI6AxJDcQ6YXaCGgMySVEOqUmoDE07iFSz/AJaAyNq4j0zwp4DAmP0auvEfAYEh6j80ICHkOMXLJeqo2Ax5DwmKaPZ+AxxMgl65kSBDyGhMc0fTwDjyEJjdE3uQQ8hoTHnNIqLk8DCHgMSWiMsfkCIkMSGqNvvvCmImYuegob4V1F5KTIE15XJIExxneCNxYJjzFGM15aJDzGGM14b5HwGGM0X1xdRM76ircXCY8xRjNeYEQO0Sa8w4icVEECHkPCY5o+xQCPIeExemU+Ah5DwmP0ynwEPIaEx+iV+Qh4DAmP0fOACYAMCZDRE24IgAwJkNHL1xEAGRIgoyfcEAAZEiDT9YkAgAwJkNHvMCEAMiRARr/EhADIkBcZQwBkyIuMIQAyJECmq3CDAMiQABk9O4cAyBAzl6JfkEIAZIiZS9GzcwiADDFzKXo9OAIgQ8xcil4PjgDIEDOXomfnEAAZYuZS9OwcAiBDHpAhADLkARkCIEMekCEAMuQBGQIgQx6QIQAy5AEZAiBDHpAhADLkARkCIEMekCEAMtUDMhWATPWATAUgUz0gUwHIVA/IVAAy1QMyFYBMdYBMBSBTPSBTAchUD8hUADLVAzIVgEz1gEwFIFODnTFfgcdU4TH6GWkFHlOD40lU4DE1OJ5EBR5TGbkUPXakAo+pQc4F1RPHCjymBsnYVdlGBR5Tg5wLqieOFXhMleAY/cSxAo+pEhyjnzhW4DFVgmO0E8cKNKZKaIx+4liBxlShMfqJYwUaU4XG6CeOFWhMFRqjnzhWoDFVaIzOHyrQmCo0Rj9xrEBjqtAY/cSxAo2pQmP0E8cKNKYKjdFPHCvQmCo0Rj9xrEBjqtAY/cSxAo2pQmP0E8cKNKZKaIx+4liBxlQJjdFPHCvQmCo0Rj9xrEBj6giN0U4cK8CYKjBGP3GsAGOqwBj9xLECjKkCY3R/pgKMqcxbjBPHCjCmCozRTxwrwJg6QmNUElkBxlQJjdFJZAUYUyU0Rj9xrABjqsAY/cSxAoyp4zpofRwBjKkCY/QTxwowpgqM0U8cK8CYKjBGP3GsAGOqwBgdW1aAMXXAGBXiVoAxVWCMfuJYAcZUuTVJ3+BWgDFV8pT0DW4FGFMlT0nf4FaAMdWDMRVgTJU8JX2DWwHGVIEx+ga3AoypA8aoG9wKNKZKnpK+wa2AY6rkKekb3Ao4pg4co29wAcdUcuJ7K+CYKnlKxgYXcEyVPCVjgws4pkqekrHBBRxTJU9J3+ACjalCY4wNLtCYOqJj9A0uXiotNMbY4OK90kJjjA0uXi0tlWP0DK+Kt0tXbx+KF0xX2YceXzMdJ1FYJfCO6Sq+/PE113fHrR0ogwElT0nNBqsXF01LmpK+z8bLpqVwjPX7wIBVXHn9qm+AMZV5S9GDoyvAmMq8pejB0RVgTGXeUvTg6AowpjJvKXpwdAUYU5m3FD0osgKMqQJj9DoUFWBMlegYnQlVgDFVYEwgDeJWgDG1eY4EwJgq0TGGiwIwpkp0jLHpARhTu7gSulsFMKZ2saB6J1oFGFO7WFDfEwCMqd3bxwCMqV1cQd2tAhhTu4SIam4VoJjaxX5d/3lgP6YtJapJ3xVQTJWavaeock15tl9j2lJOXP1SuQGKaUxbirrPbkBiGsOW4wSnPziCsvgRqmvQgMQ0hi0lqscXDUhMY9pSovqZNEAxjWlLieqQa4BiGtOWEpuuXEFZDKhauwGKaUxbSlKt3QDFNLk3Sd//NWAxTarG6Pu/BiymCYvR938NWEyTJCV9/9eAxbSQ7f1fAxbTQrH3fw1YTAtk7/8asJgmiUr6/q8Bi2lSNUbf/zVgMS10e//XgMW0eLD3fw1oTBuxMer+rwGNaVI2Rt//NaAxTcrG6Pu/BjSmSdkYdf/XAMY0qRqj7/8awJgmMEbf/zWAMU1gjL7/awBjmsAYff/XAMY05i1GNc4GMKalg70/agBjGvMWY//XAMY05i3G/q8BjGlJKoiqp0QNYEzzQmMawJiWitdnsGAir89gQakao9YZaABj2shTUvesDWBMS050WgMY05i3FP0+jwYwpjFvKfrNww1gTGPeUvRLOhrAmMa8pSS1OEIDGNPkBmtj3gcY03Jx5n2AMU3ylIx5H2BMy069gwYwpknRGGPeBxjTpGiMMe8DjGlSNMaY9wHGNCkaY8z7AGOaFI0x5n2AMU2KxhjzPsCYVpzYpgYwpgmMMeZ9gDFNYIwx7wOMaQJjjHkfYEwbkTHqvA8spg0Wo8/7wGKapCoZ8z6wmCapSsa8DyymSaqSMe8Di2mjiq8awNKAxTTy5lBgMY28ORRYTCNvDgUW08gpw9wAxjRyfPkGMKZR9/oMFqxOiG8DGNOqTKJqfEcDGNOqTKJqfEcDGNOqTKJqfEcDGNMExuhXDDWAMU1CY/RItgYwpskd1vrCBjCmeTCmAYxpHoxpAGOawJjTodll1FsDGNOYtxjFWhrAmCaRMXqxlgYwpjXxJNQTtgYwpknNGL1YSwMY00bNGLVYSwMY06RmjF6YoAGMaaNmjHoy0gDGtFEzRi3W0gDGNLnE2li5Aca0UTNGX7kBxrRRM0ZfuQHGNKnia6zcAGPaiIzRV26AMW1ExugrN8CYJpExxsoNMKZJZIyxcgOMaRIZY6zcgGPaiIzRV27AMW1ExugrN+CYNiJj9JUbcEwfkTHqyt0Bx/QRGaOu3B14TB+RMdrK3QHH9BEYo67cHXBMP2R75e6AYzoTF2Pl7oBjutxira/cHXBMH9dYq8VXO+CYfnAm0Q44pksRX93aHXBMZ+KiZtd3gDFdLlNS+wsopguK0WeuDiimBye8twOK6ZKmpCcFdEAxXQr4ZjX5ogOK6ZKmpAfcdEAxnWlL0W/k64BiuoTF6My5A4rpEhajH4d3QDFdwmL0Q+sOKKZLYIxevaMDiukSGKPHL3dAMT06MK0DiunRgWkdWEwfaUoawe2AYrqgGP3MugOK6VE2oWrccAcU06PjyXdAMT06nnwHFNOTw9I6oJieHJbWAcX05LC0DiimJ4eldUAxPdksrQOJ6clhaR1ITE8OS+tAYnpyWFoHFNOTw9I6oJguKEYvttgBxfTssLQOKKZL/V61iEgHEtOFxGT9awUS0yVHSb/5pQOJ6dlxAzuQmD5ylNTEsQ4kpjNs0RcT4DBdOIwx8IHDdEYtRa+o3IHDdEYtRb+ltAOH6Yxail5RuQOH6Yxain5LaQcO04vYT3UCO3CYzqhFP6jqgGH6SFBSM4M6YJguN1nrt/x0wDBdLlMyBgZgmF6cqmkdMEwvYkDVye3AYXoRA6pObgcO00kMqB7fd+AwnVFL0W9h7cBhOqOWot/C2oHDdEYtpahn0B04TPduU+rAYTo5JZs6cJhOTsmmDhymk5Nq3YHDdCkZox+Fd+AwXa5T0tFKBw7TJShGP77vwGG6BMXogQEdOEyXFCX9KLwDh+mSoqQdhXegMF0SlPQI4w4UpguF0SOMO1CYLglKeoRxBwzTJUFJjzDugGG6JCjpEcYdMEyXBCU9wrgDhumSoKRHGHfAMF0qxugRxh0wTJeKMXqEcQcM0yVBSY8w7oBhenOqTnbAMF0qxugRxh0wTJeYGD3CuAOG6VIxRg8j6IBhusTE6BHGHTBMHxVj1AUFKEyXkBg9wrgDhekSEqNHGHegMJ1Bi+X4AIXpXUJ79XEEFKaPkBh9HAGF6d2pddCBwvTu1DroQGF6l9BeNTKnA4XpXUJ7dWcNKEzvUrRJH0dAYcLhICZU540hndTFiOpQGtJJXcyoxnkN6aQuRSvUqWZIJ3Upv6W6bUM6qbMx9WDjIZ3UmWvr8HJIJ3UBoyq+HNJJXQ4IVYA5pJO6lERX/eQhPVeXrCXdUx7SSV0Qt4oxh3RSFwdRBZlDOqmLi6iizCGd1MVJVGHmkE7q4ieqOHNIJ3VBpar3MKSTujgbquM8pJO64FLVdR7SSV14m+o8D+m5+gif0dznIZy0xedXHeghndTl8FB1oYd0Uhf0pjrRQzqpy7KputFDOqmL86HityGd1B33Y0gndUZwpyXgklAN6aR+Mpvqmw7ZpMwuSFGLmgzpuTqDmlLUUOYhndTFDVFdwyGd1MURUZ2nIZ3UhQWooeBDOqnL9GusBQltKkBH9zCGdFJ3bZrQpkkytlUGO6STuuOUDOmk7rglQ3qunh3HZEgndcc1GdJJ3XFOhnRSN92TIZuUHQdlSCd1x0UZ0kndcVKGdFJ33JQhndQdR2VIJ3XHVRnSc/XiOCtDOqk77sqQTuqOwzKkk7rjsgzppO44LUM6qTtuy5BO6o7jMqSTuuO6DOmk7jgvQzqp2+7LEJ5rk+PADOmk7rgwQzqpO07MkE7qjhszpJO648gM6aTuuDJDOqk7zsyQTuqOOzOkk7rj0AzppO64NEN6rl5dn6aiVavr01S0anV9mopWra5PU9Gq1fVpKlq1uj5NRatW16epaNXq+jQVrVpdn6aiVavr01S0anN9moZWba5P09CqzfVpGlq1uT5NQ6s216dpaNXm+jQNrdpcn6ahVZvr0zS0anN9moZWba5P09Cq3fNpOhq1uz5NR6N216fpaNTu+jQdjdpdn6ajUbv4NGqg/ZBO6u7+t6NRu3MqNqSTOh+rFPWkZEgndclVVQMthvRMPRycs7EhndTFq1FPYoZ0UmevhtSzmCGd1PmAhdTTmCGd1E920729gEgpSM6VXoF3SCd1XlT1A7ghndQl70rdywQkSkEiffTydUM6qTvBBkN6rs7MqOjlg4d0UmeT6gWEh3RSF5Oq56NDOqmLSXU3OCBRCnJ1d1cv2B7SSV2MqnvNAYlSYGZUSP+UAhKlIPE/ZAx2JEpBIoD0U/QhndTNK0+G7FyZkVGpxoeEQCkwMirV+JAQKAVGRqUa3wYCpcDIqOilY4d0Uud4Zr147JBO6mxTvXzskE7qUuhIDY4f0kndCWse0kndickb0kmdkVJVEzuH9Fw9mXF5QzYpi02NsY5AKQhQ0qOsh3RSl+guNc56SCd1ie/St8oBgVIQoKTHWg/ppC5hzmq09ZBO6rL3VeOth3RS512SHtQwpJO6BDvr7lVAoBTkrm896npIJ3WnFOCQTupOMcAhndSdcoBDOqk7BQGHdFJ3SgIO6aTuFAUc0kndKQs4pJO6UxhwSCd1pzTgkJ6rF6c44JBO6k55wCGd1J0CgUM6qTslAod0UneKBA7ppG6XCRzCSdspFDikk7pTKnBIJ3WnWOCQTupOucAhPVcnJzloSCd1p+7qkE7qTuXVIZ3U3QkYkVIgdwJGpBTInYARKQVyJ2BESoHcCRiRUiB3AkakFMidgBEphepOwIiUQnUnYERKoboTMCKlUN0JGJFSqO4EjEgpVHcCRqQUqjsBI1IK1Z2AESmF6k7AiJRCdSdgREqhuRMwIqXQ3AkYkVJo7gSMSCk0dwJGpBSaOwEjUgrNm4CRKIXmTsBIlEJzJ2AkSqG5EzASpdDcCRiJUugyAashv0M6qbsTMCKl0N0JGJFS6E5055BO6uLVGL4kIqXQxasxfElESoGhUWmGv4dIKUjdHv0OhiGd1Bkp6RcrDOmkzl6NfrXCkJ6pR0FKTff3IiKlKEhJv15hSCd19muaDhQiIqUoSEmvjT+kkzpbVa+OP6STOltVr48/pJM6W1WvkD+kkzpbtetWjUiVopTz6bpVI1KlKAV99Dr5Q3quLlSpG1ZFqhSFKum18od0Umer6tXyh3RSZ6vq9fKHdFJnq3bDqkiVolClblgVqVJkbkR6bfshndQrqxtWRaoUmRuRXt9+SCf1zuqGVZErRSZHdDCsilwpMjmig2FV5EqRyREdDKsiV4pMjuhgWBW5UmRyRPr16EM6qRdWN6yKXCkyOSK9CuCQTupsVb0O4JBO6mxVvRLgkE7qbNVT5r4CcyJypcjsiIJhVSRLkdkR6ZelD+mkzlbVr0sf0kmdrRoMqyJZisyOKBhWRbIUmR1RMKyKZCkm7/wtIlmKyTt/i0iWYvLO3yKSpZi887eIZClm5/wtIliK2Tt/iwiWYvbO3yKCpZi987eIYClm7/wtIliKjI5iU5PzhnRSdxJihnRSd1JihnRS52XVYLoRwVLMTnWLIT1XL059iyGd1J0KF0M6qTs1LoZ0UneqXAzppO7UuRjSSd2pdDGkk7pT62JIJ3Wn2sWQTupOvYshndSdihdDeq5OTs2LIZ3UnaoXQzqpO3UvhnRSdypfDOmk7tS+GNJJ3al+MaSTulP/YkgndacCxpBO6k4NjCGd1J0qGEN6rl6dOhhDOqk7lTCGdFK3a2EM4aTtVMMY0kndqYcxpJO6UxFjSCd1pybGkE7qPAHrNYuGdFJ3EvOHdFL3TssjgqUo1Z6t6R3BUpR6z9b0jmApCliypncES3GUGTKmdwRLcRQaMqZ3BEtRwJI1vSNZiqPYkDG9I1mKzckVHtJJvXnTO5KlOEoOGdM7kqXYnQK0QzqpOyVoh3RSd4rQDumk7lTOGNJJ3amdMaSTulOKdkgndacY7ZBO6k452iGd1J2CtEM6qTslaYf0TD0dnEIaQzqpO6U0hnRSd4ppDOmk7pTTGNJJ3S6oMYSTtlNSY0gndaeoxpBO6k5ZjSGd1J3CGkM6qUsGhlqOYEjP1SUBzpjeE4KlxOjImt4TgqUkYMmY3hOCpSRgyZjeE4KlJAlwxvSeECylUTVan94TgqUkCXDG9J4QLCVJgDOm94RgKUkCnDG9JwRLSRLgjOk9IVhKkgBnTO8JwVKSDDhjek8IlhKjI2t6TwiWkpQuMqb3hGApjeJF+vSeECwlKSVtTO8JwVKK5EzvCcFSkoAlY3pPCJaSVDEypveEYCnF7kzvCcFSGpWM9Ok9IVhKo5aRPr0nBEtpVDMypncES2nUMzKmdwRLaVQ0MqZ3BEtpFDUypncES2mAJX16R66UBlcypnfkSmlUNjKmd+RKSe78sqZ35EpJUuCs6R3BUmJ0FJue8JkQLKXsncIlBEtJyk0bCZ8JwVIaEUt6zGVCsJQYHVHUoW5CsJQYHVHUoW5CsJQYHVHUoW5CsJQYHVHUUX1CsJQYHVHUoW5CsJQYHVHUoW5CsJQYHVHUoW5CsJQYHVHUoW5CsJQYHVHUoW5CsJQYHVHUoW5CsJQYHVEyrIpgKTE6Ir2w+pBO6mxVvbT6kE7qHDF6XDzUEYlgKRXPW00IlhKjI0rG54FgKTE6omSMGQRLSUKWmp73kBAsJUZHpNdLHtJJna2qV0we0kldrGoMMQRLicSqxhBDsJS8ukhDOqnzt5qMEYlgKY3aSHqAf0KwlKpTX25IJ3W2ql6Xckgndf5WszHekSwlZkeUjfGOZCkxOyK9EtuQTups1WyMSCRLidkR6dXYhnRS529Vr8c2pJM6f6vHzZL6rSJZSi5ZSkiWErMj0uuhDemkLlY1BjCSpdTEqsaIRLKUmB2RXhVtSCd1tmpRy7cP6aTOVi3GmEGylJgdUTHGDJKlJLeKGZE5CclSYnZERceLCclSYnZExRhiSJYSsyMy6jokJEuJ2REZdR0SkqUkMUtdrR45pJO6c8nfkE7q2dtcIVlKXaxqjEgkS6mLVY0RiWQpScySUU8jIVlKzI7ISCVLSJYSsyMyUskSkqXM7Ch2PRItI1nKBw9CZCRL+SBW1c8zM5KlzOyIyOpMQnWn1OeQTurC9quKODKipczwiEi9NGBIJ3WegY1ssoxoKR/Eqnq2Yka0lAUtdf3TzoiWcvDW1YxoKTM8IiNXLSNaygyPyEg+y4iWchCr6l9TRrSUGR6RkXyWES1lqYLdDDMhWsoSs1QPWuHZIZ3U2apGPllGtJQlZsnIJ8uIlrLELBn5ZBnRUo4eMMyIlnJ0v1VES1liloxstYxoKUvMkpGtlhEtZYlZqsYQQ7SUJWbJyPnKiJayxCwZMakZ0VKWmCUjJjUjWsoSs2TEpGZES1mujtcvDh3Sc3WJWTJCWDOipSwxS0YIa0a0lCVmyQhhzYiWssQsGSGsGdFSTk613iGd1NmqRsRrRrSUmR6REfGakS1lpkdkRLxmZEs5iVWNMYNsKTM9IiPiNSNbykyPyIh4zciWMtMjMiJeM7KlzPSIjIjXjGwpMz0iI+I1I1vKTI/IiHjNyJaysCUj4jUjW8pMj4wbe4d0Uufdkn5n75BO6hy0pF/EO6STOn+rRlmrjGwpF69oVka2lKXAklFcJyNbylJgySj4lZEtZSmrrV/JO6STOu+B9Ut5h3RS592SUS0nI1vKUmDJKPiVkS1lSYdTC35lJEtZ6mvrl/MO6aTOgWj69bxDeq4uNbb1C3qHdFLnOAj9it4hndT5GE6vj5ARLGUptK1f0zukkzpPv0aZqoxgKculZ/pVvUM6qfOHql/WO6STulSCMIYjgqXM6Mi4sHdIJ3UxqjEGECzlKndIGmMAwVJ2c+EygqXs5sJlBEvZzYXLCJaymwuXESxlNxcuI1jKbi5cRrCU3Vy4jGApu7lwGcFSdnPhMoKl7ObCZQRL2c2FywiWspsLlxEsZTcXLiNYym4uXEawlL1cuIxcKbu5cBm5UnZz4TJypezmwmXkStnNhcvIlbLkwnVjgUeulIUrWYwAuVKWiCXLZ0KulF2ulJEr5S47JWOHilwpC1cysncycqUsXMnI3snIlTKTIzKydzJypczkqBrZOxm5UmZyVI3snYxcqTA5qkb2TkGuVJgcVSN7pyBXKkyOqpG9U5ArFSZH1cjeKciVCpOjelAvLxvSSb2wum7VglypMDmqRvZOQa5UmBxVI3unIFcqTI6qkb1TkCsVJkfVyN4pyJUKk6NqZO8U5EqFyVENhlWRKxUmR9XI3inIlQqTo2pk7xTkSoXJUTWydwpypcLkqBrZOwW5UmFyVI3snYJcqTA5qkb2TkGuVJgcVeP4viBXKhKydCouqTCxglypjJrd+tJUkCsVJkfVCA4oyJUKk6NqBAcU5EqFyVE1ggMKcqXC5KgawQEFuVJhclSN4ICCXKkwOapGcEBBrlRidVa+glypSI2lrteDLsiVinf12pCeq0vZbv264CGd1Nmv0S85HtJJXaxavyrxXcQpErFSSWLUplZ8KoiVShKjds1pKkiVCnOj2PWS4AWpUnGLdhekSmUU7bZeI9qUuZH9GtGmzI3sF4M2lfvYuh6nUJAqlewR4IJUqcilbNZPRapUJGLJ+qlIlUrOzohBqFRy8V4MQqWSyRkxyJSKJMJ1PUqhIFMq2auFVpApFUmEM18j2lQuabNeIzKlUoLzGhEplRK914hIqUge3EGvKVcQKZXiHcAVREqFoZH5YhApFYZG9otBozI2Ml8M2pSpUU16BERBplSYGlUjdKogUypMjaoROlWQKRUKnpWQKRXGRjXpR14FoVKRNLiDHtJQECoVco2KUKmQa1SESoVcoyJUKoyNqhHHVRAqFWrOGECmVMidfJEpFaZG1hyDSKlIEtxB91MLIqVSvWjRgkip1OS9dURKhaGR+dYRKZVanNeIRKkwM6pGNFxBolRq9UYvEqVSm2ckJEqlds9IaFIBSgc9PqEgUCrNXU8RKJXmrqcIlEpz11MESqV56ynypMLIyJzvECiVRt5bR6BUWnXeOvKk0po3ApAnlSZzr7EJR55Uusy9huOGPKlIBtxBP44qyJOKW1upIE8q3f1OkSeV7n6nyJNK975TxEmluzZFnFS6Z1OkSUVokhGFWpAmFcl/O+jQryBNooMXz0JIk+jgReoT0iQ6eLFnhDSJJP+tZkM9oTqvp8Y9UYQ0iSQBjiz1guoy+eoggZAmkdAkI4KWkCaR0CQjgpaQJpHQJCOClpAmkdAkI4KWkCaR3ABnXJ9ESJMoeF8qIU0ioUlGfC4hTSKhSUZ8LiFNIkmAO+g+KiFNouD5qIQ0iYLnoxLSJAqej0pIkyiIVfX5l5AmURSr6vMvIU0ioUlG9C8hTSKhSUb0LyFNIqFJRvQvIU0ioUn6rchDOqnz/GtE/xLSJBKaZET/EtIkYl5UjWvaCGkSMS+qRjgvIU0i5kXVCOclpEnEvKga4byENImYF1UjgpaQJpHQJCOClhAnkeAkIySWECdRcnZKhDiJGBhVI4CWECcRA6NqXK9AiJMoeWnlhDiJGBhV40oDQpxEydn9EtIkkrpKB50mEdIkcmkSIU0iqdh90CELIU2i7J28EdIkytmb8hAnUS7elIc4iaSwUtA5CCFPIrewEiFPIolRMvuORh08yeo7WrUcnG0eIU+iwZP0IYM8iaSuUtBZAiFPouIaFXkSFa9aFiFPIqmrFHQXm5AnUXEXVeRJVNxFFYESFQc9EPIkKq5NkScROeiBECeRVFUKuldLiJPIrddNiJOIZPI1liXESUReQg0hTiISmK/7qYQ4iUhmX2PRQ5xEgpOMQHdCnESCk4xAd0KeRMKTjEB3Qp5EwpOMQHdCoESMjKpxEwohUCJGRtWIXCcESsTIqBqR64RAiRgZVSNynRAokQAlI7ackCiRxCiRntxMSJRIYpSMiFJCokTVw/mERImqh/MJkRI1D+cTIiVqDs4nJErUPJxPSJSoJWfaQKBEEqFkRNoSEiViZmS+RiRK1Mh7jUiUSFLfzNeINhWkZGQjECIlEqR09Mm1CxAIkRIJUjKyEQiREjE0slgbIVIiCVEKhl+LSIncECVCpETd3SghUqLubpSQKZEwJetFIlOi7pzREDIlkppKwXCakSlR987HCZlSlQglI2ekIlOqEqFk5IxUZEpVaioFPQSjIlOqEqFkpJhUZEpVIpSMnJGKTKkevE+1IlOqwpSM6vQVmVIVpmSkmFRkSvUgVtX9gopMqbp3wFVkSlWYkpHAUpEpVYlQMjJSKjKlKhFKRkZKRaZUhSkZGSkVmVIVpmRkpFRkSlUilIyMlIpMqUqEkpGRUpEpVYlQMjJSKjKlKhFKRkZKRaZUhSkZGSkVmVIVpmRkpFRkSlWYkpGRUpEpVWFKRhRnRaZUhSkZUZwVmVKVokpR9yUrMqU6iirpAasVmVKNnlNTkSlVpkZWoHtFplSlqJIR6F6RKVUpqmQEuldkSlWKKhmB7hWZUpWiSkage0WmVKWokhHoXpEp1VFUSQ90r8iU6iiqpHOcilCpjqJKeqB7RahUR1ElPdC9IlSqybtYtSJUqqNatx7oXhEq1VGtWw90r0iVavaiCStSpTrKdauB7hWhUhWoZAS6V4RKdVTr1gPdK0KlOqp164HuFaFSzZJQruOKilCpClSK+jFTRahUXahUESpVKapkFMipCJVqlgnYWGsQKlWBSkbEVEWoVJkbNSO2vCJVqsyNmhFbXpEqVeZGzYgtr0iVKnOjZsSWV6RKlblRM2LLK1KlytyoGbHlFalSZW7UjJshKlKlyuCoGbHlFbFSlWrd0di5IVaq5CWUV+RKlTwAXJErVUl9M6qXVORKlcSqTUkJrEiVKnOjkoMaol+RKtVRq9uYIJEq1VGr25ggkSrVUavbmCCRKtVRq9uYIJEq1VGrW58gESrVUarbmCARKlXGRuYEiVCp1uhNkAiVak3eBIlQqTI2Oq4o+gSJUKlWd6eEUKlWd6eEUKlW+VCN3TVCpcrYqBl5FxWhUhWolI0PFaFSlTglowZpRahUmRs1I6ujIlWqzI2akdVRkSpVBkfmHhKxUh21uo09JGKlOmp1G3tIxEpVMt+sPSRipSq1uq09JGKlOmp1G3tIxEpVanVbe0jESrUfvD0kYqUqkUrWHhKxUhWsZO0hEStVqdVtTZGIlarU6ramSMRKVWp1W1MkYqU6anUbUyRipTpqdetTJGKlOkp1G1MkYqXauzdFIlZqh4MzRTbESu0QnCmyIVZqDI4C6VipIVZqI1RJnyIbYqXmFlRqiJXaQcpk6dy9IVZqcgmcsR9oiJXaoZr7gYZQqR1k+tX3eA2hUmNs1IxMs4ZQqTE2akamWUOo1IJMv/oeryFUasGr/tsQKrXgVf9tCJVa8Kr/NoRKLXjVfxtCpRac6r8NmVILXvXfhkypBa/6b0Om1IJX/bchU2rRq/7bkCk1pkaBuv7lIVNq0cs7bsiUWvSgfkOm1JgaNSM5sSFTakyNmpGc2JApNaZG1gLfkCm1UahbX+AbMqU2mJK+wDdkSk2YkrHAN2RKTZiSscA3ZEptMCV9gW/IlNoo1K0v8A2ZUhtMSV/gGzKlNpiSvsA3ZEptMCV9gW/IlJp7A1xDptTcG+AaMqXm3gDXkCk19wa4hkypeTfANURKzb0BriFTau4NcA2ZUnNvgGvIlJp7A1xDptSYGqWox240ZEqNqVEz8ogbMqXG1KgZecQNmVJjatSMTN+GTKkxNWpGpm9DptSYGjUj07chU2rClIxM34ZMqQlTMjJ9GzKlJkzJyPRtyJSaMCWjDHhDptSEKRllwBsypSZMySgD3pApteKRwoZMqTE1StHYtiFTasKUrJUMmVIjL1S/IVNqUk7J2hQiU2qS+mYcTTZkSs1hSg2ZUmNq1Ixq6g2ZUmNq1IyUwIZMqTE1asnqOdqUqdFxiTDU0aZMjVoybIpMqTE2akbKVkOo1BgbNSMDpyFUaoyNWtLP7RtCpcbYKGQ9DLUhVGqMjZqRadIQKrUqVjW+JYRKjbFRMxIkGkKlxtioGQkSDaFSE6hkJEg0hEpNoJKRINEQKjXGRs1IYWgIlRpjo2akMDSESk2gkpEG0BAqNYFKRhpAQ6jUGBs1Iw2gIVRqjI2akQbQECq15vHfhlCpNY//NoRKrXn8tyFUas3jvw2hUmsO/23IlFr3+G9DptS6x38bMqXWPf7bkCm17vHfhkypMTUKel3shkipdQ//NkRKrXv4tyFSalKk27g+qyFTakyNmpFn0pApNUl/M67PasiUulz/Zlyf1ZEpdbn+zbg+qyNT6hKqZFyf1ZEpdWFKxvVZHZlSl+vfDHTdkSl1SX8zrs/qyJT6QarZ6ddndWRK/eCFP3SkSv3ghT90pEr94IU/dKRKPXjhDx2pUg9e+ENHqtSDF/7QkSr14IU/dKRKPXjhDx2pUg9e+ENHqtSDF/7QESv14IU/dMRKPXjhDx2xUg9e+ENHrNTdYkodsVKPTvhDR6rUoxf+0JEq9eiFP3SkSj164Q8dqVKPXvhDR6rUhSqRXlWtI1XqQpWM6b0jVerRC+ruSJU6c6NmJPp1pEqduVE46Em5HalSZ27UjLzAjlSpMzdqRl5gR6rUmRs1Iy+wI1XqzI2akRfYkSp15kbNyAvsSJU6c6NydDxUqyJV6syNWtFdg45UqSdZVvVdYUeq1JNYVY9S6UiVOoOjZqQRdsRKncFRMxIDO2KlzuCoGYmBHbFSZ3AUjKSdjlipMzgKRtGrjlipMzhqZD0drSpYycjx6YiVumAlIwunI1bqgpWMLJyOWKkLVjKycDpipS41uo1rPjpipS41uquen9QRK3XBSqQ7qx2xUpca3Qbe6IiVumAlIyWoI1bqgpWMlKCOWKkLVjJSgjpipV7czRJipV7czRJipV7czRJipU7uZgmxUid3s4RYqZO7WUKs1MndLCFY6uRulhAsdXI3SwiWOrmbJQRLndzNEoKlTu5mCcFSJ3ezhGCpV3ezhGCpV2+zhFypV3ezhFypV3ezhFypV3ezhFypV3ezhFypSwZc1H3hjlypV48Ad+RKXbiSkezXkSt14UpGsl9HrtSbOwEjV+pule6OXKkLV7J2EMiVunAlI/OwI1fqTI6sGxs6cqUuXMmalZArdeFK0dhGIlfqzbUqcqXexKrGKoxcqTexqrEKI1jqjI6akQPXESx1RkfNyK7qCJY6o6NmZFd1BEud0VEz0qU6gqUuwUrRGDNIljqzo3y6a0C5KaMjWeoSrGR5KkiWenetimSpS7SSNRMgWeoSrWTcIdKBLMWDFFY6oaLL/L0hndR5s6TffzKkk7pcaKLerjKkkzrPwPodIkM6qfO3qt0hMmSTMts0kWbTIZ3U5TqTaqgTqst1JurdKkM6qXNgS1IH2JBO6mzTrOK/IT1XZ3KUs4r/hnRSZ5vmqHcmoE2ZHOWcDHW0KZOjnLOhjjYNcqNJMdTRqkFWVZUWDumkzlbNxiAIaFUmRzkbgyCgVSVcSb+NZUgndbGqMQgCWlXCldSLZIZw0majloP+8IhGZXKUSzDU0ajClfRVckgndTZqMUZYRKMKVyrGCItoVCZHOR70KSyiUaVGdzGGTESjMjkyrkEa0kmdjVrIeDoalclRLsYIS2jVJFY1ppmEVk1iVWOEJbRqEquq99YN6aTOViVjVkpo1SSLatbNlNCqTI4yGSMyoVWT46sO6aTu+KpDOqk7vuqQnqtnx1cd0knd8VWHdFJ3fNUhndQdX3VIJ3XHVx3SSd3xVYd0Und81SGd1B1fdUgndcdXHdJJ3fFVh/RcvTi+6pBO6ravOoSTtuOrDumk7viqQzqpO77qkE7qjq86pJO6eDUqEhvSSZ1hoV67YEgndfZq9Psuh3RSZ69GL0YwpOfqJL6qeiXakE7q7NXo1QWGdFJnr0avLjCkk7p4NapHNqSTOsNCvbrAkE7qJ7uFrN7PNqSTuuPVDOmk7ng1Qzqpcwk0nYsO6aQu6VJqut+QnqtLvJJeSGFIJ3WxqhraPaSTOltVL6QwpJM6W1UvpDCkkzpbVb+Qe0gndUbAeiGFIZ3UGQHrhRSGdFLnb7Ubn0dFqwpX0sLthmxS5i+1qxEWQ3quLtFK3Ri+DW3qUaUhndSdu9+GdFJ37n4b0kndufttSCd1++63IZy0nbvfhnRSd+5+G9JJ3bn7bUgndefutyE9V5dopage2A3ppM4fqp60PqSTupODMaSTupODMaSTunyoKrIa0km9eDNeR6syNup6Bv2QTuq8/+3GFNbRqoyNup5wP6STemd1Yw1GqBQYG3U94X5IJ/XA6vqcFBAqBcZGXU+4H9JJPbG6vqgGhEqBwVHXE+6HdFIvrK6PyIBYKRzEqvqYCYiVAoOjricVD+mkzlbVi3MO6aTOVtXTfof0XJ3BUddT7IZ0Umer6il2Qzqps1X1FLshndRPdjulQV4WuxjCSZuNqifkDemkzkbVs6uGdFJno+rZVUM6qYtRjTGAVCkwN+p6ysaQTupsVD1lY0jP1RkcdT1lY0gndTaqnrIxpJM6G1VP2RjSSZ0/VT1lY0gndbaqnrIxpJM6W1VP2RjSSZ2tqqdsDOmkzlbVUzaGdFJnq+q5BkM6qXdnHxYQKwUGR/o+LCBUChKsZOzDAkKlIMFKxj4sIFQKyUkrH9JJ3UkrH9JJ3UkrH9JJ3UkrH9JJ3U4rH8JJ20krH9JJ3UkrH9Jz9eyklQ/ppO6klQ/ppC5p5eoh05BO6vyh6qkvQzqp84eq34Y1pJM6f6jJmGSQKYXsOaoBmVLwyioN6aQuRzX6mVRAphSYGnX9vqohPVdnatT1PJwhndR5+tXzcIZ0Umf+qxdtGtJJXe6qUXOIhnRSF6sa8ylCpTAufzM2JwiVAmOjrmf5DOmkztOvnuUzpJM6T796ls+QTupsVT3LZ0jP1RkbdT3LZ0gndbaqnuUzpJM6L6p6ls+QTur8repZPkM6qbNV9SyfIZ3U+VvVs3yGdFJnq+pZPkM6qbNV9SyfIZ3U2apFrbs7pJM6W1WPAR7Sc3XGRr3oYCYgVAqMjawTiYBQKUiwknEiERAqhSpJGPqJRECoFBgbWScSAaFSkMpKxolEQKgUJFjJOJEICJWClOs2TiQCQqVQZV3VTyQCYqVQherrJxIBsVKQykrGiURArBRcrBQQKwUXKwXESsHFSgGxUnCxUkCsFDysFBArBRcrBcRKwcVKAbFScLFSQKwUXKwUECsFwUpJLbk6pJO6U9duSCd151q/IZ3UeQLWo/uHdFLnCViP7h/SSZ0n4FJUMh4QK4XuXL85pJM6T8B6MsCQTuoyARurAWKlwOCIyPBqECtFKdh9UBNIhnRS52VVzx0Y0kmdl1X9CqIhndTZqnruwJBO6mxVPXdgSCd1tqqeOzCkkzovq/otQUM6qbNV9ej+IZ3U2ap6dP+QTuq8rJJazn5Iz9UFK+nR/UM6qfMEnPRtZESsFBkcGZwoIlWKQYxqDBnESlGwkh6tP6STOhtVj9Yf0knd82siYqUYPL8mIlaKgpX0XIAhndTZqHrE8JCeqwtW0iOGh3RS509VD9Id0kmdP1U90HVIJ3W2qh7oOqSTOltVD3Qd0kldrGqMGcRKUbCSHug6pJM6f6p6oOuQTupsVeNsPSJWigyOunG2HhErRUZH3ThbjwiWIqOjbhyWRwRLkdFRNw7LI4KlyOioG4flEcFSZHTUjcPyiGApJmevFJErRZcrReRKUbiSXgpkSCd1J7VxSCd1576aIT1Xz859NUM6qcs1GOqFH0M6qUdniY8IliKjI3OJR7AUs32x3xBO2vylGlEBEblSZHLU9esVhnRSlwtr1NtzhnRSZ69Gr+8ypJO6cwvGkJ6rl4M3BpArRSZH5hhArhRL9MYAcqVYkmMlxEqRwVHSK9kM6aTuXG0ypJO6cwvRkE7qPP0aoR4RsVKUFLhkjAHESrG4RkWsFMk1KmKlKFjJ8AwiYqUo1bqtMYBYKcotcNYYQKwU5RY4ax5ArBQZHFlDBqlSlFClZOw4kSpFN1QpIlWK5NzWOKSTOq+pRrhPRKoUhSrp96YM6aTufqlIlWJ1v1SkSpG5kWklpEpRLoGzZmukSrF6RkWoFKv4NIZRESrFKl+qsTdBqBQZG3UjDioiVIpVjGrsTRAqxSZGNfYmCJUiY6OuXygzpJM6b5SMKJiIUCkKVNKrcQ3ppC6o0HA7ECpF7xa4IZ3UJf7MGGFIlWIzawAP2aTM0WfGQWZEphQl/804yIzIlOIorKSTv4hMKY5i3Tr5i8iU4ijWrZO/iEwpjmLdxoYTmVIcxbr13SwipThqdevkLyJSigyNLPIXESnFLqBQJ38RkVLsAgp18hcRKUUprJT0WOSISClJpJIRw5UQKSVJf4v6+p4QKSVJf9PTDod0UucKEAcj5ishU0pMjage1Ok3IVNKByercUgndQ8/JGRK6eAtqgmZUmJqdPyt+jKZEColSYEjNXN2SM/Vg9RrMSLWElKlJDlwVQfGCalSYnB0fLy+2iTkSikMy+rLTUKwlBgdHfX19SYhWUrMjo76+oKTEC0lhkdHfX3FSciWUnCKoQ3ppD6Mq69QCeFSCk7O6pCeq0cvZzUhXErRy1lNCJdS9HJWE8KlFL2c1YRwKUU7ZzUhWkrRy1lNiJZS9HJWE6KlFL2c1YRoKUUvZzUhWkrRy1lNiJZS8nJWE6KllLyc1YRoKSUvZzUhWkrJy1lNiJZS8nJWE6KllLyc1YRsKSUvZzUhW0rJy1lNyJZS8nJWE7KllLyc1YRsKWUnZzUhWkrZy1lNiJZS9nJWE6KllL2c1YRoKWUvZzUhW0rZy1lNyJZS9nJWE7KllL2c1YRsKWUvZzUhW0rZy1lNyJZS8XJWE7KlVLyc1YRsKRUvZzUhW0rFy1lNCJdS8XJWE8KlVLyc1YRwKRUvZzUhXEpefaUhndS9nNWEcCl59ZWG9Fzdq680pJO6l7OaEC4lr77SkE7qXs5qQriUvPpKQzqpezmrCelS8uorDemk7uWsJqRLyauvNKSTupezmpAuJa++0pBO6k7OakK4lLz6SkM6qXs5qwnhUvLqKw3ppO7lrCakS0lClpIeGpmQLiWvvtKQTuoeMkxIlxLzo+N+2eoNWrWJdxMMdwX5UmoeNEzIl1LzoGFCvpTkOriDkXaSEDClJs5N0I+/EhKm1MS50SsjDvGkL85N0E8QEjKmxBzpqG949YiZUhPvJuhkMiFnSlK/O1vGQuN25/6EIZ3UgzfUkDOlLp6rkduSEDSlnryhg6ApMUsyhw6SptSHaQ1HEVFTEtR0CufQiAeipiSo6XRlk6qOhpVKS9kYx4iakkQvWfgFUVOWe+G6PiozoqYsqMlIA86ImrKgpq73PSNqygM1GUlIGVFTPnhQOCNqygcPCmdETVmKLRlwJyNqylLE+2CkRGVkTXmwJiMnKiNryoM16aMsI2vKUm7JGGUZUVNmmHTsjY6mMrKmPFiTkXOVkTXlwZqMpKuMrCkP1mRkXWVkTZlhksWCMqKmLCWXur5Bz0iaspCmYD0dTSsllwxYkxE05QGadBSUETRlKblkuIwZQVMeoEnHWBlBU2aUVIJ+/pARNGVGSSXoflRG0JRHzSXdB8yImvJATTrGyoia8kBNGsbKCJpyFJt244eiTRkllePXraujTRklldOt6qo62pRRUjl+fao6gqbMKKnoBCMjZ8pMko6rsPFwNOngTDp8yciZMpOkEvWzs4ycKTNJKtH4lJAzZSnkHY3hiJwpM0kqsRnqaNQkRjXGAHKmLDFMyRgDyJkyoyTLk84ImvIouKR70hlBUx4Fl3RPOiNoylJwyfCkM4KmLAWXDE86I2jKUnDJ8KQzgqY8Ci7pnnRG0JRHwSXdk84ImvIouKR70hlBUx4Fl3RPOiNoysU7cc0ImnLxTlwzgqZcvBPXjKApF+/ENSNoysU5cc3ImXLxTlwzcqZcvBPXjJwpF+/ENSNnysU7cc3ImbJwJv0m8yE9V/euhxvSSd1zbzJypkzjYE73pDOCpkxjH6w7ZxlJU2aWZLlDGUlTljAmwx3KSJoyDc/V2MUjaso0PFfj3SNryjQ8V92TzgibMgmXMDzpjLQp18EldE86I27KkiJnedIZgVMW4JSN7iNwytWr55IROOWavaGGwClX8V2N8gMZiVOuYlyj/kBG5JRr9YYaIqdch5Oju9IZmVNmqGQOTUROWWp6Wz4REqfMTMn0iZA4ZUmTy8Y4Q+KUJaLJ8kYROGUmSuY4QN6UB28yihJl5E158CajlkNG3pQlpsmIx8qIm3LzKqVlpE25yTdr5OZnxE25yzdrJOdn5E25yzdrZOdnBE55ACcjIz4jcMpdZmQjJT4jccpyZ9zByInPiJwyMyU9oiwjb8p9mNb4ZhE4ZanCdDCy1jMSp9zlozXS1jMip9zFuEbeekbmVA5iXCNxvSB0Kge5uFOfYAtCp3IQ2xqJ7gWpUznIzZ36Z14QOhXGSuHYGw0LFYRO5SDfrZFHX5A6lYMY10ikL4idCnMlPbe8IHMqgzkZafcFmVORq+MMp6EgcyojvslI0y8IncqATkaefkHoVAZ0MhL1C0KnMqCTkalfEDqVAZ30+xKHeNIX2xq5+gWpUxkBTvoNXEM86cuHayTpFuROZVwhp7smBblTGVfI6a5JQe5UxhVyumtSkDuVcYWc7poU5E5l3CGnuiYFsVOJ4vforklB7FTGFXK6a1IQO5VxhZzumhTETkWwk+GaFARPRa6Qy/p2tCB4Kt4VckM6qctkbGRqFyRPZdwhp1/ENsSTvnyzRvJ1QfhUknyzRvZ1QfpU5Bo5/UqwIZ3UxydrTAmIn0oan6wxJSB/Kkk+WSOjuiCAKlLx+2CkVBckUCXJjGzkVBdEUCWJeY2k6oIMquRxRaAxHBBClSzmNdKqC1KoIiWaDvqtaUM86cuUbCRWF+RQhUlTPOiecEEOVbKY18iVLgiiSh7mNYYDkqiSpUqe7goXJFEli3WN5OqCKKoIitJvpR3Sc/UixjXSpQuyqFK8ihIFWVQRFpV1l6AgiyrF838KsqhSPP+nIIwqEvRknNgUhFFFMuqME5uCMKoIjDJObArCqCIwyjixKQijCuMm68SmIIwqUv3bOLEpCKOKwCjjxKYgjCqSUWec2BRkUYVhk3ViUxBFFZJIYv3EpiCKKiQHPNqJTUEQVUhsqtP6ghyqkJwF6LS+IIYqklBnnNgUpFBFan8bJzYFIVSpcsCjntgURFBF8umME5uCBKpUCSTWT2wKEqjCjMk6sSlIoIoQKOPEpiCBKlUOeIzhiACqVDng0U9sCvKnIvzJOLEpyJ+KhDwZJzYF8VORkCfjxKYgfipSpck4sSmIn4pUaTJObAripyL4yXK+ED8VwU/GiU1B/FQkoc44sSmIn8qo0qSf2BSkT2WUadJPbArCp9LkgEc/sSkIn0oTP0c/sSkIn4qEOlluEbKnMlLqDLcI0VMZKXWGW4TkqYyUOsMtQvBURkqd7hYhdiojo85wi5A6FblRznKLkDuVkVJnuEWIncpIqTPcIqRORagTGZ8qQqciKXXWbgOZEx28Ax5C5EQMlYz7o4d0Uo/OvEFInOiQnHmDkDiRhDkZ8wYhcaKDc/vjkE7q5MwbhLyJmClZ8wYhcaJDc+YNQuBEApyMeYMQOFE4OPMGIW8iqdJkzBuEuIlCdOYNQtpEITnzBiFsopCdeYOQNVEozrxBiJpIyjTp8wYhaKJQnXmDkDORxDcZ8wYhZyKJbzLmDULORBLfZMwbhJyJhDNlPbeWkDNR9FZVQtBE0TutIwRNxCgpZf2QhhA0UfQiEglBE0mVJqN2BiFoIolwMo4OCUETCWg6xTsqVckIQRNJhJNxEkjImYhBknWyR4iZiDmSVfOBkDLRoEw1qiCckDJREgxRdYpPiJkoOSV9CCETJXcGRsZEgzFV/QSCkDHRYExVJ4iEjIkGY6r6gTYhY6IkFWj1QwVCxERyr1zREQ0hYSIJczIWbkLAREyQzE8E+RLl5I15xEuUBR8aZdUI+RINvmTUVSPkSzT4klFYjZAvURbTGpXVCAETDcBklFYjBEyUBR8atdUICRMNwmQUVyMkTFQEHxrV1QgRExX5bo3yaoSMiYp8t0Z9NULIREXsaxRYI6RMVJxiMISQiYpY16jdRUiZqAzrGqMBMRMVsa5R6ImQM1ER6xpVfghBE5FY1yjzQ0iaiMS6RjkbQtREI+7JqGdDyJpoxD0ZBW0IYRORWNeoaENIm0jumjsYJW0IgRONyCejpg0hcaIR+WStQoicaEQ+GYU+CJkTSeRTMEpxEEInksinYJSzIMROJJFPwahPQcidiMnSUd8YDwieiNHSUd8YD0ieqGZ3lUb0RJJtR8a6iOiJGC5ZWJYQPRHDpWPvjdGJ7Ikk9ikY5S8I4RPVYV1jdCJ9Igl+OhFIbb+G9ImknJNRKJ6QPlFzXVqkT9RclxbpEzXXpUX6RM3dUCF9oua6tEifqLkuLdInaq5Li/SJmuvSIn2i7rq0SJ+ouy4t0ifqrkuL9Im669IifqLuurSIn6i7Li3iJ+qeS4v0ibrr0iJ9ou66tEif/j/Gvi3JkVzHci/3+9qY+HKSvYNZw9hYmzJCkaEuhRQtKfJRbbP3IZ0knIDzMOurVEkS4e58AQfAwRKnJq1En/xhZtJ6iT75FV8ybuxl9BJ98oeZiuwl+uRXfAlhW16iT77EOylAm+Ml/ORLwJMC1eS8xJ98CXhSoJyclwCUL3l2dpyW5yUA5VeIKQBWWy8BKL9CTKgcrZcAlC8RT0qNb1gvESi/YkyoYqyXCJQvCBQ4s71EoLyaeWC9RKC8mnlgvUSgfIl2AjeClwiULwgUuBG8hKB8gaDAjeAlBOVLqBO4EbyEoHwJdQI3gpcQlC+hTuBG8BKC8jXUaXwjeAlB+RrqNL4RvISgfI11Gt8IXkJQvkBQ4EbwEoLy2k1uBC8hKK+XyY3gJQTlS6wTuBG8hKC8DpMbwUsIyuuIbwQvEShvDpMbwUsEyhcyJ3AjeIlA+ULmBG4ELwEoX5Ls0I0g8SdfCtC5cVSUlwCUNzNSPS8BKG9mpHpe4k/ezGgnvISf/IovoTrWXqJPvkQ4KVAA1Ev4ydt6BI+NEC/xJ18inBQoAeolAOVLhJMCNUC9RKB8iXBSoKynlxCULxCUAtwHXkJQvkBQCrATeAlBeVvvV3AfSwjKrxgTqvTtJQLlCwKlQNq7lwiULwiUAmnvXiJQviBQCiSme4lA+YJAKZCY7iUC5QuzEwi28RKA8ivChFj+vMSffGF2AoFCXsJPvgQ5gTAkL/EnXzLuQLCNl/CTr0FOo2AbL7EnX0OcxgRvXkJPvoQ4AZY/L5EnX0OcxkFIXgJPfik57OA8k7iTX0o8zJhPy0vYyZcQJ8Dy5yXq5EuIE2D58xJ08iXECbD8eYk5+aUQ641Z/ryEnPxSiPXGLH9eIk5+KWbOmLLNS8DJL4VYDywCiTd5X+gSwSKQcJP3hS5xHLbkJdrka5QTWAQSbPKF2GkcceUl1OQLrxNg+fMSafIFaQIsf14iTX6KNHmJNHlfiPXACpNAk/eFWA+sMIkz+RVIQix/XsJMvsBMgOXPS5jJlxw7EC/oJczkQyHWG7P8eQkz+VCiEcEKkzCTD2VWwTEjYSYfyqyCFSZhJh/KrI5DUr2EmXypRQdY/ryEmXypRQdY/ryEmXypRQdY/ryEmXyccRN4CTP5OOMm8BJm8nHGTeAlzOTjjJvAS5jJxxk3gZcwk48zbgIvYSYfZ9wEXuJMPs64CbzEmXyccRN4iTP5OOMm8BJnCocZN0GQOFM4zLgJgsSZwmHGTRAkzhQOM26CIHGmcJhwEwSJMoXDjJsgSJApHGbcBEFiTOEw4yYIEmMKhxk3QZAYUyhBTm7s7g8SYwoVYwLUSUFiTEFVDXhssAQJMoWSVadAyniQKFNQxXQd26JBokxhijIFiTIFNcMjgkSZwoojIeMySJQpKD/RmINEmUINdErXjf1fIeweRk6sqrbN2JQLEmYKUyanIGGmUJicwMUdJMwUdJ3XsaEYJM4UCme4HmOTQeJMoeTUgfspSJwp6GK26rEZGiTQFHQxW0H+epBIU9DFOwcyzIOEmkKpSQdiqYKEmoKelS8LEmsKK5qEYqmCxJqCmVFhBok1BTOjwgwSawpmVj8nSKwp1JQ64MUOEmwKNaUOeGmDRJvCiieBGIsgwaZQqtIB3SBIsCm0WCdwuEq0KdR8OhBLFSTaFGo+HYilChJtCrZ4XcexVEGCTaGQOjnwNBJrCoU9HOB8QUJNwc74EoNEmoKdRScGCTSFCjQBzoYggaZQYp1AwHeQQFOoQBOgeAgSaAoVaAIUD0ECTcHNsq6CxJlCyaUDQFCQMFOoMNMYCAoSZgqFQBwAQUHCTMHNsq6ChJmCw1lXQYJMoYJMYwwgSJApVJBpbKEFCTOFCjONLbQgYaZQYSaw4CXMFArMBICgIGGmUGAmAAQFCTOFCjONzfQgYaZQYaaxmR4kzBQqzDQGgoKEmUKFmcZAUJAwUygwEwCCgoSZQoWZwCKQMFMoMBMAgoKEmUKFmcZAUJAwU6gwE1gEEmYKBWYaA0FBokyhoEwACAoSZQoFZQJAUJAwUygwE9L4JMwUKswEVpiEmUKBmQAQFCTMFArMhPRJCTOFCjOBJSNhplBgJgAEBQkzhQozjYGgIGGmUGEmsMIkzBQqzASOGQkzhQozgRUmYaZQYCYABAUJM4UCMwEgKEiYKRSYCSnaEmYKFWYCK1LCTKHwhgMgKEiYKZRoJgAEBQkzhRLNBICgIGGmUGAmpOxJmClUmGkMBAUJM4UCMwEgKEiYKdRopjEQFCTMFGo00xgIChJmChVmGgNBQcJMocJMYyAoSJgpxBkTTJAwU4gzJpggYaZ4mDHBRAkzxcOMCSZKmCkeJkwwUaJM8TBjgokSZYqHGRNMlDBTPMyYYKKEmeJhxgQTJcwUSy6dG9sSUcJM8TBjgokSZoorkDTmFIsSZIoVZAIEZ1GCTLGCTIDgLEqQKVaQCXCWRQkyxRVGcvkqGxjQUYJMsTA3KUBxFiXKFEssk8qK5ADZiRJmioW5SSVNctxfzmyJZsrX08DsixJnimo6sxJnigVnQlyAUeJMUZfJBYRrUQJNscQz5dty9PQSaIo1pW5sVkaJM8VpSl2UOFPUZWqzmj1AaqIEmuKKJC3KjGdK4kyx4kxZLR+KlzOrce3XKEGmqIvNasexllGiTLGgTIBVMUqUKZo6r2MQK0qYKRbupjV2cthfTmzJqlujIYf95cyWrDplx3ycUSJN0dSpHRNyRok0xYI0KTcubhEl0hRLYh0I5owSaoolr065MQIaJdYUC9akHFiZEmuKNbLJgaUmsaZYI5scWD0Sa4o1sglgmlGCTbFGNjmwHCTaFGtkkwPLQcJNsUY2ObAcJN4Ua2STA8tBAk6xAk4LWA4ScIoFcFILmF+JOMWKOC1gfiXiFCvitID5lYhTrKFNC5hfCTnFGtq0gPmVmFMsyXVqAfMrQadYkuvUAuZXok7R2eklKmGn6Nz0EpXIU1yxJVSVO0rkKboSuDbmqYkSeYortoQKbUeJPEU3IxGJEnmKy4xEJErkKS4zEpEokae4zEhEokSe4jIhEYkSeIrLjEQkSuApLjMSkSiBp7jMSESiBJ7iMiMRiRJ4iqVunQOKkQSe4jIjEYkSeIp+RiISJfAUazodIKOLEnqKNZ0OaToSe4orugQ1HYk9RW+nmo4En6LHnMRRQk/RL1NNR2JPsfA4IU1HYk+x5tIhTUeCT7Hm0iFNR6JPMRymmo6En2JQU01H4k8x6KmmIwGoGMxU05EIVCzV65CmIxGoGNxU05EQVCxk4lDTkRhUDH6q6UgQKoYw1XQkChVDnGo6EoaK8TDVdCQOFaOaajoSiIpRTzUdiUTFaKaajoSiYqETh5qOxKJiqWAHNR0JRsW4TDUdiUbF6KeajoSjYgxTTUfiUTHGqaYjAClzOBwmmk5tZv3VRNOpzay/nmg6tZn1NxNNpzaz/hZrOrWVdXdY06mtrPuCNZ3ayrpPSsXWVtZ9Uiq2trLuk1KxtbXvrialYmsr645LxdZG1ntSKra2su6TUrG1lXWflIqtraz7pFRsbWXdV/x4GQYW1FbWfZKzU1tZ97phh9E6tZn1Lxt2THRbm/v+FZEaM9fWZta/bFg/jC2ozax/2bB+GCxQm1n/VUNehhm3tZV1nwRS1FbWfRJIUVtZ93Ia+2HkQm1m/f1Eb6zNrH/AemNtZd3jRG+szX3/FXYa6o21jXVWE72xNrP+GuuNtZV1NxO9sTaz/naiN9Zm1t9N9MbazPovE72xNrP+fqI31mbWP0z0xtrM+k/SnWtr370hUkO9ojaz/mqiN9Zm1l9P9MbazPqbid5Ym1l/O9EbazPr7yZ6Y21m/ZeJ3libWX8/0RtrM+sfJnpjbWb940RvrM19/4ZIgfl1cn4bIgXm18n5bYgUmF8n57chUmB+nZzfikiN9cbazPq7qd7o5Py6Zao3Ojm/zk/1Rifn14Wp3ujk/K6wE9QbnZzeFXaCeuMiZ3eFnaDeuMjJXSbcIrWVdZ9wi9RW1n3CLVJbWfcJt0htZd0xt0htZL0n3CK1lXWfcIvUVtZ9wi1SW/vufsItUltZ91VDXobBvbWVdZ/49mor6z7x7dVW1r3sVz/0Otdm1r/sVz/0Otdm1r9qUkOvc21m/ct+HdP71WbWv+zXMb1fbWb9y3k8pverzX3/CkuN6f1qM+tfzuMxvV9tZv3LeTym96vNrH85j8f0frWZ9S/zO6b3q82sf5nfMb1fbWb9y/yO6f1qM+tf5ndM2FebWf8yv2PCvtrM+pf5HRP21ea+f8WlxoR9tZn1L/M7Juyrzax/md8xYV9tZv3L/I4J+2oz678eyjllZHSYRDm9JUQq387D7nJ2V9hJh2EQRW1l3ddTeRlGLdRW1n3FLfSQR6i2su4laQs9jJhZVUKk/Ng8VxKQUiVECljzSuJRquJRY6LE2sz6m8nVrCQcpWoq3vhqVhKOUjUXb3w1KwlHqUI4Dq5mJeEoVeGo4dWsJBqlKho1vpqVRKPUIU6uZiXRKKUOk6tZSTRKKTW5mpWEo1SBo8alr2or6z5he6qtrPskD6+2su5rGM0yTOqprax7OYnHVJy1mfUvJ/GYirM2s/5VMx5bGkoCUmpFnBDGoSQepVqE1NgwURKPUivgNMY4lASjVAWjAMahJBildIl9G2McSoJRqgVIjY0eJdEoVTPxAMahJBylWoTU2OhREo5SDY4aG7VKwlGqBUmNjVol8ShV8SiAcSiJR6kSJQUwDiURKVURKYBxKIlIqRokBTAOJSEpVSEpgHEoCUmpCkkBjENJSEq1ICmwHCQkpSokBTAOJSEp1aKkwHKQkJRqkBRYDhKSUi1KCiwHiUmpikkBjENJTEpVTApgHEpiUqpiUgDjUBKTUhWTAhiHkpiUqpgUwDiUxKRUxaQAxqEkJqValBSYX4lJqRYlBeZXYlKq5eWNMQ4lMSlVMSmAcSiJSSlXQIsxxqEkJKVcAS3GGIeSiJRaISeEcSgJSCk3VaQkHqXcVJGScJRyU0VKolHKTRUpCUYpN1OkJBSl3FSRkkiUclNFSiJRapkqUhKJUstUkZJIlCpI1DLMAa6trPsaR+PBASKRKLXMnD9KIlFqmTl/lESiVImPGtc5rK2s+xpHM65zWFtZ95JuOcwrra2se0m3BJqIhKKUn/AZ1FbWvbB6DTNuayvrXgoXgq0qoShVqtyN6xzWVta9UAUN09VqK+teUmiHGbe1lXUvSbSDjNvaxjqXOR3WuKutrHspXDjMo66trHspXDisc1hb++6hFC4c1jmsrax7qVw4Srasjaz3OqXjOoe1lXUvGbTDPNHayrqXwoXg5pDgkwqlcCHYShJ7UqEULgTLUUJPKpTChcM6h7WVdS+TCtaABJ7UiiyBOoe1te8+Y3+qraz7hP2ptrLuE/an2sq6T9ifaivrPmF/qq2s+4T9qbay7hP2p9rKuk/Yn2or6z5hf6qtrPuE/am2dt31jP2ptrLuE/an2sq6T9ifaivrPmF/qq2sO2Z/qo2s94T9qbay7hP2p9rKuk/Yn2or6z5hf6qtrPs6qQAE1RJy0moSc1xbWfe1bpYZ5s3VVta9AoljQFxLzEmrChCPAXEtQSdd8vL0uGJJbWb9Xek/BsS1hJ10gZ30uGJJbWb9fek/BsS1hJ10gZ30uGJJbWb9Y+k/Bma1xJ10wZ30uEZIbWb9Vek/hs20hJ50gZ70mLy/NrP+JQ5qDIprCT1pPcMUtUSe9AotgaTO2sq6rzesAztF4k5a17kFa1PiTrrgTnpceKA2s/5lbsdc/7W5719wJz0msq7NrH/xAQzLrddW1n1S9aG2su557saIpZaYk15BpaTG+//l1O5B5KwWwEmPCbhrM+u/zI4oiTfpgjfpMV93bWb967SCLSjxJm3KeTx2G2kJN2k7PY8l2qTt9DyWYJNe0aSwDItZ1lbWvWzXYbpLbWXdZ5arlkiTnvE/1VbWfZmpHxJn0oVnfGhzawky6RVFAgtSIkzaFixirPdrCTBpV/cpOIMlwqRL0JMeE7bXZta/nMFjwvbazPqb0h+cYxJk0iXoSY8Z2Gsz61/265iBvTaz/hPy4trKuhfrdWx3a4kz6UIANa5iVVtZ90JePAZvtcSZdMGZkuUywhq1xJn0MrFetYSZ9CwLr7ay7jgLrzay3uusenD5SZRJl3gntLUlyqRXHAlubYky6ZKFB0ApLVEmXera6TFnf21m/cvNOubsr819/1LXTo8ZUWsz67/uWGDuagk06RLzBMxdLYEm7QutzNjc1RJo0r4cwmNzV0ugSftiv47NXS2BJu1L1Z2xuasl1KR9sV/H5q6WUJP2xX4dm7taQk3aF/t1bO5qCTXpUOzXsbmrJdSkg5rdNxJr0qHsVmDuSqxJl4J2yNyVWJMuBe3QWSCxJl0K2oGzQEJNutSzQ+auhJp0YYBC5q6EmnQhGkfmroSadCEaR+auhJp0nAXCaAk16RLhpMfkxbWZ9Z9qwRJr0iXASY+5jmsz61/vVnDXS7RJx3q3grtewk26JN7pMStubWb9izI8ZsWtzax/OYnHrLi1mfUvJ/GYw7M2d/1NSbzTY1LO2sz6l+kdk3LWZtZ/ZbqNYwXXSNDJlLw7PWYxqs2sf5neMYtRbWb9y/SOWYxqM+tfpndMS1SbWf86vePlYCT0ZA5leu14ORiJPZlS3U6PiYBqc9+/sEIlu2PcX6JPprBCJcMD9JfTu+JLYZyuX1tZ95n31UjwyRTwCTi+jcSeTMGeQMSTkdCTUZOiWbWVdZ8l4BkJPJnCPA40LiNxJ7MCS8gNaCTsZArxOHADGok6mUI8DtyARoJOZkWVkMFgJOZkCu84cAMaiTmZFVVCbkAjMSdTMCdgjhiJORldKDTHbkAjMSejJ3zytZV1L+7XkRvQSLzJFDIo4AY0Em4ypjjqxi4gI9EmUyjHgRvQSLTJlLw74AY0Em0yK6IEDCkj4SZjiqNu7AY0EnAypbodcAMaiTcZUxx1YzjASLzJmOKoA1tJwk3GFEcdWI4SbTKmeF/HbkAj0SZjy6SCNSDRJrPiScgNaCTaZEpoE7CLjESbTEGbgF1kJNpkCtoE7CIj0SZjiwU7touMRJtMQZuAXWQk2mRsKS86touMxJuMLYbO2C4yEnEythg6Y7vISMTJuGLojO0iIwEn44qhM7aLjMSbjJvlYRkJNxk3y8MyEm0ybpaHZSTYZNwsD8tIrMm4SR6WkVCTcbM8LCOhJuNmeVhGQk3GzfKwjISazDLLwzISajKF8cmPM86NxJrMMsvDMhJrMsssD8tIsMkUrnGkbUiwySxupm1IsMmUkCakbUiwyRSwCWkbEmwyJaQJaRsSazI1pAloGxJqMiuWBLUNiTSZFUuC2oZEmkwlGwfahkSaTCEbR9qGRJpMCWkaaxsSZzLezbQNiTMZv8y0DYkzmRLShLQNiTOZGtIEtA2JM5ka0jTWNiTMZGpEE9A2JMxkwqRKYW1l3fVM25Awkwlmpm1ImMnUkCawHCXMZGpIE9A2JM5kakgTWAMSZzIlpAlpGxJnMjOm8drKuk+Yxmtr333GNF5bWfcJ03htZd0nTOO1lXWfMI3XVtZ9wjReW1n3CdN4bWXdJ0zjtZV1nzCN11bWfcI0XltZ9wnTeG3tutsZ03htZd0nTOO1lXXHTOO1kfWeMI3XVtZ9wjReW1n3CdN4bWXdJ0zjtZV1X4GlcYqBlbCSLUl0QNmwElWyK2yElA0rQSVbKJ18HCobVmJKtlA6hWG1hNrKupedOqzhUltZ97JTNeguJ1UVm8aA7nJSSzE7uwzvDishJVsgpTCssFFbWfdi0zjQXc6qmp2/VkJKVs3OXyshJatn56+VkJLVs/PXSkjJ6tn5ayWkZPXs/LUSUrJ6dv5aCSlZPTt/rYSUrJ6dv1ZCSlbPzl8rISWrZ+evlaCS1bPz10pQyZrp+StBJWum568ElayZnb8SU7Jmev5KUMma6fkrQSVrpuevBJWsmZ6/ElSyJYgJeMGsBJWsmR7AElSyZnoAS1DJloy5ceG12sq6q8ndITElWzAlbcceHitBJVvS5bQdu2ysRJVsSZfTduyysRJWsiVdDp16ElayFVYCp56ElWyFlcCpJ2ElW2AldOpJWMkWWAmdehJWsgVWQqeehJVshZXAqSdhJVthJXDqSVjJVlgJnHoSVrIVVgKnnoSVrJtUia2trPsyO/UkrmQrrgROPYkr2ZoqB049iSvZyiQ+PvUkrGQrkTg49SSsZGumHDj1JKxkSwk7dOpJWMmWEnbo1JOwkq2ZcmOuISthJTvNlLMSVrIrcIQYCqyElexSfKt27Lu1EleyNYjJjn23VgJLtgYx2bHv1kpkydYgJjf23VoJLVmPKQesBJbsCh2hsFMrgSW7QkeZTmT4KSWwZFfwaA3vGmCXVkJLtrA2aTf2OluJLdnC2qQdki9ntgQxqXEEr5Xgki1BTH5Ms2EluGQLZ5N2Y5+2lfCSDXVewQUo8SVbOJu0AxegBJhs4WzSDlyAEmGyhbNJO7DuJcRkwyxI2EqIyYbpppUQkw11bsGukhiTLbFMQwzTSoTJFoQpP8xYuJzaACtk1ba+c8mZ0wvYrxJhsjWSaQGrXkJMtnA16WUca2ElxmRrKNMC1qUEmWwNZVrAupQok62hTAtYlxJmsnEW/m0lzGQrzASuZAkz2QozgStZwky2wkzgSpYwk6sw0/BKdhJlchVlGl/JTqJM7qAnV7KTMJM7mMmV7CTM5CrMNL6SnYSZXMmc83Z4VjoJM7nDLE7YSZjJHUpVh/G14yTO5Gr40jI+ypwEmlwNX1rGR5mTSJOr4UvjAhy1mfWvW3Z8fjiJNbmCNQF13kmsyZXkOQ1Isp0Em1xNngMk2U6iTW7Fk8Z3uJNYk6uZc4BR20mwydXMOcCo7STa5FY8CRkjTqJNribOgTvfSbjJ1cQ5wJHtJN7kauIcYJp0EnByNXEOME06iTg5XecWLE0JOTld5xYsTYk5uULapAHTpJOgk9PTjStBJ1dz5wAxpZOok6u5c4CY0knYya3AEqisXVv77jV1DvBYOok7OTMLBXcSd3KFskkD2ksnkSdXKJs0oL10EnpyhbJJA9pLJ7EnVzPoAO2lk+CTK5RNGtBeOok+uZpCB2gvnYSfXE2hA7SXTuJPrlA2aUB76SQA5QoApQHtpZMIlCsIlAa0l05iUK5iUID20kkMylUMCtBeOolBuYpBAfpFJzEoVzAoDcjxnAShXKFs0oAcz0kUyhXKJg2yuJ2EoVyhbNIgi9tJHMoVyiYDsridBKJcyagzIIvbSSTKlYw6A7K4nYSiXMmoMyCL20ksypWMOgOyuJ0Eo1zJqDMgi9tJNMqVjDoDsridhKNcoRE3IIvbSTzKFRpxA7K4nQSkXAGk/LCucG1l3WfwsZOIlFsxJ0RP6CQi5ZY6uWCxSUjKLWVyQVq2k5iUW8rkgrRsJ0EpVxLrDEjLdhKVckuZXJDe7CQs5ZYyuSBf2UlcyhVcyoB8ZSdxKVdwKQPSVZ3EpVzBpQxIV3USl3K+uGfHaehOwlKu5NYZkN3qJDLlfJ1esBwkNOX8jOXUSWjK+RkjgZPQlCvQlAG5s05CU65AUwbkzjoJTblCKG5AJqST2JQrhOIGZEI6CU65Ak4ZkAnpJDjlCjhlQHqVk+CUK+CUAflSToJTroBTBuRLOQlOuQJOGZAv5SQ45QqhuAH5Uk6iU64QihuQL+UkPOUKPGVAvpST8JQrhOIG5Es5iVC5glAZkC/lJELlCqG4AflSToJUroBUBiRAOQlSuQJSGZAA5SRI5VYUaoyYOYlQuYJQGZAt5SRC5QpCZUC2lJMIlYt1csFikAiVK8l2BmRLOQlRuZJsZ0C2lJMYlSvJdgZkSzkJUrmSbGdAtpSTKNVSku0McK0uEqdaSrKdAa7VRQJVS2EVN8C1ukikainZdgZ4VBYJVS0l284Aj8oisaqlZNsZ4FFZJFi1HGYI5CLBquUwQyAXCVYthxkCuUisajnMEMhFQlWLmiCQiwSqFjVDIBeJUy1qhkAuEqda1AyBXCRMtagZArlIlGopxOJhCBEuFab6v//+1/n643R/nl7/9/X19Otf//F//s+/jt9uP07/+vf//Os/z+Xf/OHfq9B//cf//CvpGf/xP//v//27yVr/L8s+fnvcLl/P0/N2Od2P15fT6+nzlManLp2oZOqSqHTOAFEvL1/348vvfmBS1reRKtcrQ2Of59v17Z56Xs7Xv06vvZCVwIqkrLRVf5RyuwoJiklwf5bw6/FyvJyEFMOk+D9L+T2SYpmUMJHy4/T4PL6w8d2sHnLff/8rJ/quP3TGkIGwV/ZJfVJBtnnJkM4qQGXjvP5yin759msJ7Zd37VegEbH922Lavy2ujVhCk7fEKk/r9td0pm2pvxbXfrW/oUleamz/FgxcBa+vx/sLe1vXzb5aNFzBr6/f7qdPNnQ59EONwUNfzvcXPtXeafZ34apLg7/uYvc6x8bCVfL6erpczp8PMdqw0ZNvdfr1vH89znzDeBfYa8N9+/p6vl5P98/77e3MX36J/ZfLcVMTEY9nOXveztfzUz6Lsf1aXSZLvAm6ffuv08uTzyObitniuRx/n+78AfqpyFYMHnu+8nmwkc2DxkM/To93PgVsqJkMHb0uW/FmsvI+b2d+2Hvr2TNPJm4d+3K5ffHDxbLFoyeLpwi4XW7sg6tDf+GkTT+Z8lXC9Xb/OF6EiMBETCatEzF4lH4Z63qe/TM5P46Xr5MQpnthy58+7UiCYo8T/yDh1++/+dT09/GipsMvv3fL2bHTUE9Ow//+Or6+iasr9kta68NkSSdd5PtpfYOHeH/DvuBkbXUi1umQghwTNHmVTlCZXSnJMkn/7K2qpOGTLUze5LZC8tZ1I6Wy/bBM9kMndSjIM0GTo+Xx+X66iwVk2QKabOzH112uH+/YyWQm2+eZrrXXGz/XmC666Mnaf96+329fn/y9eyVCO6xCpuH3837pB7b04bq9nL9fufrbPTWctMvzdL8en6dvp8vtp9y1LvT31+xvVymX0/X78z29wpMfhsnm7gXhT3B5np9fr3zu2Nh0kBQ9zhh8Cnx8Ows7RKlerdFNa40W7t4iY3esR9Wf6gqrzWV8mpR38SC++6ZrKUYg4Hq8/H6c+RbS/XxY+Lev37lG5Xy//BVWyvLA19P3+4lvXau68c7UGaiKPpRz+zier1xMtxEcVqbz6Dxk9xyuv4SSSTwXcD++no9XIcD1AqbPPxhule1fwLfvAI+T6/fH8377YEIyqdO2gibz//3rcuTqZGeWz0eZT77o2PkFh54ft/S0n+cXfnwt7Pgy+E/T+PvteZTKeJKjmRyoD12vo+FLv4Qjnrk2+NuRGza6t8eMrWs4h43+SdLz9yeTlFPsSFKO81wlhVBFKmVM+7W0X7odWzn4ov7KTEnlV4ixHmo5Te+fPA9flt3jVDkHeK5df/MTpf+sFt5s1997UyGXK+2OQjgln6dfO1PB2W4TRPx3PzOmxK9Ddv42XCFZ+vUT6mDxk2RpwsRXSgW2H+HdtI7emdtpfGTj4f5ax8srNg33bDg8D9bh19NPYawwZRQfievox+n7xw6g63dlvY7+nR8E7vPPz8v5ZV2Jr6fn8cyV2oXd1jb+AylrbyaCr8nJhDQRX/cLlxCYBDglfCno/qQztsJOTtF9B7/u/WW3LnR/3GXOnyIDoxn3l/fzj+O3dHGeVxTweP/N5fUQoq0Hy4LPi1Xe6cfpvoNoDgxfifAgzqiUQEN7JQoOOx3Z6dQfl4utG3Zindzvt5/fLreXv86vimsx/awqDCd3AjQXEJkAuLCygPfT8ZV//x58bfjjglXZJmR3XPcbXvl2YE/fpujVXKPuJzHX2pgMz4/AP2VkM3nAS6CO5t8xMmX6AE/vrPxcbx9pk16+rmdukOveoNN4Lp7P0/Vr3eQ/TtKsCP2cpAUBP8IzGVbfvp58HtJZyyANeGV+PW8jwySwfeSxNpnGvybT6CkO/h7j1dG0myyGhdZEPYLWapdY+Ef6PC/8kmS+kyoYY7lJxtfn6/Ep3Q3ddlnrPIDhv85Cye6+ayTFJxdnBgL+Pn988eW9Upluf9xA0/Pb8eWvbHKnm1maasvSq70WKihCxLfbM31SYbN1W3Ytb/+PJD1vn0LMwsSgNb+JOXN3llr6GTlAB9Am4PN+y2qbuAEWpkxbeJRnOT+P91e+57rJPbSlhfZO1sIH0Gj/HtrBfZtHZ4Upu7LO1+/sFQ7sDIJ4ZBYx0D67rRfblZRm+Y9S/j7db+wU65W30PYtnNgMsnBFpTPp0Pb4dvr7fLoPFIweSLCuXUhwUZyfH0e+IBleaKoEY+v5g31WRRQ/THvbXjl4J6Shj8/T/fP863ThWkI3nws0Mr9d0pLczeei+5PYQBX+2+3C/Q091K+8Qnfwt9v9lXt2QuiN4gP0M6TDhJ1roVsvUbXdg//u832ojCjTH20Qy8/jH+dXoX5odoo4fC6uJ9D1+7fbL77u+lPMNhCkeYKXZlpHRb7XtjN0gMjr+sceH8dfP7jG1t9kCvpB6+jz9YuPtmw0/szsBfvD3lerUjVPudkUWPgqwhOsmJYS2ilhYxMEpy8JOr1+5+BDfy22HdvuWA+tgSbqcn48+WR6thaqHA9vhCRHItS9k9M03cXpJgoe7lXU/pFC/0gNXoGoe5ZzufGr1vRv1RYf1D+yhOo02D8M2yt1RQd8MiZRSddk6kO/V/HBlgaugTlsKRpm87VP69pT/FnY7n362B7j6mwF6MT69vUhroweLMEP8HvnCw+BAQ3QHfrt92eyIAVIEQwbi5bCy/Hl/bR6cL7uSe1Ip/Y5eyW43eF7I79FqAQYHPBy5BtQhR6Agvj/S+pxZ3ZwfwpA31cZZtzHRzL5Hnuzbw1B7R4/ojVdBO08AWvIazc+4E/5sSLg9732uIYh9zLQYSFkSD8780mgU6LISMb8HhHO0dP9Y6B7rIjYKQ3qwOCE+UQ+Pm9iMIMS0GIug4U/MEdl98+N9l4Z/EuMZedRQFdaGftbTD3b+2G+Bv8WY9muCXi6sqr+ZH849gFJWkUK01qaAlTDjLKCAMOVkuSXdMtzva8/F5SFRnIaK0F8xzzCh8nQx/PxeD++3n4Kb3b/RbTFGyn9Dz8JcwW1zYukmj7RNKmlOQ2iat6DQ/MP6MPS3J8agublL34c73/xKexV5HaV1D8e4C29CXuc/+ZfkKEMGP8vEm5vp+Odn2VsOc5Gnz9OSYJwojHUHC6a9+PHG//6C4uOMhAbTkOv308vl9vjVED/x+nIrnXbR2jlhJmi7zSlLDZFTx0caSCqzaMhd0XVtfLahxZgeZbX9B2uEsy1tvuKri2dGneXHke3x/H0OHZTiOhxND3OQo8DFdzyOKfr689Tdm+LfcHcKQYCe0XI85Zu++PlcrqMkYo1y6G/7+Bh2cSlhfJ5WgNgoUR2/EIYuUl8/rytd8c/kcwO58mrny+vj8vtefyQJ1q6CPtjJbZDQcd2bJoDRUAo6OmivyB9K0r18Z060jKMYUOim6mjoJpL8sUXUCxOKzZQIj29IemBpMMDbBcPq3rUqYaP5GXb8FFXXyNifWyVeeQwEAvtVBC2yWO/8jlyunLLxx6W/iRvD4GVmcuRq9O5NF/nvoOfOz25gDZZIMih7WhFF4Vus6j1QrHS7ZDSdD5obMqsfzRtzbfz6fJ6S+bEXSIJS7/VM2I7k/RyOwoNqn8H7fBabqPvt6/v79fTQ5w3PRyhnYUXeRGzD5pjdsmCb9U8/pTD2lZNdDU1OKyiWa7BAu+kLOj9/Pp6ur5djt/l07CQQOhTWIVwdDiw8LpDC0fQytBKCLTbHWGVB/I2LORtgI7O9c8OQxmZhbbAiJhVwGd26tyv/OH798YI+zq+2uqvxyczsGKP6mqFr68soxqJexmKHTR4NZw/uVbRGXf44c+fn5ejCADgdjH+g7eXv36eRbB+99FhIFGnwtzuOSZtZ0nZPqaCEjS8qTdCbDC/Iu1TH3Q7QMhPnjSZdtAEiB+NH2b3UWwfMlnj5vMThfZEip5I0RNpeiJNT0RJHx4fc/mJSnTL5+3xTHf7izhjYu+30djZsYp67A1N1Rt8ycSZfpz0BMec/yONBt1/EVIyaRqCbjesnizaIl8+oO1PLtcgvKWhgcvSFgJ94iWQGQKBnJ3bJ5j+ug1Ls/k8dD+vIt7ut48dmqR6O1jhY7IJ+Dim73kWCIRhLgs4q03GIAKqN2Emp2aTsEe2FPsmDu7h9d66fd1fRFB/j+bozGWHxn98O19P55yel73xbHUzSE9jNCf9/+26/wiZ6qrDfxv6D93FL/k7cBGxN6XSyT0dej/lYKbjmnPIr5DADlK8Jj4+b9f8IdZx7E16uLWdLBHrqUzSLkyQJQ7SJVuFYnUnCb2LA2hheUQG64l1bDpSL6cf3MG2WOYjg3mdTcbtM5/M4jEW9hh4tX58fj1P+ZQ/5kuWn6WOnaWT1ZZlDHSNyPJzNHT2vdz4naJ7b5BpZi6OAE/jH8/718vwgtIsipsQGzd5mCKMH4nacYd+EWNbiKhTFDbWwCFFgUf0L82P1BwECwWHtSW8NIG+IT+e8IqGC4QW1h0MeTmq5NAsiLAQXtRu4mZ6xIYgRPL/tRip2NwMsV0k6tAAv3SC0a/YfqmGS+Sbs/1qE6ZUbL90+yqZv63+MqqpBqQGKDIPlaEnMP5Av6i1WanKtqlQ9tCCdG2LA1RWUyuNcO39FV2gyjXVSDmKMXDNh6TcQr8aBKQc5bo6esvl0P7uoujfVPsbC/0NmnZFUKJaHP2boxH0JRfChJZAGbj0RkuzJZU/OPpF/0Yz6Omv+bbelG8qmwr0/UhDUYHygkO7LlSg2Y8059G3foROJAO3ISKHhX61Z9aK8BK1edfbTkmKW7OTtSU7mfKCtaN/I8k6ENRwaP9mPP2i+BfbvpC2pCJbsrZty3TWjjzhlCWtaUVommm9aLLUG4CXTFNSaylt25OPnbR1Hejfwoa/EEIQFf2ivxHbXkgnEKFAmvCm9h5pazUXpGq51kYr0gR1a9V03Wm7wdU0oil+axnx8svQ36WzdC1wU38Z+kV/14bN+b35nOlXm8uVmug/0JH8PJ5FgkdgTrp27MFIrSZjhCt4ljY3u6ZWERgRYHmbFuvKRc7QOvcsKxbGWzUZo+Q95vZcYHR4FnG+ft2+2PDAYI0DTL7Mo++3S84g/Z51mJ3788Ci5c1E4V0FFSf4zm9k+6gHnIz6clu5Mq7l/j/ec2bq43l7JkMi+1W5VtKHZ2scj1tlzkVpJmqycrKox+fx+ryVIDH+rQ7sW2FUssihZ3ne1qfjj2TZI+HZJ5/778fzxPwl/VvRJp9IEnPm+rchqCE0IDM0kzgs9GO7kQ/0ixgpSDtwlvq1u0C5hX55uuEpccdtd6Sim5b4LyjEXS10zy2kYyyB7uHYzmnSaNINtd1LFFvZbu50L9G/Ud6L8fSLbjxLoIj1WwxWux9IT9A4pmb9+qf7GHTqlsLkYEwCvvhy7N312s6H/hBDPRsKV3KyDXkQ8+JZrkNTm7Rpaok2lHulsF21yv12+zWkvFj6iBJlcSRBk/KRDFgRzrrWEehCfXBQwCqkeCQeL/fzt9NrPS0F5NSbWQE7Z4u4duxmTgUZZ2p7qMW1a9w3PTvSVjkQeQs5q7QhxYgco0kt+cPL5Sf4PMtP5C0j4sBIaRGSKQheT3cwY5rNGLxTmajxtLEgXByDskriwacHtmzi/H1ev/3mgxluBEPb6uDzI91gL6cPgT55w5hC8KW1Ssnxg4/bWzLKdzPDyB3wmV7EjGbE9eHD/g+fMUNpInXL9uud7C6N8waYpBVx5Ypgf1hNnEokBQTL2p6PZMGweCeHj+/TfBYMYtP4ve/U9oeno8Mfp89LYaOvE3qRUMPeBAksxvbunoUMKvuHdbyKqruRi1O9OEvi/vyKAwqkpDj1ui7Opd2kvH1dkob4ej9djmt8wPH5zqPjeyU+WdF//mJZYhbDpbCEo3/wXDLbNPbZmenN/vy5JbmQ7dG3BaOIJGBPxWL71A2nyIMBE7A2YffTjwG7h+0jkRYcDERi9vQitk+IW8htZP/B+fH4+vZaL9DricPaLERM/eHaK7IGL9fTeMAMlU3G8/1+Ov3X478e/ISNjHZAYXt0FZRt2olyYZlyMV9F6fh4nndYcmSkKArGwFcZp/v59np++et624Ub9YqOCXSU4GCqIvH8Ob6JFs9iCmFiURWTgeGxYsDSRSHNQBGzGlyDRdnnxPxB671/XU4j6pv0hfo9b/9wajzev57p1Njd8IwV7g8zXt5k/FVY7gj2NRU5z+N9vP4Wtv7+IKV8E/Kqjp+LBdr/YZc939NKHGhBjDkNOzWLjPs5/fPr3vPdR3Esf1g2X9fz2+3+MdoVlu2KZvZYvM++vp1EehhLw8coRLqoXk/fT9fTPR9A6UsL5ID5e/BXSWK+rl8PriNHFtOisV7YXE08xsj2m5CwdYo29k0ZigQ+H8grfSCDmXKctKegmoBvmR1BxMLd3kWCaeh/xG60LGmLOMqJXPyg6hdKk4qnCcd/9ParJ0/l9AX35plmya0LfVBNngWs9WwSa6Q2V566FdT8Cgabf6uw++0XZ09gGbybHwpHv60hv/yQUMyji8GTr4dMIGbcc9gzvg48c+hNKRaSFCGrYhk9yLPvtxAkexip1bqHsA1RuB5wYOsq5C4jDHrlN2zuNCDk9fh4FwRsgbGcHCBRXh7KD5DAAkcPEOHJcWAv3KQMLDv20BA8rSh2UgfypTjymxzIb0Kh+jg+5VWkaOge4zAG3rNp3Mos9jj+SJsm5z0+5WJlscgYZ+WSJPkxC5U2EB94PYkZ173DwRAQq+ChskqoNzPf/J2gdoBPvksWs0Vncx9EdxdQsDMExlZJ4lLt2Um1g2pHGjrMWGA0Q+jwSINv/Jw3/S607Rs4ytJuQDbxJPvmJvbNsA6G/PYUytX89ttJ3QC6pF+181GRR5f8qblEePtF/mPT+cbpF3mwKQlBefL3UmieCgfyCxMvXyCPfSBu6Kg3HzBd0tt1TRi6soSXE9yryQNLETiaPPuaOLy0IzZpR5HUyxbg2KIntG8+/iS4Sdmi42Jb8OZAPtEDXayKsm/UQh5TS7/Iw2na0xsKVjEU6b0Wq6+/2rsZB/GhsqoysRB3g/X2xWw915igTIOw2EfSXQUZQ7+2lYEBsJ2k38/T8S4y1JY+10NhXeY1qZlfF5EJ1r1Ji0ShaI5mztOnT0ujfVLM4FP/TCNilEhI7F0LGnNaVjFd+ogIQmRJIxAirGIkp4hRLJsFAjKFTZHNfg8IuOZk8i0+wLfLLXoKtqVYE0vxEweKRTC0/q3aohxIdd741922/tsaNu3UMLPF89dxcKz22DM2EPb8O57HbhLdvOtCYebSjpfLUEtkaQCQ8KDIWBNpuLq3MH2NPtahhSSZQ5srgylAi3SeIOB5rCmMj69jZXSk5+GyMMq4DhfeX78wBAGyP5bRabP8OJ9+ft7uewbWwLAIbIjtJD1Oz6dULwJzXeBAj9fT5/P929dbTgJiH9X1OFbEmmke/yIouRXTkg6TN7mff6zAsjRveydFu8R8O+5i21QxkupOfuMDZfwREUW6zin3DwIP/bNIi9T2pgaVd/DtPo4UUHZY6PhornlNJBbpMchBPdnPGZ/83BEbMZZoQymYAcIXSdDzfhO+NUauQmqCpvAsTV4UzN9aBRP6yeOdWUY0tkqKjHTmp03wnSdVWwbnwoiaJkIc/tEy7s7Jus0Mj2zVMt8pTJ99XaG28/V4lRHzjH8ARt2/no/fJWWA7Q1JnGOUhu7SJ7pLsq4J19Sr2DwQRuPj9Pz29iW8RAyaopjPCL1hVcaeUfrAgt+xkXX+GHAC694ntAW1Kkj2tonZ02L1Xj14vI+ykHU/M6YpDBTZuLSTyLePHtqTkq6c7A8yE7c0I9pypCEkTYKOB2xXt4fMDrDTr+f+iRdG4KAhsxBJejx/c7+q7hO3DIXwKkjJwUXxu9n000gafaBwYEWxFWQ0KE2FdnQ7MXO5y7YQ26czmPkuPVH+QHJF9Vg4hT/hQHuSsl9Q/f2E99ZHCxrjj9EfFJ5e2v8DOfsH6b3wk/lZOb85ktFDT4aMVow/kpT9Q7DbEQ9fl4cgV2OFbLCldv7IeY17frQ+iAAvhgHXS2A0GZHC5yJ03byeH5nEdgWVhJkYDyyLG3qiULiKDoxJqR25ZguBh+7aXuTj5+mUjdBcvixX27rdP9JxKOJVO6WODPfJKyfhv3ckcclgYpTnMBwhCXjKdCbFedYchs7Oz/eTtMh1TzRHEevKbHm/+OZu8tIl+n4TcaDdQiJCAui3f729fOV/SLfemm+7i+n0rC7Bgk/O2+Xyez3GhZ/LWAbr4xW1r0XQWzME+/h2fPoGd8UN9m6Ii7KO6kcQSmSI2oOyQ7RbtjuLNOuNvaFdk8n6bUaegf659AbcfO01Gvzd+P5h1Ol4jNgKLK0ceqte78eX28uWgMZXYw9SbKghVjuFsEEymu4jq7ocHvwF78efAyrSfgVpTIaYR6eTQrKhOsYgqaGLKw/PW+Dj+PiLj1/YePhBvgrXOUeGe7eSa/c9ZZF4+tHww9AWKWEwIZIrjDSHAyEgaiPvpeoGlByT69y3j24IGKJ+BJEmK5dgXYKYIyUwxQ3CJeCW/pomR6LeICdHbpeFgocWCn72DXLVnjYnvaUhggyjKYWZaA+NoX5W0y+YlEtzIkMuXA8BeXxTtvGDqA3X0zV5GA2clK4L9yCx5EgYirxyMaUb5/22V9p0f8gbms9t2+LKTatY4so9XU4/dr7mhdW1M/DjAFGSf3dhdcXM7EN14nKUnmTzXljxOgPPVCHpdv0+EMXgcAhirKIatd358eDRYwur42ggwVgOy10TN3Lg1+NdUNwurAylgf7fLGWfc9EjhriuRh77dr4Ik5uRZuOTLQ9OI84ibsT16HSAAbiF01QGOTJgHhoeazwz+5t9YOISZp9qGAet+zBUQ7ab6VI54Xvsw1B1H5JoKPkEx8ju4nd6o6GhxxoWoDh9fDu9vooCuoxlG16Obais5Kn7C8qQkYrjcntB+yBazawgSOfbCxECGOQPw/5PH+dV6xgU/2JBi5RU6SBwdLpmY+h4udx+ytLEjMlRQ3W8SOB72jAuv82nStxaesO0iJFXUzUBC51M5Y/togAO7Enxu+5c1z1GRkDqQj+aNeLbv/h23VOyMOUKx7aCI5VXIjq9XPbzX01lIaCEQk0oq0pp8mUZ8jobUkrsVpFYb9+UfpEl4ClcLJDSRMny6Qam/GWSQhm2mtjb9IF80spsig+BzfRvmrKbCd7TdvNTb9YGecAXIkhbKBHHbxzcVBCCPqmO5GE+UD7vgTzRijJsFbmedJNiNI0lL7shjmJDmfTGElubJSvUkjqG83nKstr7rvuAbXwyrYMH5oPXzJsFzaFcMEqS6NpeOXMQaW1DhwX1emQMRpKt1aruI/p3VlcYnmPXfY1e29cvdDD19XT9cb7frjsEpr9TzBbLNZk8kjMqSsHBhb4kGLEEwlO+BEZKzISlY8FAtdOvz+NV3HWBBTFgwqg09iLOuXQz9siWh5H+BEVPcOleDcVcU0zS7e1NKo+M3BhXGBiDKiySE1/Wo/B5xYjg6DAhk9LCOAkSVwqwDAqD9xo6zIMnMS/Hz6Fh1S//P8mQGTiOEWX9afTz9jl6iz6cC+6bJuNnJkcVNQAY8SxU53oJow/RnwPo9MuD1k4MeeoPHw+P3l0ouOsTHikPWitImpMlPKW7nZc2IuuULHdc5ujteN4FLjGV0sDpqEPFVtVMDYMr8u34cb783n1GFl7v4UZ/y1W00kl+uu8CkBZGhARh2LcTPxs0i2OEduXK+/n9fn6V2ReRKa74z6Z1b14/+PXRH8+UCW8h8FtllHozz6ybcnH9QUUUMQ5yiFdxa2znQBorGkHxQAYuzyqtemwGAnvUkzRUXAKwCuztl4HQ/usTMyO2QKrQtSz1TprpMx2JQEBht3yVdr4Wh8Vrsvuva3jDQHRvDJMJ7GCwQxW9Uv0NpPXG8Ma6BOPdmrR0O+aEgoHA3jSNpPhD3KcKbESCA4G9akRRqw4GkTWBaVd/3F7PabvxyDbT08QbMjkcTBSvAvcMfab3u9FJqbDWzCQN3rTfKBRbhAMpq7jPy9f3JEIwrppeUyEyBrX8aZds0gYP2Bfo3eizIIrURN4ez9Pb2/Cde7V5YwfDVDpV5P31r+YF2714DybYA2FEUCtpItfLIGecpsbBg+pe6kb/9YfJGQXHmd7O2YjQFuhCbrIoh3CNjxw8Y1+xmMjFFujab3LXwOOBONeLI34VWByjistxgQNhSy+M9gpkGqrCft7Pz5GdaXrCIgrfTvJmd5TUFRYWPGk3c1yRmQ3DZrO8+2lAXs4ih+1G7LZVuprMxzVna/zaqXgLK1BvoHLKBEitipFMYtU09R9Fz/aGWHQEa1A0zIGgCTXZvNfXlRpiXDeUGYpuMpOygKPnrLUU00PJHOlCoxudXJpu02y2s5vgJqLpVQsBgQv0g6zPtD4Meyz2QoSvObPpLHSfue0mJ3VhY1oiJ5EL24VFO9JtD4i30/V1pyozvNMRf6GjuAYHwfq386+kpZCxvGMUW/qDXU2Mh4EcsXBZBUSc5fd24VG8fd4kDAHOg3IVGgE7sOC/A0wqehNs5a5XLZatiidWIi+336+PHBT+7XTnMT19JU04/JYU7m+Xr/vxM+l2ghFWsWvGOOhdJCnDcBl28RkH4xRIyn+dn9JjxS6mJAMuhibjcUx6yN5vptiVlAThD8MHsmSQjXAUM2RnAbuMf80AHAsjUvPg97WEixjOQDQIZr3d7i9jR9jSFzFRBmusWcKo8rBiHgdsz+0DMnpwgsodQJbht8wJIIPqeyYhIs5tCVq+mQpxi5ygiAhLSS4HgtupYKS2FJlAdXq0b15CHdp5nzQGgtGJ0NJAl83b/fS4ntbk3V+39D/plXZRfPHAawzA+SiykpDLCJ89sKh1iAvmm5NNCY8Yx2fc5MZlEfkYssgESsPMMpaDv6nFFltnjXV+f1uyLDVcge/t/vV4fn2U8lf7ogDGsuRqGDk0JgLqX8eTyhtgQNX30+3j9LzzPId+n6sFIu1tbA56YIdV7061xLvsIdj8/SQYHbsvQPmgoZHHhuYBo0oBSSEhlYOC8YjRKqkmpDsR2bHbxvrNxqcRZPcvijRzUnUWu+lYG33jpsJstgHlF1JiKhHfaorS1uQo0+SG1BQloAnUSKc3JaYSM9ZC6ToBlkpLnzcXVrl+7YJuAmNBxCzlSUJXe/xDVL5cerxRWQj8ZSkFsCs1VrgHvQ8KURAyyDLGjGqmD7KwDX1w7cfSflCqcWgcnaHNxJZTfNhK7NGiUMTfqUibpaxcpenYp5ppym6hURQg7Um59wTSBdKsqTayijTZB8okVhun57YUiISENGu9UP22ha46T1mYnpiywxaqu8Hk7W8Yyv8yhFoZS+zPFsIReYq+PoaTzANNYZxFkvBPKrZGhlcrqJVlcXseZsWCzjE7WB69Uoc0nqB8A1y/7t8eOUB8XJOFJcw0F9fGh05Gpzps/n9ij6CwwzQVxNgN7aL0eDXMPEOaIlSq50ggs5HqPiliO1d6C0qabd8egT7WrG9uMDL/M0yeAaIyjsMRSs+MfuxSzwI3j/Jw6TH3I3TrJ0FZbd4X54yMLkVB474KyMTJMnQtOpbmAK2iLOJ8fzwHKAarmBqJgCC2bW7osEjzOPn60r5YertE6dlVUtUXobOwEhowEi0NX/0Nsvq0OvRex3QzTjQF6e1yvW3mt9ADCOJkGbfX0+UlF40R9VQcw5igCtdEPG9rqObzfryupwGXxeJGoUKZZF3Ten2cv10k+5hiCyYSzz8V3krTvSVbTN53xP2umNaOMdY8fHfarYSb7FTk51/viG7XEkWhKUpZT+cflemianRUIj6df8QNAIEr+HiS3o2fjN1yC4ftvqY4KuLbJuTKKNpklFhkqnNx/FzFTSJomwLbaZgjMY0fPno6vlkpTQrpii3AzRD1gjkQ/ZCCXujyh0Q8Tw6XY0uvfRiqXpuWHtE1wAKPq+zn+47MbmHZERYm/efxp/sjnRanHFL98pfYIYHFZk8vyU3Oj3Paa+eLKEYd+iNMBQiZZVH7iuGskJud6RID2lNWI5CoaRbIOZCllPCRwYf17MNOVmcVQWfXPiKfpaDY2fnyOH2XEWGBBVsfIEyxjRbHk2H8HbObPxc6+HGSJZRcb1FsqSZbhKQljdhtFS6JjccQQ4+BjKHr374915TGnNt55rZVj3XVWkdAiDiq/qxhut5hEMh7ZIk/gWiANIHh6QDbVHvKcYEV29NzUc6oFlAa48aYqUJDS49pQbOr/nn73JUrSycT40EhxgWq/WgoXyidTJMNsK789eh7+T3UGNlzzsCLnMe4Jz+yfQyFax7Dpf3w9KNNWtAEbLQk+OZbjVs1LOLCImar/EnaLwIfqM6v0gRwEMdVrnXdlgyNINZL5SkamlKl0k1FnBkkOVBgCNUMSlptm5AD7bQDse8qulfpSbUmcMRslZGotoXbwFGCUwiU0WTVa79VLiYmL/p8mooRGLLsDXGeGKorZhTVB9LkTNVECrdlyZLT21hDv+gUcXQBY/IstmwEDXYfitj29tJ+ePrRtJXQctIClSZsvvMtMftAM0RVsZQiciM6GhRRmKR1syW1E7ZBnj9LIwgCV1SyXgWycCm1UAWSHGjlRk14B7GzH6ju1YES+hQpIPSkmhAXbTZmd+KVclQfi/yMmkriaaphltYNZeBSJS/6fJqSENO6IfWKWNwUhbESM4XRB0JStuOWVhUFNaR1s7no22pxFDu/zKzwtQoTs5I9A2yhz7ONlYaAZ4bARPNpjEnCp8Xy0WF96zT+lzSSkurI6iXCPP08+ENcBKyyUqQ0UHLAJPWXUvShs+r7+ftxxB7GmMyhJnY//ThfLmMjI5k5jIIc33RNyl6vZBiVwajo/fyaPY7nt/PLTo+LrFAYdpqtQmRKQ2QVwrAbfB288tjd8wPwv8/S7qD/O4vIGNY+27CPa46QpiOP/zjui3pFVnANM7qs48/XwXjGNY0VgTQ+6RMvQg1wvY0SYU5GGs0J/IT6CIdlNHynJTF7BG7oknQhbQjTZ8BYKi1JdF3mEPEnuH19cll91BmB6h6yCK0S9n7zAyPGwpwX6/CzBM369Rep3FAMpAkQZ6aafqzPNQSXQx19VBhe2WmsIG5hkSsw4PL9+CgF3LKNI1hnme8WU99mEffTpzx5TW8pUrlSqmBG5T6JnzG0lRDaQghb/XeyQA7k8lB03auNK4gikajEoyJDS1FhzGSFUdQZJYiErfwnATaRSnMeNsWSlEi6dtNpTqYe+dUo21AvBLN7KglKBqOmtzRUjs1oKn1pCG+lmGtDVLfGwiWRZuUfuThYHW8F8xCSuOoFyLjk7cfpfhccfGkL9XeJm62XNcK/CeEAaR9Mo/BdkoR850nHSvVLXnsYxpuGig3MiyFbqN6kkdfjX6fXXf52ZNSZevbqf6KFZIWxAiT5y5KSYv9y/jxeqAaBmFkWNAEjIt+Pzxde6pLVIWm6jlWbEg4fKmMkI12n1w8ghrYPCLKeVW6kCubEEgIdfEWWYtck4yPAQSRlqOZDFRuKVL33nL+dS5BIHnrVW+qYi7xUYmUDGf64+fKatampLrImCz7dO2RJUP1aBelgyx8tFfj21yJTTRYY0PUuDoMo6g7AUyqNO14ufCir2wGthffb/fx3Tv+4vNxvj8eojEi/lSAPfZLz90rMdbryhC+mH2GHHo3PRWME7RpbcbB+wvttRfnYMbAw9jN8LN++hNdZ9/ScBtPM8yMwsKxNv5AhTYZ5oMgxuoG1Ig5VvZU/IhAlbkuTKppETzCJoVuvJZIb3cIUjCWKKktOEQcj4dMiuj4F3K50//WNg/buOZ3lO/U2MMrhACND11CV188zv4gYj80BBo2l4/v9JE7KfrvBeygNvHyld9473RbmZDAQ4a8S5rrBwsK0DCwDVYW1kscyEGKxzOcJz4Ik5n46Pk4DwvB+KpeNuBcvbiZKVoPt1VpMUcllyLKwhsmAC1OG8Ln+KiR/a9pwhEgRwI7zW2vEJfc39qxs8IL+Q6xmf00fIOp+zrXCedys7cMCcR5RHfnr9998cE9+AxMA13S/4+W/v47Ss7Zo5gif/PlMByjut34xLATVLS2yVgfoeyzicgksLlIxs4lUfwtjsYug6+knl8MKyMy+Sx5d729JMscUj/RW+CgiIeVU4Y/CijcuEIDbSRk9ECsqDz1fY1E7YFIxniCN65x28kZC2CqAqZ1FyP14/S7HWzZ+MlUieZWJYVGOzRS0G9ELVFn3cvepmIrRn82+kxD1KbSaXr+A+uBejEAnWBgXvpt3YkrMfk6sFZuuV/U2Z8sf5A7T09TSf6kGU1AFbxWgKpj54q4P6fd3XBzFeExujWxB7SlxTX/rWCoAHyA/8vma1vr5VX4tw0o9obGP49ub4DdTnPPbQaQ1DRZVknu9xLXDlVCYSCRjhKhr8qMlrZCSFoiUMcA0m/S3k2V9ZFiU6xHHzeVoiSbVUpSz25x2lBdBLJNmor3kP3su/OZiBbg+KtVT2rLd0CPK2aBPY9QWJkua8kQFe+SIWD5XLBNIwxCY8+Pl+Pl5Stuq0J/wCA1WKRzakJsMUSVmYfkCFob9JQEyFnFhCKbWmzFBBgaBZJT0klRCeMWVP8H1pkUxMnYY0ZgG78tb96e+a/AIpSSSv5jMcdU5HimqikjANNF86QAjjdNzXI4f6UsLYzUdgKxyNNGYWsh6QKJ2dmtSGlixZipAZ2GWRxZ2EyU0bQ8tUj0e31ykvhmKkZy6B1KIN/f8gUjDKDxeE22xtpsTllRoT2MpAF8Hil1TZIEaYlo1+Mau7/Xz/HxPx/Ltcrrv8v+UZkbbbAHectLe8zRYS30wkoOhdFkEP5Jd/8cpMEFZ0l8twUKO3nyrBUphGsbApPX0RwclGl0fvRIold5utLm0sCkBJv1h+viGPj6MvDw/0r2flT+ZKd9rxlTsjVjolvbDt0kPLUUoNOgwECnKgRCOAyX1KlqHFK6VMeL2i4JSaB0qS/2I7k5tocJhKyBHfozYQiM0OYc0/TVNgSDaUgy2o0290J5YqGINFbjQxCCu6S0NFdFLi54C0Ci+kihijFX0C4Y352lpVXe5HdeHGcJUnzS88f0fLxcJ+QbHwGeDD5wBcant4RPXICTf1IdImeGH7XihI4JWpKa4l3QQ4504oMcMjrlUoasvD/5+X+teyjh5H1mCHQS4z49VI+ZnQZ8VoiYG/GMPNEdGX6AJutMTlWMMu7GCLJgRKQ2/7jzDri+KFSGJdB77DyyeA4vwtDAQcRPXEg4FONrHn6iAcZnHvqaJ7QEfuqN8C8SLlDRz2ArbKQK4COoiRFaHLQhssr7Kgwx2l2O7Cx/5H8dc4ZtrZLaHATafpsKAy+MjLdF71guFvrL0hoSyk1VCEnZqytJHjig7MUaup4dgc1OKoTTe4E9529XVdj2CuAWiUXietjRvbgvl2ljfDZ3AMI77nONGMwFfV1OWhzVpRl0wE3S6n2+vZ26O9b5BqkDoqVhSpOVJMX3kbN8i4A7k4CYXe1LISN3YfFRuU8NIBaF62oZ0d4qyMxZmPazv08pZwm/DyBSgB2n1Z1/lfu0z69pdSTmVRGEbKaqVUiDUlj57oPhRUrDSoiDmXLrmKQ42bettodC1TBF8mMk9vcPKBr/f6Sz1fWJ4fd4uvyWRue3Lx9BE+qbGRMpF7kiFqSICWct6g7Vxfvj5scZzyYJr/XW0UBy9oXvJwmplSeDp+Hq78vIErk/kDxj+emTVpJYpG3zUhX1UrOLcb/ti94rX7XITa/pxzoWBxJnlI6O/xCjUI+MQl7X83l+nvYJhmZTZQ+yLvrneXqY8X2U3dZVcfZQAn/Y66fqaIBXsmno8bpezuHj6IrtUbnKjcSRwgFA67bajhh6EKoikJUqHzgRIWn354ujvWT6ImMzSWUfR2toROqE2dmriRMf1J/KfvY02tGVrDxtNQ8rV3oEGo03T2N8f326X/ZoxTCnFB+rjd7ppP7Kdm+zUq8jX6f36ZGxpRZOnKb88Ets33THm4DZYFy/acUYHK1kZ6YqikHBDRUkNdtNn4fcvngCtWTGk7SLYDn3aDnThqS3cfwODJ3Py/Hlbz/h/cvEx8h/IKHl+rLgws6n7Y8G19EnXMNil/cvSnPVLi0tbWnS5b31IWQ1NoSD4JTT0k4IDYtOV4pa9TlD7YbPY6KxRRDumKKd8q4KpiSvfkGJGCpeiIvbKb3wJxLDgKW+BQhEVcYGoQIGCkaD3SAQ8kcL+DsSXcKB/U3T30zNrTexXZgNr6Dp1WyVrYlhYFLknKXiQKtxrUkQ11QbQ9Lk1BTIaAjzMgfICFOUFKCr7TEVnkzq1ZaoQEE5ZLpRNa4iR0xCgbezGx9+USkNkKmaZ3OLrEn1JK/J+FIucGZgT+7STsNItCTHMlTG5jlYxw6R0ze7ziWtgFZExxMvtO991vR7eknqWA+2o9qMpUqFtP9KkQ6SNRDnPtD4pL0opR5AW+Vo07QFNPHqGMqfJ65J2DYFblNVFnhhFvFRpadP+IcmBdnCk/K641YImSPdAFaCp4KimJ9UEuaW9QkcrsVg4yrpxtKcW8h5RoLEmqzvtFdK7KU8nUoYNBRunHUL7gu4hqvORVhCBaoH2AO0fYpQ1pJ4YgrXTbmi7cIGRaeeHLDqleIlUN4HH8lD7y4rRzDCa6BB5NE7cVbw2qcM4wjMtfGZ5+sDc0NBD+1/H799Pr9mPx4NaWbyGhprIX+fLMBC1Hw1x57/Owrmi2DhKKdPkuUj6A/ntIGSXI0WSWv885+JrEjY7sOBlqlqgLUQgszgZsN8nZZjpgzxkUFQfwYAZltahMhbKsaFoLVyOGYQ5S6OG1XlyMD1rG/1NlExnpZlgiISMWGIxengdjeq1ZTdh70CH4cBt8KAMi9KKcdnD6J4mY63se5UyApOB3/03990wgMRuebcwd2jMR5cLk/ZTD/lm1uEiAKSHJ3CuwCWZ8iLpjUWOlCe3WwoozBwqktaiNt9WogdRTZOF6sKaWJ2UPaOri4yHFZ7rnRAZmuGYdY4TCYqI9+Pjclypyvi7sEIueHmuMqqAAT9tnxqoMJPlfqTt8z23glYb33YkvjxCknSAx1X5A8mklfwLkVWawQfPjmd0YTBOfQK71czayC/nQpMZ9o2HvfeCIbHiOnZX1Z3RhSlKBt7KlUK8aJX3+3QUlx2ncoIr+iyT83pO86ZuqkhFryP0KxWnw8/b/a+3y+0nF9p7bIlggBxyBjurslBBxBcYmXWAxBdrrufO1R4YhVjApyaNRvFYrPaS0hu0PZMonQmmd+DbjeUAH2RZysAhH1gUbIDFY/vx+M1YWMwGTU9kyoUUmIwA3clt7DC4IrDCiQFmu2UBO29iYJXWAoyqWHntdlBfYMxwAd/QNBp+TfYcROeAlY5aOoQvk54znzTQw3TxZyFEJ8tN1/7ohFUVehkD/ypLVYMAfy9kwAPVe3wVDFZqQnY6SGAF6QIMcG4ChBbCynLCvCwafPu6i+Cfg2GZAJCELYn4S1Y47Z8catxlYK4ZN6yS2qsLMKA0s+HJIJr0FxnNzWTwj9MKn8hFzSr4TK7fTFl+lfCLMox5DvrUW5Fi7svp3noj/dgS4Ait1B5rP0kHFB+TFU8mhhrsLMolmHM8+HlHasCYfeCZNargnKFMZlzgz1pHD60LhpFpGItDQobmBUPINL5QkpDhR2D0f2Dwx+EgkIXepnGQXunjoMS4yMahrfxx0Hwcy9VyMA7gIy0kPo6hkDDZ+EOJ92O1lR2sbP2hxPuxgsYOFhT6UPL9GOQDWUo+lHw/hvDAQP8PLd+PcbXA0PQPLd/Ps3FwvWj5fmy9QAXhQ8v3Y+sF6gYfhr8fr1vmYGLmh1FiHFsv0IP1YbQYx9YLLErzYYwYx9YL1HI/1nz2YZRlv1KpXK5rP4jgyLewFyLwCg1rDlSAhciNFBUfVorIgSnSXmmClTXFyVMUlLLUz5vNaUMHNRFfE2elIlouTUSmmv5aOmoJZrObu4WYzykOaytU4inymOL4Nb2lUeQA0VvugKO4H+pHQTLGQrUyT8z1dh0HR/RxWOQ+pfpqmup3aAsDR7L8z/Pp5fTz/DgVChABJjJAEqoHWc74IXuf/VaUgriy7BbLAR2VH8frV079uj7vt8uwlrlhFx20IpmgXZVxzWTALX38/JRQy8L0L6jF1KEv78frlfumF1YByUyWwypBoFa98htg2lodK2/3/u/SusUz8fm8na8PkefvGJSCtdhWvJCbNH3JGfJjHiApchMyNml6jF7BhO1exihJrkejYRZGL2Rk0vSLAmZ9NiEjWLVPv7CTRd0klOhVmdLPIoknK6tI4ZbRgdULg1AmDR5YRpZF3062FXt725Np4SqHadT54+sjM7HsAcjIUmc19HMlIb9FvG4un8VOA6j4nJK+fDruibF6vQKu5NOYE64/cmE+xsfpLvJPD4GxdEBNXTKbq4UZz/U83kI4FVYzkyRZHFoxJrcD3IFpqIxP6oOkiUkJxgY0CZLk3fTx3lsgmsIHShKUDkYi1+P1Ew17KCKFxId8rqd6+rjdf1/OH2ceqswQSzOdoGFJ1hwe3n1cnDGbJchy0f3JiA2APHDNtN5/1n78Fq2FbbMkascssZfaJ7NuRCJYE89Sb5/p+v7+e1eXnNUD+ocC9k/Ue8UoiBUbvr3AQn7B9edO2mwF7pKZWXVvov+C8Z5ZxuDPs+K2bUvNXqXj79h/mt4pQCwJGjoMN3l7Ub0rgOKiNL5sT8+8Jl/4dmAczTgOYnDIsssVa56n5/uNpywYRq0CQdOP88v9NqJ26eEQmIuyjr6KJ+5Hwninj/Prjt/T9te4gy68j/NFPCxnNMSvmiZm9IkZ/AWPifNFfKF+GMwA+Djzw61nqFow3nC+zvQFRjmFV1MRMvRUxMAYr/DVf74OdI4eNNERntHn+13waWjPcBp8SKxDdy6SNJ7hNZMlkmvJ5eHlkthn9HhWcQEDfjtBg8QeVmMA8qlmJkJ+KmimOFMQTYSulrXIyvHb43b5eo49UJ7pSAs+plZJGQMlMQNk1jNeL8ykMpA2gGg9s74WbGpkabkC0u6AWFjGIpHVJFnwpmiVbXYB3qZ3KGxx8DjOahV1Oj7EExn2RNPvnZaQCFpw3KydLZ3L/ZSja36geWcuMuhYWiVlVl6OfXfrcDbw63p+lph59rcZA+MC6ZyKiPuFPzezPqFH7SOXYOVHQa+Fm5pqMxx5/3yvUArX/1mGAlzaJQRO1hPu/c2E/BGFK1zZRZhkfmPYLjw/pFPK9YsnEgceUcAos5UyoFLQoauBScESW2GCLdSVePGI2F7HjdSCUmSoTJFRDWs0DlJS56d9zXyiwnvfI1oHeH/TaOEVZWVGYYjm9XgdxVgyQlkYVn09fj0zS+ZA9eCk62i84EHoj7E2H+W/7cu2EF0qK0AgcbN3ic5QEbq81SGnWaZIflJdt4j++oPOPsgrMSDZYix5LR57q77kIQbT7lG2lPsNteU1WCIgoUgT7bYsAMpY0lTWyVBYi4H4YnmA//46Xp/nv1co+Nv5KSgA2aEOD7QBo2FkMYYKxjvsroK0fRgTJqwZt45MVpysBM10Muiwud6estwBqxoZycShFJG0x8ljAL3DSe79LPBepidiiynH6J7TxtoREWmWEA+519J4YZL2/Lcw0GMtKLSPb+rnb+MEwTD7JiYHG+/Nx96sJo8/ZkbaxNVEWSGPQQeUrWUgaecqb5BiZxiGZTZ/B7oHe0HDN+WwDTlLILN9LxC8K6NuIx8RDHAoAPm4MjaryLiRlFiY11iE7RkBD4wd2sFt2o0foM3MjUIuN2jOFGGvp5fbfZ/dYFhIejv/tgMToihF6iRaiBXw3iq6zOVNMPb+06mFkCJ06VZ50mzi1bjJFYR2VJHyebnByWDlu7ZLBR11m8CfK/f2SCJLfaZHRHurSBQeDb5C5m+3w+QYiR9l+7Qb3zYntGs/lvbDN10wNKdsaJBeIFXkQErkgeJsVdtTaotF0lRPibIHlaFwWrtV1SLCIU/Vpan4l4qUqBo3Lgc6+tRWIpxat8PCkfOcstT0QnlaflNXyGVOb2ko1NpQGXJjGtyf7gnKGaTkbAvxnNvb24MXdU8fp7dfLFQ9y1BJEJAzR3urAYbei1g0Zq5SGpAicqWkQlK6EOVMatKqsGvtliu9iPubsbluFURhdE6VcZZHLitXgIOC6vD77ev7+/X0EB6J/ntpHOlz+zxd11wHron0QA0aeZe5HwfGHmtgwOY6UmY4MXck/ux5qMxwUmzo5K+urg6uDfb+cTjwnP53vYgyAcWPHEXMHf09jushoUkn5/N+euRKEzxegYVLaKjQd3LK00gxDGeD0MgtK7B8tzD4S0HTMpcGuYjyHiwSnJRqiNV+Hr+f/gDssfBlqA2vgv6I67FiAZiGeC9sBOuxugGYjjgLm2NYnsVEQGs0C9pBWL3xNBmHECweA4EmukRPnAXxJ8uBgkh6G3t6k3RdLBECHi9lfElt4wIMSzqAUGgS8Di9CPSChTWjQyZzKq+sZftaYMx3omC8X656vEPgeyWpGvhg6DAVZWHccxY6/7OAAWhv2V+fDc4EOwI8Xno/hLKTSXsmbfi6C5oJLGDFQ6dTHb/3AYU+8FgfJsfBKmBE8BNYOoGHnFxVxOPlKDKT2GXhYeje57f7fx4/vuUz+vbycvl6iOdgeaHYR7uKSRfO7Xm/fXL/qj7wCKR/JuE/Rx9FM2JaCKNkUdlDsbMPNbvyoXM/j3+5nI73lxtHwjRLrIZRUGy85FJmkfAagrFMxlBp0v3RhgMLsqBSbevl9CE2Cksc1hAMyCJyNaL92mCqH9wmafjI8a5ZxUmo8+XhY92TsVLjxIROAPiQrNYYMuaymPF4lioPY07y+Mf76SQ+IQMsZityHfs8yxnsvUMOHpR5/Gc6pQUFl2YlO2GAXD989wSsICuMmV9FfH0bgF2aFUzAFwUTkM67fO5JXZLFGUNTBInK6tOXmFpGZQD32OmeKz6d1w9EjLTsOGZ0qhGmlHS8TDujUrH0BA2jqLuqcLsTMDCUJ0Ck8/P9eBX87YpVZoWGy+f770d2xlx+5yOYKRWRqfoYrhYihvG+Pc7UFUzEMi/HnFL5i4OYPYmebQnEgWAORYRNasslaBiM0kTiZDYSJyqmjXkv6FEyic9avZCDoX3wBxU8D1uqA/HhKGKM0s0Xo4j3TJmNI4cYmTCjxp69smcxaF9kq3YA761dgVZWdLQhGeS3dIpesFG4N2aquBWKJ6ogghSVduRyI0+qIe4GT6ySW1l113JEjIXG4vr4g+TfXpkNWIeh0QMRPbYTsO6SB44SiC0bDi+KbTjMIGYBSoogs/kTjZwUfYiGpa+ML6EsKHPq7eOGWL4WNjYaTMwNLPZhif4M07+QmBxyXwuRcnyWMRTCI7IXs08hYMEw0EnJhAxyCByPu/8nUgZJBIzuEZszExT+wOIGLYwq24B3Pkds9VIcg4MZtZsc8HV7Cw9iWFzK6PMy6x7vgF7M6Pv2lzs2tWZOiQOz1S2MVfi8fH1PY45PRmTnWcyLU3jN5tGy5DQrFBgpIpf4VMyByIMV9OTs68EvnG6hSm3Je7oFSFhKpnNbGlzjPTQW3zT5DxpOPNl7y21jGtQLjGSsMvbOzd4xTByMC0YSshxuK9retnINY3QtgmRptAtL0yx8w+DJ3UEsd5HqTxPNoiLKOkU1YZImTVBmu2g1UdGkk5ncLc0xlE5eorGjfmErseHJyUJkc+QiMgZGHNbPITAl23ssXfNY+iaPynmqLb2SfFnaUCKJp9cI2OQsD7ADlmy/y+h7+BZ1Qxyu6RHomzamIU3hK+kRaKFic3Etone5ffEV2rszt0TRZb7KVzFnAYua/oaxxPjv8b1Hovax3b02PX+jXVlfZRgR3nz4dwGPmv6C2xhLPTZushTOm8vQPiKYUdqSqkjKoNm4WCnBlZR3PVEL178qfISskDOMDi1Dz39zMJ2RO3kMcN4uv/dRML1+sjFXesicSFIoOYlPIHNJeazdNjGP03eJJLEADvwpLmuyzNv5Ip/BM8AUagUDennj2J9ul1eAIadNyOC79ruAwi4DhiSSpMf9bfQ6/WU+2ZCPFbifR7uxoGrsDLo9nqe3N6HgmF5P2gL2IvRYbmJEHBqjcMAFz7fxO4IcxRILFd0nk6+TSdFeTo/H9+PHB9N3AivXEWExZylDgDKMqC9ipTZJebzcz5/PtXO/jwPbx5NT65FUv8vrjtdk4anTGD67/TzdXzJzz4V/iIWVZpgs1TT+8pX+7cGHsyJDGBHPw38en08xmn0/fIfdT3USqnnBZ4Gd3xEGy21SBsuBVTiHOZpChHwOBtHBQOdNSM1L3L0Pq4sDC28nObtga0YThpHkMnJnCkcGRCuYNftZuNo+zy9H4XBk1LRwO9Thu5uYBc1ovCnvt3RkygjZ3kWMayfWsVztXxhXpsWruAzeqTBLYO5GmOJdx+/8hQsrpoHjjMZM+44lBWHirW00P1b7l9dNiTc4luF++1WucRQe0q1Bv1GtwLSJz6/LRcylZXOJBqZr73Xvs2Yh+wouwlq6O5nir6e7zEWPfTiGxnRiScj9eRqc6gwvgdFbe39B92cbx02LYiP0MbbYvWgpUI+yVIgaXCnCMimVwFAygMFupvvrX78+OHtK72BxjSllaT88/WiBdKE9TmjWZmx2WCQk9qBpaRBpu6K6hkQAoLQlaJrCEQ1VLjQtGDCddpQeQYFvC8HavpmEylMZKSJeV2S7KoqHTA9AXG7NblNkYuqDo19UEoGCJDU9vSbmIG1o7Fagxm0FquIGEpARQ0UUqGpgUkspX4dMWyr8YKiSqzmQ5a1aLSSjqFqbJlJ5TdUWDYUA2ybZUEy7sUQ+74h8foH74n56OZ2Tnv94P77efopQPWbuWXjX1tpHgsaNuazhyFEhbcUvFwoxjVQG9GDpm0Gl8p5r/J12zxWZbqqhJVWGSyM2epauC3lvyujHWtb7/EPEYy6GKfoQV6hCnqdPbiewOCMDneFp+KXcInv1gUU3KHzskYjvl1uu7CT84ZE5TRU0fzY5EpD0LOUMonebgBzjdxd0QkmMYWLQjdjEpBtRxrY6FvwyWxZFgpjTyHzjmMT5nkkxp1+UzQxMa2gBfDkuil9ozKMBrb9pAGDsb8W0R/CsfKTp4GCoOrAtstB5uDTETQeo8xWBGXo/Xi7f77evT3EiMZXBQcrkTc4qRMhgcRQQQC8y8v4ToQc5AJWhKHi1ZQkDCCX0rIz6AJ09ReXhGhfTX/Gz54HH67VGVgkLvzdl0wU9//Pfji9/rcETQoZiMvA6zTIqgxl3fvceGar3o6lKkjnAXC8uNCemCD2ZVfvYakfPxd2SqXMVmErvZKBczq1wTJwcWKvMFUMTH44dVTDvqQg4Xb+nI2LnxWHRokQ5Q1VhzWFji57cveUP/Djfb1e5Qk2fuLKV7ozQD7CTxue6hw9IqTJUscvMro4s+Py4rYim/JaWfcv5BA+DS3pUxG7FrqBjmova2Yeh9zqoAMNBpZgRE1tkxwy2FjfDKCOu8gs59oXwtZRljHyGITJ6LuitrBJ2SEEuHMUeYT7Rj9PzKUkHTY982ab8KnJtJRV6LrSiN1xmj6yTuj37ygSpC4Q/XdL9dWlgNFASIS5L3WOCmjKqLQwiuJ/+++t8Pz0KSdIg7znnenWfG1evroAAsx77wBXX1G7X7m3fTAyysiIZclRlUR/IKCKDT5MhpzHbZH2eHQGYAM36tWQh7pRRMxnC6hlxOo5HSGNHITA9P4bdct9hWvP9/Xy9pavpS7Jb99OD1bvzy/s+hK0/q5otFKjK2kY/oKg2oW5eEqUpqqyrDUKVyCxe9/VJcnHPPXrSg7EeL/x9RjpjHoRqXB4HUokYSzi847KAPVEa038c1kaz9iTIjft7rAEBhAgs7Qc5rkP71qE5PANBKAfyUB62OaRqllT9Ni16glWIGJmqX6cBlLNJlfc87ctAXCiURaiIokRTdW5Nf00bat2iKhxRIi0EaixER0I+dU0FwDW9pVFEX6y3er7NX2soy9FQcQpjYchbmRBRyqBbgXA3DcsqO3aW0GXiIOtTE/PjlGsKiWPXM8J0DAyApEiW7WDQof04vp12NSnNwlz6Df0h5hijoYP0cfxx+nqc7rsgI+Z0w3EGu1wU0/PpU+lO134s7QeFVVDR0dBA0w3No9rgikqiKkVIKpWCTxuE4nTbOytDyCLNbNogVJCSUqgDlb+kYNS0YolLlMKN6a+lDdL+rQtnoric5UDoIDGC+w0nJDYfesu0QWietuL2FBRlqB9RrxgKnjAOltZZZyabbtkAvr4+b29nEcvBKiYcIG/eKqjkPf04Xr64frmwnDnMmLsKqflLTLlk9dw8NIYeL3eRTcEKveNnz8NydDx7dcZMatzk1dvw4xqpL4Qwpnzo+8u5SdfX4/23vM4zXN4fQBBGqADCUcbi9CBpgNHwdfTO+xIC0+v9FltCAU8QGmkyZViFUixRyUP3XC8ARaowzhnoA6mSXm8fx7OoRcV0aw/DsKuEnSmnGKFqEvCHl+GRSiwOt5YJH47lFdOZg3yha5zOTa3Jc0GqnabzL6lV7d8MkStsRAJdufmNjoEodAP0Iz7WjC5BNt7fd0kKXfww36VIEeVLPVPjCOkPsKBKkfK3kML4jbYFDMMUspR0GF2/9smYLL07wly7JGE7Xc8fR04svDApOBUjSzk/M0n+3kKNLGNPQaxTysh+a6moR5baqSYbe01iHD0N20242j2XMHwWFoOmoLaVJL0cX95PrzuTkAPmlscaIWV+Ffex5s0PkrYU42EyDqZgk5hRhSnFaKGMg9UTSYrAphl5k3GQBCqPfz9fBCzY64FJEyJYkCpKH6gGtYKRC03045K03Y99COjCAkcorDWSmn9wBKZMrrTtj+yKIzIOYbJBIlkKB0ruwblJ+Q/s4g04LAyxuTR2f524PnPUUxrSFtdrKbbUUQA1ZW0ZSlcyZrZCT9dRwG6PyrSD27d7IG72ZLMT9YHClw2pqN7TsQjzXNYnIAR3eArwhCKo740EjQ8D5kCEjrskcDQ8nR59PtH0kMwABtddWRnO2e33dv96PL8+xFZl+h/0VaThMmbF9cCup9RCC0MCM+/QV47D2odTLawwup3dm0DRspyzm/YbMZgdKKfwQMi9gqHD6x96vh+vr/xsWwKLnIKgSx6f8Z5HdsasFZc58hNYub0AMX8mJ6OB384X4bMNjMEsQB9WETVJtGUpgzDpKovZZc4w1jiNi42mwTmISsKSceEhYRNFY+iHZHm+kOglj875FYOzqY83aieMb8Bv3Ez5DXOiIqSGEi88oU8B+kKzY+APigCjQIH0KyMPgz8w7loYTpnH3o/Xx5oY9vJ7eEIyTQvmUI0ljY9IpuBAf94q8bxfIAe2QCZTnHHS/QHL4iIiTRnlKaXruF1yaqb7Z5jp8ZRp/Kb3LrkWzbS0H55+tETC0K620CBWSnmOhH8fqP70gcq8bVS8ivKmyZhSmkLNDJUbN5R9TfniyluCkFrYlqKSbipQcnggyYEY9+JWwJrMtAMZcYf2NzSlQGt6Uk3AljY0dvOZu41kkoy9hfQRQqXTS5KxR6lO9Pl0JCZIQqbNgTQYRYFoim4BfSDoikpyE/tf0oUJsDL0i0LXHPkeFkhwlpZNO3X53atYFjFkEkvjRYBkUi8tU5LbB4lUg+/gCJmDLBAlWi7HRucAL36pMAL42ObXYLqLIiwZcLuiUIpF/Bpc4qyIkDQS4cASkx1+gF1lCc9IDWEy5I7kJB/0DMmGUzOiOMkqbD8aq/fvIjUoMorDAza83tNaGlad7W0DeEi+czrCGFmcFGRuyuOOPHQ69mlhGheUyUOFgcSYrSPGFtLIr9WlLqLlfE8uonASWBaQH/vz+Fk5U37v8P60FZnFC92hj/evzHArj/8exrXk51q2c2UyF03gPrurpwsk0MvgOLaN9nrgK2RHDfbMnD/S/r3ezg8BvGyj8aJcxxbyBTaYYWwaxhpl56gsjMBw+Y00o/3Aj/L3KdkYEs+yPU634E29jk6LRJTasf1guEn++n2RbAKmP0ztQhBDu9GMxs9Sxe2qX6Zv0y/ZAwagNgkg6JQdzhgSux4/014Sej8rzHyAkQzr4MxoJSqI9lZQhHRej9tbuqLE2IVxGJgIFcrbRXw5vbDNgN2KeeTolGWQJvxeK2XC8f7yfub7OijG/wF5iZKAITM/q9CI4fzP455f0fYuI9cUL990LHK4R9IKD1u6AykZByowb8hnbimY0FGygaf0TaqJbKi2g6GxxmDP1+fp5fx2fhmqT4oV9z7AxJsRjVjo7/ckiFRQ7PurUgZB6AxSxqsJ0JHloCOma8CFvOPYMT0+b0nHxTxiRcSIrIehETAWvx8P2Xq4NkEhEvCCz9IyeRZ/oE0GIUsHWorwmPm8cP+w7e1G19zlS/Oge0fr/EA2PkV5UfipNrSSCTPVAQYcPz5vJZFkwG4bWO5cxFhZknH6tS8zFVjRq4iBlufx5a/3wt0itZ2FhZBNLuQMluwOP9uvd1xeaBs8IAy2PXToIJF9kZHZs5Nqz89wxs8DWTUA3NNnneKicevgR0s9+dg5RxdGiYAJcB453EYUcOyhNhjvk3GGv07pFuBqL7OGMFS8ghSitBEra4yHfn3jH5vnBzfW/65WAnz1JElWK+1dyvigSQMlBtSTHcBkozzw/EPqOFqzBE/sM0mj98VEmedi8qqDeMt0uDPGT8hZNmJ3HFQL8SzACu/+f8QVmR6O8Yhiw+KLnfCmfwpLFzqdz0ZjC//rSrRfx8vz/PzazVQf6Y2Lbz6+kjX3dvm6fT1y+Rj+WowelSoraAujdpO0rF7ImDzHzHgc/ZBGp1vxsZ5Uiq0clsaksHell6C5BEYHDiNtm4TTrxXMuV3FczAifuwWllLEs7BjC7t1B/uA6VvtDrWUM2ogkU0r6ZOTwPki7MOIt4oasDJt2xDsjfqDeMERVD8pLAFGdPd2EGabe/w8nfIXzsT86fO+3e4fX5wfY+lVdGXg1fY8fhcJCqxGdiTdJVK9FqpyYhS8cis5uWAG66OYXJPsGknR0sBsgpVjswYiRTIeKGrnQDnIhtziniJ5ApkU2AVFD7nj6+ph+Bbg6JurhsoMKgL704aidGkqcu4XegRoktIjDBi7eu2iifIN244Ux3mgtz9QtCXFe6aHIJAbcpinP/399Hw9l7QboR/1VSAX6AoqIvYOPVao2jh4Du/CAVliX9vmlBFyIFQdBtVlia/iRPectqWJ3YB5uFKSsO+8lIZjahsmJc5D33fEkC4ySArmCuTR58fP+/Hzk98qpj/QiUIgkGtmK7pIprIiLru0b7fqoBtfbIMGLYyIyo8zCh9fDux6gWDGevplFDbzUHH2Dea513ihDZKX+qxpS0x25FA1FiqWf/Kh9mqSwvuHScnnyZzYip3M0M1cpY6z4Ry7CLHuX4V8pPUjweY+Mdl6mnsI21dR+5pR4cCSrKFqywTkWAa+AgJbQx7q9FXMPZ+cHB9mzn8YC97Gj2pPMMe3/9OES3K7cGCkWPjO3YaPPgOr0gYtlCpkB9H3lDyaPI1mm98/rLevHz/X42aXYtR/3WXTk5C093N6s52Howe/t1SEhXyjONhgFZiPjbec9ZejBLhR123VCJW3ZED/xd6KLRk46PLHRDwWuw5N+Of54/S3rLmre3ZQY/AHOD8vJd0lfQWxaBSrZ2AmBzAJkfk/B2YwQTfAJuDX3v3FSiIYjAhtQgY+NFZVIgmB03Jj24ZV+46QGfl5y9T6i90HXyy91qcwx2uScD8xVcD2GXRL8/hH4vBRVJjQbjxGsABKkv/7efr/hV3JkuI4EP2XOc/B2mxpfmWiDxS4qumgMWFMUVRE//tINvmklJ3MjehqicVacnlLTOG4OHfHBPPci58Fw4fLSu2gY2rssuL4NAhU+CREX+YHYi48De+nYTetvkfSQCpDQvmUHH5VAnOmbNU6ClfQHm0ha0v/0lEt21Ps7qmrAL8CZDgKXF3VAKUC51KlUD/W6GWAYBC/FMIOWCeAlKoAT1UdgrEuAB0DBqrHzB5khwD0TgArBaBi3YCLqLL3JP5NF07BqEFjliyL6QiLox1h1OIRDxVp0C06mHN7mAvgh9Qhk+0g3dSgS6kQsytgYnSTtwNcHSFrZIActtlcAsbuWZ7AoWDUynHQtrALg0CLhRkMFgvh5dZ8EXnQPKekKjnzx/g0ik0jb4znNLfLZXOahk0j3tBDrf6dKIas4gXuq+iSPQ1bOhJKMf5nI+L+pngZbsSmirGxXvye227ZtizTOkqEHG2plpLjjrZRgKtrg33cQKAHIvDaAGMGyqTG0aK9qC5QftBUG17h6W0JXHV0+nTU7lTQ4lZNVnLLvt0OGxT6bV6sQj0/zEZ1zZWXA0TmAnxfsIWVzaxP6K24rNwGj/YiUMyh6Iu7ufxkm1vWlY/W07GgbKZpQ8XfoZiXrYYN7l8jYoym4ZWTDzN/f1H/Gi7Dafh4rDRIgmH4VTlZGrY0nxVrWGnZkCUP36AlMjciL7beppghnTZKF8zFWZaqmYaNXF2psmxiZO5VHP1z7Ptf1zoICEywCkL9uhWlVNhUv/vxo36kbEIR5TgDlFOllSc0JducCoOWbltH4FUgUVvaqy31vVr6U0d/8iROADcIH3BSob9M6pVxV6LUAxFIhTIItqDSwJ9D0F/lcgnQsKpDEclDUx7anfH54RXiDKA7NN5XQ5ZRw/tIQ4NTOxAyEb7pFlFIixO3xXt0CnVVxCg+UyQDNjso4hp2DuD9GIP/Z4EbAWvJOLmKRw//bWY4nj/ehq8qqmWFTrl6QRNtinGwBiOULoxcl6TZZMyeZhB8NFtF4Nk85alW+ijp8ZaK8Y5etPSio9DOU9HW04/rCSIfsn4qFlUDowIFvVMFWwxIASmEsQq2GAq1q7iEEWaDkuaxrAP0EwIK801WPsW9avDXwtsJoRDA+PGnxK0L0FKHMBtf16DQHBckliHV7OOCREALfxErH+vPhwPZDZ45M91HuTFfzPL1+K6mYJRL+Xgu2Bq8/BRYBEnPEuY3jdg0zFMWXGJ+d5RhYUwjXy7hZaYNmBWj2Ilg+2WO4Vq1Q1iBw8nFuSfab0Plmb29XCkaj+yesSVl2dE6d7TMO4vLADFRk2kV2egb5g445LUXZdCm8bFPC22c1hWP4neQXb/jBB/9tBsZasVaBsAglhTt0wATQlAPdJO9k9CPRG6vvcghfb4/D1/KAMzL1dB56P447ivYUsmrQsgLLZWQUWZZaBmZNGoDGnUA7UXU4vIRjueVMlli5bBl+OIBxhmeCdb+MQv0VUdGCWwzsqgxm2kN/EtRBptH3laPuU+4Dm1tySB18IaibmqA5k1R/CBijjaI+jv0h30rPtu6Zq6YyVuQqwhx4Ep9kg0FpSgQ/c9g9xklMke2yWaWkXPQVw5Z6c8g6hHrgand9l5328pTXtwC2426LjB/bvGGWEY/0nLZyDRLnkQnpmK3c9WgsaW2RSv2fuO46fjdbwgCBlZZkI1/0wzXx7VyntIsVUA7WkTdp1k2bNo9c3kPImn3dq46beXBSYsBVTAR+jJP8z8s4jKlky+EaiaJR8xEP8W07HY5xCgzZtkJgrI7H65zQLMf+vf34z7ZsleSYmVxIkZ/4m8+T1tvcc8ABbJH0m3khayGpetWJK3crv1huL2dEipnP4stpmvzWOGEAreskL/Dtf95PBz688y4qPA5jIzWiOCWxDB9S8+aF9bKhfdi5NIeWYUvpszeHXXt0L7r8IJOYU9BrafkNlC1Fn6LMQ+AtwJwCSpXnRAQ5HhSg1hgEO8gNFAWI2AtqBAuKKiOKSQpymNmj8wB4KOYL0DOE25zDTICCE1qfFKtA24mjM0WXS47E1I6qluEOKgHxAMGIU4ussNbAVmMQSnAQPTCKKA50MIwGmV07VGNgwiKRRndwnfDZvoqGKGtyDSJC4cYFnVrXDETLNOIpdLbJ9u2ZUEyN9HEsffNIo3SjkU5Yry6qqXH/IBZxImRwVY2plkfUyQWLUN3+3HgMoiOqSbJYh7LeC4v4RjtVq6yzVqilTAsc4PqRKTogm9efK14OY3V7sX23jJ+GcTC8+IHlyWrltN1d5p/tf3tLXUR+D1ffInmxddfndGuhKG02SPFSasuTTLjMSsUoWMdaVkdBuNXEEDXMaCsGOKlTXc8v7N+uCkjJYtg1ImYFtq5VXzbsCDUyT8lDV99jpJ9Ckl2J+/BOFFFNyjjCScyfOdohCdr3jCb49z5FJsjn0PyiuOpbnF2tHT+t2LOmTjCNVehLemNyooHGPjFy+3Pcz7FJLnE5AZzrPIJ0wQ2gxSYpRk2YvY2MEymWCe//zxO/QoJ2mrm8iIG3vfjgVt42BLWhcKwCiJj8X4c+8NaiSCuZMbFF3E292HkUmIl1E5EEs6jIKZWt0PLlEmMu+YpUr61qzWJyn6u+NzT6A1FHdZTljbdPPhpXFRzHJm/h5zCzlMkulnVa2K96Fdjv2oxxPLmdaJgZQKrrbXBy64MtVNzaKeAs0D/KMYIUJgG9sJk7EW2lhIv4vRJbjwEKNX4jBUrPWnkZzWS6daLYKQ0snJSZIhtK+YY9/HIa/xty/a36JUzD/zoh9/9NLJHZssJWhHSXMmKMuvGTpRs+qqDOs9yGbmL+ajeLrC3E0ftxgO3eOS0CGk1PlbaIUwD0Yix83e1a5neq3jrficYK4W8G6LejJMvXJ0//v7rcrz0cz3un39//PnzH/fXLF6Q4woA"; \ No newline at end of file +window.searchData = "data:application/octet-stream;base64,H4sIAAAAAAAAE7S9W3fcuJYm+F9Sr9XTXadqetXqN6Vk5/GUnVZZzsxzzjz0oiOgEMsMMopkyFb2mv8+JONCXPYd8JO9FBv4PoDABvYFwP/5qe++DT/9r//3//z0tW63P/2vf/unn9pq7376Xz/dbsb6xT0eqo376Z9+OvbN9DfXHvfDf/d++b+ex30z/bxpqmFwU0U//fT//dOlrn/+n9fKfu1arpabs4xX1T/9dKh6144RGxDhQ7d1jYTtTSBpRHuodqKuufEFNVjed2jbbqzGums/vx4SvOBH6df4rR3cyNd0c5FDiIfEQKTbpt61bivAWiUz0Nrdsal6CdpV0o52X0//jk4C54na8T5V2/o4CNCughlYs4Tou62SdrSP/bZup1oEcJ5oxjjpN+9dKxkmF0E71t0k6voPVf9VgBcI2zE/u++S6X0Ws+O8d9VWNP6vgtlz+18OkpYFwkpMT/P20+L4PFGfJZKJF/yYsw6mFTFLYUgL1vCD639uuk0y6AAwX9aO+Ng19fZzX1ftrpE0MZa3I993yZAA8E5SdpTPtagzz2IZ/fjc9aOmHyN5O/LHg2sXOQGqL2tH/OQ2o7Sdvqwd8X3X7hSdG4nn4bpeiRwUUGKvWuznanCHrm7Hf7i+i5CD36Q67Je+O7bb9+7FNWx1N6Ew3IiQIby7d1X76CohaCRtRj0txx+f3lT9+MzDxuI63PWL3XX7w7QAtOO7duu+A7v+VED67d61L9Wsd8V13oQl4CYBhEH0n3t3+N31o/suBA8K5GO/2e6kzfbE83HfpoYihfuWMhc1uJP62Ctwz+L5uO+77qDAPYvn4X5ww7NqbAUF8rE/d4eu6Xavag5JwXJcFOMdKJbPQzHuPfF83F93XWzdUbhn8Tzcd+0w7U827t491W092xUP0zIgVrJI4TxOD13zujn2L+7R7fZzURkboFguj2m5u2u643b5n5hGXCqPxbwVOXxw+y+JyYoxCEvkob/5PvbHYfqyP3fj2O0f+u6pTnaCGBG0cCFO08w3EgpKFmLzR9U0CtUFlSvI5PHYP8n1GFK0EJ+76mCkE5QsxOahSnbFLI9zmTwGj8cvW9U6GxTIx1YMTk88H1exnnriebj39f593bqq16jupFA2h9mnXTVKDmGhbA5nr6KSRFQqm8XFA66kERfL5jF7j5Uc/CJ5+L92ChP2KmzA9K3y7tyFj6/D6FLDKvxZapH/0fVNHGcB67q5SGKtiOjBHo3pn74SwV1Fs/CaOrUEQbSTYA7W46Z3SVQHRruKqvG88TDvkN+8VM1xiSI81ttkPKYS0lExGQLVsUmmFlLhzSqONAjgClvvrkn8vyjqRTgT8/ZL9yLtupuLsAUz+nYf+3oqtQhC6N7P8rj6djbgkrgpWN+NL000x6eJzLFu8/VbPYB9mKD60lmo3XH2dirB00JqDtFXfKgPdbubtrdQkA6QyIjUYbXR4TqIJYj4tqnACQ8hnmUzEX/ukg00BngSzcS77/biPj3LWhD/zVOjm6r5UB1mwXhsBL9ljIq0Hno8hJxgf0lTtUkaC4BzlTMj3b0205/6ehLk4UJhM+bj4dkJEX1RM95vv/NAi4wOIRplD333n24z6ypwoHk/5461uCrBcPPJwbqn679VfbxuwXCrbA7iz9W0BEghPeEszC5xWCB4HeGlILC8MVEPh2ayv2f/6eM35w6f3NA1x7nA1H/7ySJMhglfIm/3KAVgd5OStiE7vUXOfe6aybRY/N0HN+2CEhtSTJWssQR7/4uOszJqdx/c+Nxt088X/iz9Vo/1/tC4X7t0CwXWeBPKY02MqCL7je51+zi6uv3i+p0IPCmixl/78037UvddO3+GeXrvlkQBXIty4tL+BtdWUeXccss2SLUayijxC6SN1Zt9FdvtMkLngiW5pLtUGRVqy2pjcnscu/1kj2xMfPzSJVm9r3fP4yT1JVYgMlpB8ZK87o5f3AfjMFrLlmQ0hwDmyXLXd8OQQw+pqCTXv3Z9/Wc3mb/5bNGqivJ1+2lhzdFlcQ3Z7Na1Jo2v/3bYVtO2IXUiU6LiNX0ElARb8c21GNxyshGIFv/ittvEHcUz8QqW4vK+br+67W27NZOCaijLzkgpl8e/har8cXxN4vDrDxnWY1QJbTd6VIhIwn3dn+ZdMudjMEg+BxkKPcGYdMRJhvZ4SJLMYbCzoA1rifDIuxQQz8CVdGggmIEl6E5fzoZ0u/9Sp6ZljLNKZbTnFOyWtOgqmYF2ToUHjrqBkKG4AtfXS627q/tN497N/vvhNOIScEgoS1+hFXK6C6SL2N9ARj6FfC2Qj/3h2Iz1QYXuFTHiR1918em6nvuugFjul8WqFHxbiLTy66Loku8rxqe+MMpA9o3FHD6+uL5JTAeawlrGzCAcZ4ujgtMeqVDmGEMq5EcYQFc3vjBkweiSYhNjC0MXjSwSf/2qSFitQERNEUwzxNFUITRr9EwfOLPFzLThMmWkTBwkI+Njy9mC1NK+/DkvqhHUwoYurlSQ84htep45BLiKWOq/nTbpr0OdTJkAwROyYDz07qV2cQ5PCLHK2FrxyjTgVVPzOk4+fpmdOHdd0/WP3bFPcl2T36UjZynytu/276vX5PvCtd4kZeAGpZxpBid5JYVroTIcPlSTaq8TXcKx8IqV4fFwKqhjcS2k5xCPtHu36Xoo/yv+OWMtA6ui17SEHOZj7Mfr8V8RalIkB/9Nu9WhRwVysOfwvA48LqFGj8fOvFEaJ0VGKKpQRDqGLqVodQXUfQOVpNoZNYFlQ6gujo5IgWn5EOqD4yNSIiifeCxcFCMxFkIR6Vi4lKLHAlD3DVSSamvUBJYNMRY4OqKxoOVDjAWOj2gsoHySsdAlaeDrD/J1pN8jy/O1mpurEMm7w7Ku/1pvt0m2fIxxFbJhvO82aVQlxrgK2TDSGAs1Nq+oRDEFj/jrPzQdu3+NZOR5K+ditDKAar8By1LNjNvBMyI6nack6no9p1OmV2ysSEmtpcuyIlQVT0qkrHBO0Hj9wy2+f3rA+kKaEXsqxw/ZpP4buDTX7KAxAlbMsOVoiQeulhczSDhe4mGC8IrHCeC9WX/Ito78k3qsXcTcMsAA0LFLEcJjcnUmCPJI3JzJ4SzHGxiQi4wNAT5FHmNwJ8Y5lPlyFwbiLGKrf/YmMfWfRWz1L1FRBuAiY0NYbyFkYAJBG1a65WEwwQJ52J/ck5uKsCMPkrchz2eO0xsCY7xVyobyS5+cc40hziK2+u/dWNWwReA7v89CNoy/VuOGm04XGeN87frD813Xjn3HtSUStWq5L/esiltE7PoNuOsK0nHkHVf8utO8Dv3T27pJrxtOF59Q1oY4X1khggsE7a1zUrxE2L5ygDeIQOsHc3OIBAu4MQRCIm8KkeAAN4RAOOTNIOzupGLbchYxjofnqh27+H6FZCBcpYytaOrDHPxlm+LJGefS5e4bbip5ctbdxCth0AQROpHlgkbqlg5hUzoQqQx7gaqRNh4wxmJLgoSmzQoV9il3SwN+LWFF975rN4xvnp7Onz6OU0e/Sr/jm6pvYicMVNXNRRBpR8QN3u1NY+CciyBBDMUzcN9Xye31IOBZTovkfSH0gFyZE8a6w8XGc8XqI8XW08T6g8SWM8S648PcWZVThsndtLy1rhlmh3P8pQEJ6RfHTrBhVQoOrUF8Ea/GkC7rKPBV2oK69uZJ8bFLFSaWMZPIKulphZIWr1Y0OL1c6dDB9YqGZxYsHT6c3UoT4LJbBQzWETa7Do49dJTM+yVjHMW10EPHZwPrr3pMz/YmGFcpI8p9/fR0TE60JzCrmLU1xz3flpOMEeFzX7XDIr6JNzEJUiRrRPx4qDb1yIKtYkYc4Ix3AkIe52YRHn7+9L/n6+6XYBQHFQtnYD4evwyggxsEDaSLoD5uqnFcLkDQ4QflCjMBX48S82GelBKx+uDGqmmSrQfIwZPN6YeD2wCnpOBWr7IFED+nSzKJ+plakEXIn7rj7rl1g+gT+8IZmLdtPXRj3x1kHzUUL4P7vz/B8ROOgF8u53s/p1dOwh/6mbpwUo4lHliecAbmXeOqftNVIkxfuASmakiDpTJYnJfXd7KFK5DOR1W1HCiTweDNvh4AZyWI7MnmzObTCdyPm00DuUnhmZyWyWDgXwklQY/kS4x1yUYWKqDBTmyW316+/dGD3rJUQGrBfHIHh6mLuLqbqzDZDJ8m4suvsN5LIC+yBsR/C42Cp67ff6p34GtKqYC4/+YCn9xkoQ7AZ4GrvUkKIa1LaSNW6LhICNE98TxcDWgGIvAdH+t9PW3DJjVKfcxQSvpFvWts2e8KINwg5ZmGRy3CvvMqpqEUFyzAxWvlQ+8G17/YuymowMptHSW/tfUI3vm+/pDh34kqod07HhUkArgbpg3uPt44xCC+nA3p16rtljeNOahA0Ib1od70acAjBlqlrCiTxSlqUihpQ5sfC5ShhZI2tHu3kYEFgsZ+FHVhbnu+VsL2eII2rL+6zSgb6qGkDe3f60YGFghav9RO1ouBoA3rl1qIFQhm6Iu63TwnoTNQZ1wlzXpDoDDs9b+TNORdXhveuiSrOUY4i9jq/3vVJzfmxgAXGfNXEHztJqOPHvp6jgUtwTMOKZbNQ6w3yW3RGOBZ1LqmH5drLSV9Gcsa9yvzLmTaH8w1zbLsvgWQtyEvedt/n4xpDjIQNH7Hao4gsp/wKmXcUSwRc0kvhpI2tN/agVUZFxkNwl+8TIjnuu0+dNujF18+V/Xfvd/Ivff//c9/uda3mXaHY3+c1uiere8mFEaSEDyCXhP+x1/+dR3gm7F+cY8HPxaFYobCdszrWYHAmMVhY3k7cvgcOY8cy5uR4VfOUeBY3IxLvNWNgoNlMhgg75IR+EkJOzr2khKOnpbIQ0deAKIJJIXMHOA3ZlD0WDwPF0oHpKHDEnZ0xfsWOCFRJRkckRcbCEJJCTO6+H0DlI2gBjM70Y3YKDOmtJkVcP8xyiGQzUAkbzYl0JFyeUyo2zhpLnDJLDZE1iTJBSxnZiJXrSW0anJXHY62SprR0tuqWFioSCY+cA8WAx+UyERHblJiGCSlMlkgd/gwLJJSuSz822M47JNsJiJ2YwkDnhYrwAO8iUJAJCqXyUQ2+wNZMyJ3jgqFxwvauSBnf3AOSQE7tmZbVGgHRJ2zQLHhQmYO7OkElAhR0swGymRHCYTCuZhQJgoHHZaxM8BzOXAGUJl8BkgWAk8jKWjmAsS6UfhAtoC3anbKaLxVZ/kMb9VGANcTR59EGOFtLhQQfaeLDO25fqm+NO6+Pj0K0r+KkKFS+V5AhQMwy/fn/qwnpSzr5lDYjhkeo8Hh6IM0EqTZ6p90nP8MHg4XCGdgirDyMPzLgXAQ6n4gIUpw+QKJRN6/oEB7Xw+jHPEsnYX6VhRg8CSz0eRt9KSzUM/XUcmBwwJZ2NFlISQsc1+IClHe2EDe7lGvNs9ue95hrYECiVsdL2ln4+at7b7qvwrwfVk7YnicFUejz7DKIkf75LJSKma0Z+8oVcerRLihfAZyK+lXKvtRhnIK285poMH1LhRkUiQvIiXAzN1/LBW8eama47IVfqwljiO4UInomxD7KpyJ2XffBfvaQNaOePasC/BWybyoHg91EcuIje1voyfkiKiYJ5uD6NpB5NzwRfPxhPGkRD4HOXoQkAJlXgSU4X08r7YiRE84B3M+Eywaq55okXizBFJwQEsTQZZArqJ2vL7adPOS27tBOFXSEsXQPx6kiQVoQTOXN1U/Pt+2m+euD+83QUkAJezok1X22D2NrhV9+1jcjts09UHiBFsF7VjnV5Tf1hLtGEnbUdecBgFoIGzHTC7gwxHZO/gEeHMf/ctW4EBdBXOxTm6mz7MPTwwblsllsOxIdASCItn49X5ZuJUUolK5LPxpomMClcxl80vfHZWDIiiSi5+mCenI4OVzmS3vCejIBEWy8c/pC0oKUalcFpf0BR2LuFQ2Czc8T4L1U+0fDmJZRKVyWUgdMbF4GVzdFwjL5DJ4aI67d+19NVZiAkGRcvi6XkjLZTNZMxp0TJJyuUw+bb/ed5vjvPNRfZi0XDaTU8ZD1067W2W3gEVz+Ty6cZSlA6YFsrGfj3Pi2Zw4PruWdL2BFM7mNM5Gp5JKUCaXwe+1+6bD90vkov/R16MTW6pwoSwO6ZMWJDr/ooUEt5OYT2cpM8ovbj5g3L/K8jIiaTvqKc1d5rsPhbMwBcHoi5gZJ3xiA8WhX9kQ4BBPvaCgitdeFAwUs0P+5osIX5NNVyxrPnjkDIWjXzOT4LhKFJG4ytmRgieQcCDyFSQRjmS6n6WyUKr+j67/+tR032R4gXwWsjA26Itm4Y2iJEJP0oyWvCiOorGPiEvQ/Ge/cCTq5S8hijzPJZLOQp32Zg9VX0W3ZZDQcZEs/NPLsvJ2B/JZyEn2iJwEVjSPT3fomm73Ks/pQkplsThl9izHLeQk0kIFOGjhs5G7rWuuKSgC5FjejPzrsf8yCBV2IFsA8d/bbpT1NFimAIMlgKal4BfK4xC/TkmDc69UKlGVvZ+WKsJC+wWAYmYeJ/fi7Tj29ZejKPcPKGFGf3h+HebrXZrFktzKtxZ4QTsXmRWabX+ejnNJR30kbUeVBdazo+lLBf8iOA2wCuZiyWZOKJyHedd0R2kTL7IFEN+JTuok8nnIv/S1tKln0Qy85lW4DPuiWXiNyBb1JLPRFC1sSliHa8BCAurJmhHDg5M8aiKfi3yKQoiBr+KZuKp8F6hIOXxxr0dlMhnIF/BEPhNZHipK5DORz8aoFHgVz8B9Ee8fAlkz4mP15N7OLgce0Be1413jZwJAX7YAolA/pwXs2F8nTS9yvXqSdrTlHLkA6yJnR/Kf5MZxqFe5RSiSI/THLF+/eLqVmGtn60527iGSNqPOaolHO0tlodx3QqCTYBaWSC8X0MjnKuLXaDlI7jlaCfJzvfkqTF0OZO2Il4sIBICeqBlvTiB41z4JLnr0JLPQDl0/yhE9aRWqd/kpcy1C+POCHIKttf7lf/zrWu3WbaA7hoDqbq6ia63jsP1v9fDf6nY+6jC6rd+kiPCKL72CFeKA3cJqIhJ81Iq+JBUikxSBv60MfxscN3qX2tPgJ0kL5XDo680zqOQhbE84B/PQVHUrBvWli6D+UY/Pb2vXALdBkvhBuUwmgHcBwSa8CzK0caL+bliuyXGyIRaXUKIHyubbVIv4U3vCOS3u8Eu8INQOvscrX7/Uw72blzkwMQ5iEhUoyeW5GpZ7GKAFGqISymcyCUbEiG4UwLEI7hUKsWig45IoiyY+L5nPYthUwqFxkSyJ3s8yMviraEn8nRupm20gHkmRknz21VennLFJkZJ8tsdDU2+kn8iXLqvFfq8awNkPK7CL7A9gMK+/77vUoCGIrEVK8jkOrj/lT99NY1G2tKVlSo4U14q39FfRotq0+38eP/4qU6UX0aJ61I2/XTtYpk+jEoX1mpJNXOKHsZFteZMiRVed7de/7dNQALjqXERzZ69vVAM3/k1/k5vPm95NSvZt3+2jZ4Di2m4ASWRbO3EyGMtXHME7JSGETMFf6oe0urhu5DYlr3LmHiWi9j580D6pu6efrCdq3tanREq8bk9CXTtiAF6qZqw+vN6Na0nO19/1NU/f6LjH8vhXgEhMjdO4djemmb1XgOvv6pqHsepHON3lWnsgo0bY11umfk9CXbtrudo9CXXtVbtr3H23r+o0anIFCIVsX+B2roP5AhcZSx8x9XsStj5arrEBjpmFnbRKZfTSvdv1Dki9AzprFTX3GYuWChpHGQdU6VEi074GfAuX2s+/qmv9Qlmql8q/CO5eJTCW56huiSm+Cuh7ZepWR9fui6jr3zTdJD9ejyAQi0QqaUajNWIkpUbpl7e2CXWyChhGKeoGW4cqFyej6u+I/PUVohNkrkczOtxMowDLD5ZtNbJDX+u7iWVR2idyEsRlNIJKCcO9lshFx3fIIDS/XVbhKhseFcrhMCfY9V1zSkzlR9ENXkpoHjKssLhoQEIbEU0xFead33hLFDQFj42zbn9oJh0sGoKAuPjzC802D4233UgMbrPmIUl3bDwesbWJ8QT7G3KwVqySrHSqMTR/UUvAnwqpJZAzGrfo5aARLHgzaA7ycKhaxJMbIPtyhdq8jAJW5ZyFis36eVsE+nvC2X4RK4X7MBXqtjU3cAPBMtjnffPjbDAx6JFoUfw3LdfrgWAZ7OuuXtL6RLgwB74HItEyS/vmea4Vv344WmsT6TIs6gG5Ezge/8B9wHm46JGWZOZBJ1pysMf+9Rc3CvET4VLt502Ki0zJVvOovlyptkr3cukeLr/FIuxItFS7sYtz44ZD9+Zmzq6magWz+ipWUqedFulF8NFVoDMh0WxpmTKMCHeJv7EHfCZZ/bC2hnqEPOoIrNCP5AQfJZYQS08X57Aj3IzpVqQY6uBOmwrUZ+fvtCPZYgzeEFGUEP8NFE3J0pCUAxbaAJUbjdOP1XywgMUOJcugP81uXhZ5lSrlzOnrqSn1Cw8diZbHB19mwTkkb7Lk8Ni5k5fs6m2fnXiLz3dO7SS99R49eS3FWKe1L+7HgAXPWlhLqT0QHHgK9j51ufV2ODQ177M4yRRqIRNU8FuKRRZK4c8HBCVuKqxMGcuWyjUPaFiyzFmPCpWtGu0+LVmqDD6ZUx7Am7LJ2dlGBNCCKafOIJcgw7njKbIua5yb8XC+eDjjdZni3J4eyREPt/TK7HBe+5N54bGSN2WEMxy4XPCAgzULnNtD4Pnf4eZBn/nNahY0JTBQKspsbxkqmucNgaszvBkObG53QMKc1c18eSyfOwDXZnKzayucwx0tprrsbd4iozKlY5vMkiPN6xoxA2OWtoYBFzu0ZmZzWh7JyQ61vDIbG5hpYeoI/045JCRPKTlNkLmkvOKboBAaPU2pk0kFSg5BoXwO3+Zvc7mbXUEjLmdiokh3QGgI09spEuHAw56mv/4iH2I7N6KnAPzKbnxBrAkXXpbOC8BkPZbC+d30s/uzdj1s6Xm/kV0lpR/XJ2qAT1CdUpAgwlkFSjxs25SgcScqRFifFtcwcKsWAOfJmhE3p8yry63C0O4I+pBpGQ0DkeM6geXyZAVYuLs2QePzZgV4lJM27VbET6ttI+XOSZspyRUVoM7WknzsRtJZqL92rQ44LGDGrts5d3E4J30J5mssbx9VTOJDOrKI3AclNuyeTBBTD6VAL/kL1fKGZYqz/Fm+kiPZn1412tzPMzHDcuhhWvI+E+BAjX+rt8AJKx/zIoF8EbL2ZwdeWedXfxWx1P+lHuf0sIf6uwPmsIcSCVqwhvpP9/HpcVMB88ZDCsTsOO/21Y4ef6GcBQnam3gA1I6Erhfb+PiVK71FIkTMVwQAaz1FND7nJ/IJWL1ECQOJj8gHVnqIaDzEP+TjKb1DNB7tGwrmhckvQ6PTfiEf3eYVUqCntiUKL/cI0fiIP8jHVXqD0tnkL+GEt9/7Tb6YH1twsxNVdXMRQ1Sex0q5aYiBgJ0DjyTeLsRoIusZhJQp9RiPtWZ5rD0Qxk1w9sS5YwlGxY+um5OQGQM5gZ9+IkeexBcgTaLpm7AJzlnKjPLSNce9YIBf5cxI27rawYZZMplWSfPEJc+Ppl9Lco5UgFq3T2DYOJ1RV8FcrL/9/R9iuJOsvU+7dqxq4LgVpKAukvb2DZN17FrXyzo0lDaj4kkHCSR/eleC1815EwKwi5wZCdtOxkjAnlLdJngjmbYp2U0KdEqwrYAUPr2NkC+6qsXWsMiKF1f9YiRdhLSLj2zR0S820kUGHXKo4/hSNeswNi8luiXEpHgUCgedKqCWmf4o33OP/etd1764fqQru0kEEbLzj1ifX8+jgw+BrliJYA4WaaYAkFhekhT5zquJQozlctp4Nx+9gh4WhhroCedgIk9PQIjM6xM83n8cq60QLxDN6tMOOPYB9mdH3PslwyIegYEQBe/ACL+hAjQf8XNf7/cOeSE+hoyE9ZiYlX/F0QYGQizxlmNtlyUoEIJGm5DHDtyEXBFXCVH3RbV/qNr6qWtoAE/IgsEPwJp9JpQaBHNBwLS51n75XV/zcGJFVe6J6Ot32x1Z+eV3fc3zGl7TzD0RQ583NbWROP+sHy1E0v5auyFhnx6hRDqxP0gNicQULpWkv8JaEvSpL0dsV719oDYxn0WEvSshoiohn5y3YDK+N2lVifgUEpKEv0IpE/ApLCb5fsU0Jt5T2EzS/YptTLgnF3k02d5b59WJ9rRGQEx/TxkoQ6Y8GhowjUHV4VICmw2WXsHNoVJq/UM8W+sCqAyTUloI8W2tKkgZIqX0Dx2iXPWQLUBJ6wgRsjE0KkWm9h3WsCilhZGg6KqFlSHRaMZE7pg3Wygd5PyD3C0jvWsvqDn7rr1rA/Qm1UrCYFZFmBrTymu80byKwMMboOaXGJc+fDd8Ot2AAWv+lQZSpAwf5Ia36APozsqymHgaYgirvnmJQ8ZveAuR9Te8sW1GUj6jga664Y3DRG94C1HVN7zxuOgNbzGy+oY3dn5RN7xF88pyw5sQH7rfDETX3G7GYTM3vIX4xhvexBz4HjDd8MYtKGyic6jhjTe8cSzQG97i8a+84Y3HRW9YS2ae9nY1Dpu54S369rYb3vj2Q3etxU3X3LMmazWPqr/hjW8rcstaot11N6zJWizCNt3wxrcbu+Etbrj2hjfB7IJveEvmlu6GN5lO4254gzSb9YY3jhF2w1vIQXvDG9sPshveoo7Iu+HNxgkPSHHEdDe8cezQfAdoK1IMlb7hLdppm254EzBAb3hL8NU3vLEaEj8yCG+Ayo1G6vBgOPoMN7xx6NgNbyGy9oY33oVA3PAW21eGG940+OANbzgH1Q1vHA/rDW8hvdI3vAlYm254S1gXveGN3wMBN7zFex/FDW+sPoOPUEY+C80Nb2wLySPBYUstN7xp8PEb3nAi+hveOMuWCRavNIwBY9qjwoTD/N2nMSBG4XPB4xXeGkCmZxsVRPannCWQzCKjweQIWR1QJmc8GlT2Zrw6sEzu6fHgsrel1weYGe3PBZkDJW8NNFMcBMHmlUNGwJncQ5BBZ2/zYAo805oFDz77SkUfgBagUkHoBNwSiKY4SILRK4mcgDT15Ymg9ApuCEzTaysanPYXU3WAmrHImFBxYJMZw8WMrhEzsAesxQzgoDVCQRe4JrU8Hrz2tLw+gB3PNCCI/b4e8Fk2/1jmQE5coexkjs8RO0ZDqgkfj7zeCEaKB4oA5ySla0/0Wd5imbLzD/LcAiKKf63IEsVf6NmGwIprjeJH4KEtsDrsmDD+ygMrg3/AiEF0sn3r+uZ10g1UwvOKDsnbkE8pIW++T32KRti83k+kbajXnQ8/ZG9i2UxEWQcD4jbcaVqjh5lWuFXKhjKIUAY9ivhAwYoCHSpQzs64bYS/IGidwUdAjhk8y8NXhOosD7K1ZE6L11pTTguFTEUXVlxLdIHsY8mnNWQsMXPyceq+351gvYllyzBoZ5OzYTvbEyuDS/n0V1iLT59CJTOXfMVhyFyiccnMJR/ZlLlEYz9Oq/OxQeLLgbpcBUthz8GIU6X1mN4NHBOIpQuywELbEbw2mk3jdrif28ft9D5uCvfsr5btLxLhH8Hhc9e4vmqVZPxSxeYhnmkRzEJ9pgUzB/EzwcEMTM8DZ+o76rx1oPGgs9aZ2Ni55AA3PpOch/m564Gnv2PQi1S5Vfw0Yi0x0nCFl9ZTjDkc34x58MzF9RSylOmomWce26JmtPXB+PX9oWb06lP4XNRshbdGzUjNTkbNPF1uipqxyGjULEJWR81IWwiNmnl2kDpqRiESUbMV0hA1Y7QBFzULprw1akZxEETNVg4ZUTORh0bqmimoWfComa9U9FEzASoVNUvALVEzioMkauZ5HTOiZtSXJ6JmK7ghakbvlNGomb8xVkfNGE8WE7MKvFnGmBWja8QM7FEzMQNuy5gRNSO1PB4187S8PmoWzzQgPINGzS4/FouaBRWKo2ZXjuqoWYzHRc0AJFHULMThomZQe6LPct4so1/G+73Yx4nrFH8fn6z6EwGo3FeC8UQfKkHjvhXStuhznR6dARFPPxUJdHpVWUKdZ5K2weFjW8OdCYHwSsbl13ftlu/Im1AW/3o04nwbEb7F8PF8yRy0iTF6iVGMt8paEZtugx9f8eE8wVJfkzHKfXSjWU7js4a5z8BsmtMcOOPcp2A1zxMGCgPdx7eZ6AJ01EhP0NVmOo2OG+o+st5Up1EJY92HNZjrNK7AYPfxM0x2mofAaPd5ZJjtNA/acA9WUpPpzmkf3HgPFY/efBchUwY8QMBiwtM8JEa8TyTHjKdHAmHIB0uu3pRntB9uzAeqT2/OM3qPNacD/Wc2qFl9pGBhN+sVLPhtV4Zpz6wKuHEfrAp68z6dhaBpghqS68/F7MioSrEZ6TFVW5EppmyzbrEhYyzOhITb5X2mu2rz7Laf3ff5sOxd1/XTsjytR+l4xQSLfDqyctFHRNuh+pwcD+rDahng10TRLPgnfLVM9tXhMCmdd+megWbilyvDpB4+uWr7sW3SHB2aSlDQzAW6+kQ7SLxiZXjM6RDfPz5pO+RaqgwL9NUbdurST+BIRoivrtz8lse+6r+mRK4/ZTu8oqq0Di+PpEEVRtgWhxdIIF5f7uvh0FSv8xVNwFeNWKTyyOeEkMM3Vdq2Ox0TAB00MXAintEDsPp9HF8bB+m+eBCkBUpx6evN8zwFWA6eYCns6ZvWrQjclyyOPluBb2vXbPmxCJcpyAhIFwM4KPLFeNRpkza+G/7opxUVSAuO0WPpUlrh21SjaCh4gqV6gHDaxugGpy2PTzptYwYmpy3PgXLaxhQsTlt+BOBO22QMqp22QnTQaQuiq5y2PDrstI2RdU5bHhVx2iaaX+e0Fe0AKKctsAGwOG15HozTNuZhdNryPHCnbbIRUDttJdoHdtqmikfntBUjY05bhIDWacvz4Jy2MRGr05YfCYjTNiagdNoKtB/stE1Un85pK9B7pLs00X8md6lIHylY2Jy2ShYis8jitBWsCrDTNlkVdE5beBb65jV87enpz2U8fWtVMr/eiZFWbXoo3MuiNEJfbWvgJIcPcBWx1L+tkZMNPoInZMFATBoPIDVn5LUjz68GH/oiYqn/C7VL8UC+INsTOdLpdCkJchUx9dT063H/5CZh4Aha0GGRpBAtOoT0DrmoNZwd74BLWeUo2CHpYHQxr87SCPh1oz4GfNmoHIW8ZjOYiw65ZFOOdXkkFz3VFAyFVDgHE7wzFsIjX/BlvhhuRPpfjH3HV4ACG4sxCvnIPI2CXQUdLADARdCKdlBXUQZNwS6ipDWQv7x3+33XflzcJymU92O+Bz2uDPKhB7x9aoZtRYIn2lzAoLItRoLIbjTkaKg1hoFC9pgWm7XAEnDKBhOgi6yuBBSwu7RYmKWVYAG2lhaLsa4SSNy+0iIzFlWCjNtUWcjA5pmGJrbSAmzMckowAdtJMmNCdXro2kkcThwPfy5jPaVVShWdzxTNifClYFc8SAAolsOjlnbnTU1m4eNowUeEdsjTHwt9sFZj7M5csNiAq3fPkFK+AFwF9HVjRu61bs7EJerG189WaqATtX+pBofsaa/1+zJ6hOrgvnMIvowB4XtN9f35Z0O97a5x79pP07eroMSNFSEWNGPdL3d/CbBWQRGW5l6ZFYu4U0aONQfZSIyzgKzPQsVzUgjogyqJRCmVBNQq1U8RZZ3HCUZmnE9SzF1fbx8P1Qbe7IDIYZFM/KGtDkr8sEiB9s/JOdjmHe0Bv1Amh/G53nyd63vbu/86Tjt1II8PJgKWzGSzdYfx+efj0+xHAxcgiEhcKJPD8o8Q+ixrQPTVCuxHmP8qt+qlr+mu1Yqe0g3as/yq9CqscNqUvAhNrCy9BloS8SJYydu0fiPTax7ltePpxR4An0tMYeB3c3oY8MWc8nbAd44GQyG5cFRcO3oTo1c/eA2jAgG9czHAAC9cFKOQ78J6OOijsFok6P3TFCd++lSMwrz16iERD73q0ZhWoU+6ihUb936rr2+Ix1vFeOhLrcHYA55pVSCgb6KG4xt6DFWMwry+6n8j/OlVRZugF0+D5sRPnSpbwtQPP6eq4I8F8gOtlj5cqmwFj4I+kapoC/YeatAY6DFUzRiG7+MMR3B6Gady3nNvnCazn3rgVIyNhrBWNDaCRbZN9m6p3zj+0dJMdMSg5igwkXCKBxoITxZFW/30q6P+fgt9clSDhb4vGiKBj4vKtQge2gcWXeP4IN4M9ccD8mCoGAe7SdzDgK4RV5hEVIKCvxuW5CdIkcAXPxG05LlPMaL1bU+PiOVhTw0/0yueIT/1E56K1Rh4rzNYhWvj2gG/zBlYd/GznHLWZOKDx16U9yBFwl/bRCDhpzbFtgV1rmUFtBxpoa1OKqfe39VYkukpZPIMywpsOr5CzwE06cifCOpDKywmnIIUYeqOqpAzEj6l4s1I3QEVcueInE3xNo7KYymMliVPpATK1HQYhULnzqGs6NYjKOSai58+8RZb/cETWkcgkVlfPSiPmwjw0NymBFZ9yIRCZ7ObVnjz0RLqC2P5TSus9kAJveLBGU7+Eqc7RsLYC1SmUWAxWI5tMFpDhm08MiLGBqLeCLjioAipnZFMJ087K4+HxPMnDis91Ae0k0+/lYlQR/XJYtMeQWwrhuz5fCjODUEjYIk0MQqXT8MjDW63n4QFWJ6kGW3OnxixKIkPtgqasarNZItXUOQ4BvMkzWib6oDvzYMxeBVUYSVTqO++Y02bf/pBMdq1blGgltUSp2YYorceEUsIN8bVqRSvE6zB3JhAGBubf1zEiGdTYypIIWqUURyoqLLf+boXBAW4dEzLhwZDWnnoTCTaQ9e/EyloOxGjDga86mVMHpeOXnvI6pcEJdh0XDtAV78mKJhrbMTbn2NY2LsIBzRqnDKIA8d5+JIouceBCJUX4iHpCTSInrfoiCLr/gpAhNfzmNAx92BeAIH3XGw6Rh7OSihInocvidP7YwEP1uf2AxphD7ogDrGXaL0EGQ7w57aZiseHq0EakC/RciE+mhSQ234yUyDoAChdIHvmETkE4bzTveop1X2i7IJEA1IpBnmsyLwDjweUfJDZH4qMBL9D+LSEH8GLyFVgyaUJC3kMySyGdDtTEFmQ3+Dv4tEkh2wWdOZDyAFMf8jUpHROBLSRKjlCj0y2hD8ij3DKRB4DMo/CQ9e+yS5xW3AZFoEth6RZlOOA514gPJIEjDwuWVkZHkVLakY2c3u+RshcnbSRu4/CMjmC/VNdcp0mcjwCv0mc6JHZUjb7w28xlgJSjgOTF4KQgZND8qxpLmPEo2JNG2E8O1wcPNjNWkPhJAc2i8SjYE4lYWYimU8STEdTUgmPjmeWxOj69BJaI+A5Jr5G0Cea0PYCkW3imwuGlBNutWDzTsJFwZx8QvKQZKB4PHLSUOg9CJ2L4m8+bAkpjPYhslICxWNITZEgk/kpKQFTkgrJQ5Sp4hHJSlchRwKVs+IRsCSuMOsynr0SLMT6FBbO+uNySUL7z5pQwukjBYuMtBY5CyzNAKGhTHChVwUiy8VfFQypLsks9IP1s0d6C9kI5x/KZLr4lcnSXC68tOozQGKvXGFR3tZtDa0QEcxVzIaD3S0adpujbxdlMODrVwIE+goWpv5x2q80f0Vu7wlgQkkb2ukWoH9mkFapHJS/iFD+YkbBsqkCEC6VKsUIHV5LFAJy+IRjbBWz4WAXyUQDgL5MhsWgL8aJsGSX4wDfyFOT924D3Ji7/LWIglxrEmnHEx1sIp4emXo3VVO1G+jJHw8NEjZgnp9Io5BWEUP9h76bPQBQdMODCKRsrfjcTV0BOSTDlnhili8027KLKJD+53+cUM6A1PX1DnD1eBhXCUPtL24epb+l092r35MxI9xu+m5IFWSCcpUzICH3znkYzMVzZO2IivdqZ/Q7zb3r/3z85twBzo/x2xBL5qBBWTAQFnWLBPP1+1HWrkQyB41pVyRnQFqucB8+1O1vFE4gZUepvv8uQDlJCVH8hbHe37a7YwMkBKw/yZN9kZTaqCptSq1H0rA0R9iWlFqQQJpiByiICPwqhnwpFgdTRBEOp41YnOX+QxbmIqVAUT3vGONJn3eUtI983jFtqOl5R54H+7xjMnWszzsKxhb2vGMyurTPOwrmD/q8YzKF1M87KtCJ5x1RHobnHUWMgGQbgIMirYZHpZ93jNFtzzvyWgF93jEmoH7eke8BIqgZoxuCmjw+GdSMGZiCmjwHKqgZU7AENfkRgAc1kzGoDmoK0cGgJoiuCmry6HBQM0bWBTV5VCSomWh+XVBTtAOggprABsAS1OR5MEHNmIcxqMnzwIOayUZAHdSUaB/YK58qHl1QU4yMBTURAtqgJs+DC2rGRKxBTX4kIEHNmIAyqCnQfnBQM1F9uqCmQO+R4cRE/5nCiSJ9pGBhC2oqWYjMIktQU7AqwEHNZFXQBTXhWRg6JZDTUddfSrgkvJoMHokzQ5NDwkc2+iMSeKV561OwW7c0C4lxG3yEDNuWZkKZtj4Di2VLI5OGrQ9tsmuF2LRZC7KwWbUsH9iojRjobFoakzVpfWyzRZtwEBu0PrzFnqVbT5uzPrbNmqXROWPWx7fasjQDxpT1CRgtWfrLk4ZsMPIsdqwAGzNjE2ytFUtjo0asj6u2YWlM3IQNNLzagqVReQPWR7fbrzQL3nz1WditV5oFabwGC73FduV0DWq6hmpGbbmKcAnDFYA32K00C4HZ6tPIsFrpEYAbrT683mZlNB1qsgZqTm2xMjqOMxUDXWe1FFntI+dgtlYVHNgNpt1WZbQ/aqoG2l9tqabzDjJUF4MFB19+LmeyrtWZ7dYT4Qzj1eOQZcHGRPhXqSAKZ0E0GizAqvq++/Zz022+vtumeakQaFyiFHqar8qh47mrMvTGVVvX33o1iiiAxXJ4DMfDoXfD8Ob7eJKWfQiwWFEesk8CFivBY+liXV9cixTD1/XBtUjWrGhG17fTPvFn13Tf3kNX9YBTAyqWw2PbV99mw/xDNXyVqeWwQP7c/Gs1vK8Wu0ExM4NCue2fDONvVS9TDKF8DvLskfltTuyeL16SgSdFsvXye9fuxme5Vr7KF9LJCnyoVHb7Z6+QYkm8iBfBVSyGF/FCvU57zeA+J69elTE4HRPaV/3Xx/pPGYGkSO6M+6UCcsKRqXaSzUVEDh5hoMzpI+m3nifI20q80Y0KFFnZ3mtJYCWzvkDXuH4+P/Lb4eD636vmKBt4cLkiTN5330xMgnJFmJzG2iPt0YSohAVzuMxPw8+rGfZuM0QjLZM7Rz91yAVl2Cz1CmTtQsdq81X7FYBC+evCeTelXo/jcjlM3MW4mPe1V0tDRAYtWozPx6enwcnUOFwua5d6kdL3DFo0h89T/d1tr5UpBg1SsDSXj7K+QYvm8HmuhiW6/PHF9X29hXP/EypQqRwW9XD3XDcys2KVzUE8iQv9K56wEjN20L7tqKCAB7nK5iAOCsShDOKs409jc1n8ZeMJKpXDYjOp+/62aQxDGy2aw+c8Zj8+aUb4Ip03q5hQXIBpjMdJGLBBuZSIOTJH8hGH5zxC2TE6cmRwgTp/oTZG60h8LmQX7KdtcTtOQ0kCZ6GeyomecRpaySYzlidnI9NeuVE9kg8X2vN4WON7yewNg3zIRfnXX0qE9ryaDFG9M0NTQM9HNsbyEnjh4Vgfmj8bm6BoD5P6cIqzpHTr+FxbH9aea0uzkOTaBkMslS/EhMq19RlYcm2ZcUbl2gZDzZJrK8Smc21BFrZcW5YPHC2LGOhybWlMNtfWxzbn2tJagMq19eEtubZ06+lcWx/blmtLo3O5tj6+NdeWZsDk2voEjLm29Jcnc22DkWfJtRVgY7m2CbY215bGRnNtfVx1ri2NiefaBhpenWvLrvBMrm20wBtzbWkWfK6tz8Kea0uzIHNtg4XekmvL6RrUwA/VjNq2F+ESZj0Ab7DoaRYCY96nkWHH0yMAN+F9eL31zmg61HAP1JzaZmd0HGcgB7rOahuz2kfOwWyfKzhITByjVc5of9QgD7S/2hZP511ohn/sJ2WOqLzLbyVM8aAugzF+5Wkyx0N0o0EOUBCa5CE8b5QDSFqzPIRUGOZcK3nTPIS2G+ccE4l5Hg27DAOdY0OZ6CELi5HOjj3KTI+Gn8VQF+PTpjrCxGasCzjB5nrCQmewc7isyR7im412TktQZntIwWK4c71Am+4hvs145xhw5nvIwWrAcywYEz4kYTTiuZFAmvHRaLQY8iJ8zJQH8LXGPIePmvMhttqg53Bxkz5aEdRGvWCHwJj1yQbBaNhzTHjTPmRiN+45JqR5H20ULAY+r49QEz9WRWojX4hNmPkgBYOhzzERmPohlQxjnxsRuLkfUtAb/KxGRE3+SB2qjX5WF3Imd6QTrUa3QENpeJiNfxUPmSlldACwqwXqAohWC7UTAJqToRvgU7WtodccLr+UcAF4NRkcAGeGJvPfRzYa/wm80PT3oXnDP0HRmv0+nMLop1vHm/w+rN3gp1lIzP1giGUY+zQTytT3GVgMfWacUWZ+MNQsRr4QmzbxQRY2A5/lA5v3EQOdcU9jsqa9j2027GktQJn1PrzFqKdbT5v0PrbNoKfROXPex7ca8zQDxpT3CRgNefrLk2Z8MPIsRrwAGzPhE2ytAU9jo+a7j6s23mlM3HQPNLzacGdXeMZsjxZ4o9FOs+BNdp+F3WCnWZDmerDQW4x1TtegpnqoZtSGugiXMNMBeIORTrMQmOg+jQwDnR4BuHnuw+uNc0bToaZ5oObUhjmj4zhzONB1VmOY1T5yDmaDXMFBYuIYjXFG+6OmeKD91YZ4Ou8CM3w21jZu78A5t/5IGuNysziqUPbKos8R2yZCZyBjMPIkKI9xfqNRALRK2tG+TAJfH2brXQAYCNsxvz1P40eKGQjbMQ/dMP4xWWm3yEtVMWwsb0d+qup5CoPHZ2NUXzYbUY6Xh1a3VfOh+v52koO0WoIZyRdClvVvUsKOPr8BPWm8/zhOG5UReNgzAU8K2LHPr6vePVdt6yBlHmMnBTKw3fD8we27/vV9va8lUzgtYUfv3dN8S8XoDpKxFkpno85Ot7F+kX1uqIydwTA/QfnJDV1znP2Ps/V9bCoBDbSgjkuwmI/zFgBUMOdfCi3jfm3CNfxCDelG186WHGT9BFirmBFn78bnjoW5SilQ/A/RV5vurtsvN+iBd1dEAvJQx+ZcSFbljSeONCWmyuB+PMyDVQu/lspjMYdwTkI/v47utu8rYMKDTOCSxdhUg/uf/4oZMRyhsLCak3jaIp9IMHuFHTJ2ho5ICqk5UFNPOl7PcmX0I1G3qb8vjUB02maVfO9eoG0HTSgpXYTVtFGvZ4FpW9WO9Z9LdO7nGopYUuyIWoqwPJtqd103x6tnz2oeX1F9RZi3s/ezyWOL1lGEYd1umuPW/bqAKJklZUsy+hx8pOkb2ciB1ZTk+bvrp/F01zVdb2MYVWDm5inYN1U/Pt+2m+euhz0FsUARlQpWKtKlCV9sAzrLzSvRkjHxfpoM4xFwBMNE0MJFOXXtLoOUV7okqzeNe4GvE5Sw8kv/EFb/cH2Xx+xcQx67fbd1zVy3Ys7cJIUKcJgUKnB7HYF/KVAA+001qJp+ls9DXv6RgZ5F8/C2btj09UExI8ISavQwfDXLve82y8h9NzwClzgSgz8umMdl58YP82ecl5YKsFhhImmpMiw+d0uJz2g+A00HKK4fJ/4yut25x+5pdC1kKQW/lllAkxplq2dAUx58AeCo0S1BGRS9deMLZ2Bunqv9k5P15lU0A++p2rgR8IIBeKtoBp6bhJZAyufnafP33AF3aALQYKmcVnf9RjUZbpISSnR/IjZNfRiAJeL09zKTz6tLNu3OpBDK+y9uu3XbtzUQMfN/lLsVn/puj7vUkjpvYnmkGT5RQ7clsKK+g0GBK+MFgA19aa8E62n67VdwE5L26iqqwotyNWsgfykFu8jZkZa7TiVf7Syn60N/wLcvdd+1YJKC91uZuRrVJxtzHkEsnl9tvu76OXVuMcd53LRAAeyHvpuzZMHNKU4gKKVhkSQaXqt8t692wCiNOYBlzAwGAwOwjOpL+AP5+zSSwIjQ9RdFKKh3UKZiWNPNVQrhfGVEovzcfZdyvwFLZKHfvTb1/BKQkgJULIvHQ31wSg5xESM+csIpglSecIJQxWoyaqzhhBMEH12yPj4/jpM9xaH7gvIOTrDetMD2N0U6iWXgfK7aHbiUpVirqBFvP/V6/zCfSDm50m9HUY/ixYrxEPQ2VsjIoR4+zBW6rbATAPl8ZEGzE2kz6mMHZZQncBcxM87dct7odvy5G8cOcK3EgIl8NvLnLn3qCoU9CRsxN9UBTlGPVeIqZ9UVfTdbBCK0SNa4zIzdfIKIw7pKGVGmLdVDNTvJtr+xWJGsEXHaRj6cOujqwENiFiE6US6byQN4lhAl8JCcKlTjTv0oBvVk7V/543HW3yf+gg8diRtxq+32XduKcVNxI+55Bv4Lv4fwBK1Y0+eZD1jfHfsXtoWxsBHzW9U0s0ONg/PkMpAej/3s4ZSAraJ5X+7dZCuk59/gj3eRtc/GD24AHFDJRDyL2eegBGcogHPf7auaVai+oN1KiEyjXe8EptFZqhDqcKha0cLsCxbCXuLTt/yW4CpWqqdFn3hb+PtOk+Bx6sPfncQOjYULcWjP5gcH78kVQn7qp3954FWsEO60WW66AQpFJZvqi1wx5IepVLetNzy2J1kM/bFud8cGcmwnZtMqWQx9MjXPtUKHGRIKsXhJHq4SWHJXuWLInWhT48kVQh67X4/9l0G48UikfwiLz5c3aHV0/GLlZuVkDkhmxVWu3Iw8TOUEI+IqV04Hnj3IAi24SpZD73hb7SpVDPVzN0nwsBexgqv8afA+VPNaNlmCb/tuv4zq+WjU9a+SHYC0onLc0+pn0JiIgLu4okI+duJ+nYic4X4dgf+OuPMjGXKGGz9YBtT9OhEBy/06vL7H89EiDa++X0eGDd6vA2Gr7tfh7Sfwfp3YdlLdr8NiIvfrRKDK+3Uk2oG6XydVAZb7dVgWzP06ceDFdr8Ob0Gi9+vERqT6fh2BroHv10nUjO5+HSkudr8ODK+9X4dlwd2vE9Gw3q/DjgDkfp0IXnm/jmBXDd6vk2yiVffrSLxixN02qWfMcLeNRPvIOdju19FxYLeWxvt1eO0P368Ta3/d/TrgvPMSft4ujv50cT//vVSCpl+dMDfzwkyXcBIAAekmNII0uSRAkeTfpVBh6vgcvX88ZbDddfs5QSsdhgEoUsKEXh1Oa9lUFZgHGgCnwrmYv/XpoMcgT7K5iPdurGrgwCeGusrbkPvNc/0yn3UcoJBuiBrLmhBPqV3pViIct1ehHIyfmcnui5lwpjLjm23NNieQy0TiGhVJmtB691Lz48GTMqrJSTd1THNWIRPGtDMYwYUz1FirlAnlZN4zIKuQCWM/DdW+hs6CByi+mAmnqVs3vh4cg+OLmXC+1OO+Au47ClBWIVtbqlcHnP6O5stZxoQwpzZzjbjK2GZJvR/mC9EZEF/MhFNPO4XZ7X0/3/BUwxd/BIhwARP2S+2+MWgXEVP98z/b33mQQM6EdGiOu3ftfTWmt1gFSIGcTbMhFkG0FUsNAQWG846XMEixqAlvktq6/q5rRyjFN1p8QlFb+2CDOmxYak6rEbCLdAAg7rYnBm/shIZOKJiLJWogKJ89LudsO8XYvIjbtL0b/RNXt+frpxj1jxYqyWE2+TfMnOGK2uYs7BoIJ2vqGGB2o6kb4OdlK/AZ9MCmIkWOsyHVaqxqnzVmrIA+RRybSlImUeNhJMbcERcayBGrLWolJYgn2VzErWsc4C7HQK/iubjTfmgLJ0Ri0H6JIujyrr6KW8ZxOk3v3aZqyFm6SpScpFGtmjnqUbZM0RRZMENBTOkEjREF85PHYwdtjCoes3D/AkOn3i9PP9GjxxcqOoCSilVjKOBuGkYQvmQkIcjiwZTiSsaTBJXQ+ACqQOeLUGmtDwDL9L4Im59EKbx8HokZaLpdpv/R8Z1OY3+LSU7lRLDkdIYr10zptB2WaY3yEExtioF0eiP4gikuRiemOYIumOpidHbKIRzE044cB+nw/2X29pHjfpUoOeCjWjUj3aNsGeIpsmBsg5jSQR0jCkYzj0cM4xhPMH55PHqdiiFli5QUlZwwMLRorojxxV3tyWcis4oihhZrCBk2Fb+GoCUhbHjmpkrpXeKrJzUUIl5SXVEQGt2FtcyiyBhOAq3Gs5GqOJKLQN8pmSwneeMSJm5YTYXZWrkVZsIqFZKPWMNYWNm6SGYOCGZdqoTez5FWUu+sEiVVTVSrRrt4lC0KJUUW6BAQU6o2YkSBpuDxiOkW4wlmmAhvEVKAXuQzkek9WYwr25PxqNzuIMaV7g5kyKT6gqBFGkuILR5YMr0Ez1dAFZ2zV2ht5AsVVUhJxSqdFHA3qSUIX6KZEGSxckpxJfpJgkqpqBRVoqUkqIy6SIGFGkOCzU/dFF4+e8UMNN0unMNSbFJlwugirSnC77v97Tj29Zcj9AIKwSIuWIbLovjUwyEuaNM7qXr9cE5CJNVrIFRSvaYVa9RryN2iXkF8gXrFkKXqFcAVqFcRKqFeAVSBehWh0uoVAJapVxE2q14BeLF6lTPQdLtMvYqx34pUHMIjKWybc4BqmZ9d7bb1U01k9gZCRVVLUrFKtQTc0Xxf4lVxnEZULJ+HIx/ZwInE5fKZjM/15quWRlAon8Nmvi/loT7oSISl8lkMz8dxWoZ1JIJCBXpiOTRzbxulYOFSnOhnYThScelSrD5bRi9QtBSfO9tIBsqWYvRoGdVAURMfYIn5uBzUwbicfi25qHg1alaTM01sx8au3D5sJV6qadSd6/Zu7NHccx/Tk9Uhop+MNDc8kfIfz2Zq+KwthgaALTAzYFSpkZFgCkwMAeJkMiwvfv3t7/8QI4dlSjFQwxfEvmu6I7rjRwlcShVgMdv4GvyzfJH2N/MtYCp0r0wBBrd9emkiAX4SL4B7V/cbudq68UsUQMee8CLg1yIF8JH76Qh44KY6e9+D1yVSXU/eA63Cnl9Avu9U+mYtUqLnkcsaqa5nbovWjbzr9R+asecVKsABvOCZgCdvelYhg28FEMjkqwEqZA1qGUTJhjrEvZYogH7JVdCzSEoW2FdR15kRWyzsXjMbD9qxmuDL3KoCXNqlmeDKHJrILjo1Eh7Ys9mrREkTIapVYyF4lIVNI22gSOzHNNJmC8UtsNhDCAeBTYSjS+0iEFtgGxHtBj5zN4xvnp44UzcSK/qZgapVnzlqgekzwxwknxlFF39mCFvymWXIbNQJxBfHnTQsUDWNU2BVNfH108H+afv1vtscZycxpbMjsZKDHara9Fof0iKk++kT9SAp2QF7HB/qfv+CDVLdpJJFPwJcu0bpAE2x6B2ciUD1kBykW3SMgWCnLscntB+GL1CAcnxa+2AUZAqIHgnpJHhkrg+7/F5ywAd1aob5lSwyuPfdtJEnbjQMgT3pfNT5ohHSuwpg+2WyGLiqnx/B2zx3vYIDUCq/H26/DF1zHIm3KfD+gMoWYNTumrXKT9W2rvB7fCBWSPnSzO6XN6jszNby+cw+uaYa6xfTV4TKZjE6VDtnHFZY0Xw+9kFFFS/MSzWkqOLZvIwDCitaYJVo6/HxdRgdevsytFj4hbL7REshKaNlANxEp1r+b5Iy6j4ANiDXBIcl8kDuwyHZohsTrH7VJgVqkGU3TrER7McZHtIdMc5CsCfWcCCsApyDwC7QcGC9EzgTsYtCzcfQLTJbgRupwGRdbtuk5+gqUnRqRtWqZqTH2jQRU2zJ/ANRxdMuxpTMNhHiS9UcxV/vxiuQiz0oWjsUae327AuaX4yYI8vw4yYYB6x0NisyNpXSEMWmkDGeTuH58l9yAl8FSk7fsFLN5F35WqZugiv4hBCidNpGeIJJy6IR0yZCE0waFo1YhSM0wdILfrt0SP4xu5OZC3Z9mZIDM6lXMzYD4sjwfKEfnkjxX2SvT0iwh+rFzdqLii6kBKJSJhbRR/7kntxUEDH7rr+SHxbIq57P4Lw9Ns1DNcJJLmHNN2ApvH0raxGL23Z7sVUf0CubSUZADTp2msEfMxEOewg2GHRPig/yZP0M0WMea59JUCN5JbI/tDto5Zn+WEZDXSqSfZuZC9JB/3Ws+tGN8HHiK0oopUeZE+cYCE9EX/+hG8bHTV8fuIYkgnqsvt48z3u+WYZBA0T1eF+6Blh3rxjnn/X11mPVAE+lrzVfBfR1H2dn0JydTDEPhPQY8/MOX93HIzHNbnwZQw8Nb9pdX71Mu2d6Ot+kkha0x9f99DVZqEDMhFPPvtzJLOi+Oh4tFbZh7o/zQ7DUgAilLFqgbsfH+k9aAawyFj22r5tXVpN5QjIMb+H45XwyaI4AJiD+j/IdEfIkX1IZ9C4fldkRUNUvYim+Jb0EISF9qzolgTxXrcUkX6hOUdFHqrW41LvUKSz2NLUANTymjL5GnWLCD1KbEME3qBHE5BlqLSL88nSKlj4+rUVC3ptOoYAnp7VYTFp2iilMyJZgM29Lp9jE89JabPxFaUAvgo9K6zUC/I40pAx0T0kr0LHXpFES2gelJVy4N6VTMtZnpSUjAXkIKyWhfFxapMXg96UBFaZ7Ylqkz8gXngG9ZnrkWaiDVExsz02rmaRuGoaK/NFp0SoAp8ICq4Du6Wlshvqb0H7W8A9NBZxJ9X4r4suI6xO5NHyCWOZbO68RgLqN8VZBM9bw3H37bTZnhxrSJDFiLG7GrZqxHo8SSE/SjnYcu1s5Yiid0bfVtvv2sW3SixWAjvVkzYiXZ2QvR+CAMHuCDJYxMxjd9/HYu49PT1CIJwGPxcvgvu82XyXzBy6Uy2G20ZUMgiIl8FXIBTA/zdt5KCKE4XoFVNiRqk8P4y5/zfcwXGtRuxYWVrbF5JDhTIhgg4/UQm4fD7ClPD5kzZBRsNZb08MZrxXMVvIrJnOS6LoxW8arXWvECPBQ6yWBVZstFDprr6zwZkMlwhdZKCus1jSh0DCbZEXTGiMUGmOFrKBG84PCZuyOFdtocIixAUsDAVeYGBQ6ZlusqFqjIp4/3hLz12rcpNHX5a/ZS8xai3aJObHSLzEeomWJiWGj3O9x2ka2cJ6pBxzJwQpcgoTuOFIwdq9B4n1BD0F5SL6QpU2gveq35Cxg769H0AecdtYj6QOOkVI388OpGgopkjO0iQiLeDhIPMQ8xsnAiIeLRkTMyFRoxAPGYiIaXGFwxEOFoyJ5mGB4JMZM4iJmTDhAEg/ZMlhIiMQDA2IjZjQmSOKhEtERMzoTJvHQifiIGR0PlPhrLxghydARsHkRqAedeSHBw8yLFFZrXpDonHnhwVvNC/ILI+aFB6s0L2jNBJsXvlrSmRe0TiK3+L5uMm3xOa0hw7aZF3Ls1LzAwOXmBa2dYfPC18468yKZP555IXi7LxXJNjyQKrVWCEBeb5JgXCz2CUkoUFtbNyyZlIoOvwnLwHtWOQPQI4dBk+45OSawKmGIhONOjjd0x37jbvvNcw3c1olBx6VyWRwP22lxB00FjEJQxIAfq7PTVXfvtqkywxhEhXI51MNF9hJBBQJD6FiAC2ePRmSjhNPQ7ZrUTLAtFENIu59SjFxmc4UOX+NOSz6ekG0XRki5B5PzQDZkGA/l7kzOg96qoZrOtHdSaR4DK9uOzshKpREtez05L2Tjh/FR7gLpWQ9sCfHDZYlEsQ1hdKLIuB/MOcKFMMnZDbIHrU4l3m3dE7EoRoSiMvRayDL4DnrYEOjvZP6xGJPwoCLABm+qmA3pWUX4mLysYkaUxxUhZPG+UnyEnliEjd4rq+MCemgpLipvrZgL7LlFeOi8uGIOiEcXIaH07opZMJ5ehI3R6ytmxXiAEVZGb7CYFe4ZxtZCtZdYoftoQyhRezY7SMqDM4NgOlYriGUlNYIiWrk2EDuCGBMoomO0gHhNTBtAsRq22T+8DhYZGrEuzrIzJNpQzynP9tFxwk0fipTe8uFXL9rwiVcvm93DXTrwrh1dP0z7S9glu/4oN3bm89ngw1hJdTeeKLat9ugxePhtkDgwfw2klAF88gFGfiCTSiSIS1qKFDIQLoGpBy6Ejrx+hSAzL19Jvyzy4Bj8aZm3xqSY4oYGwpntnB+H2zrIOQC2dBW34w4LdXFrI/G89sKbdaip1KFVBE3ueIkBJWeZEFBfsb+vXoFPufw122+11qL1VZ1Y6bvJQ7T4pGJYPiToAZJRQLJm9PIir3b20iISATBfvLqJaCJZ60lqEQFccx5ALGhpwc4N792LSzdCfkM8IQPGpmu4MdUQs43uq6Yb77j6fSEjxh+u3j2nZlgEcpUyoMyabnw9ODiV2AOKBQ1Y/XL384frCTgGERY34L7UQw25QzysVcTSh/DxM7/z6NNmZO3u+6Ga2k7W78lYZiP3JegDQHHdwWLyXA0Prp9vcTx0/YjeFe6BoSUM6KeLT5UEqEIGDoe1Il5lpLIGxMnYf1CAwuIlepuFRksY0HdLM4Z6mJ+t+X2ez3VTj+lhYA8eL2LudRU+XsSAf2wNDKhCud9gPmILuYOwD7DK5/a+ABmRz+93ATZawqK7EX+2r72VPmwJHua3TmG1vmoSnfNP+51s9EmT3xrxQ/srsc73TKIh/mYPTelj5mYQ4cMNp47Bb8vpDRm2zWcsxyY3BkbfMImO+IP9bbDOB5zMH9894CrI1XP6c76DYK1G7SE4ETO4CDxMk48gBk4vigSGhAd6FUF0d1x/PPTma1+Xo4x/AXS4h5OICvHCi1na9nw4E0xF8fES0RL9ua33rp1vJn8cXxvoupRgCKXCJThc7tolsT2hIuOoqeqWBfWliqLOS/Db2jVASjSIH8gXYgKEDiLsttQom+88eTf80VeHA2Q1e6ixpBE9mNPfptrYT+0JlWgxkV7moxpyymhcMpHMRzZlj9HYVMqYD23JE6O/MJ4cFowtdUaYABVMA0tQVblfNCqc8OUj6rK8aDQktSvQzLp8Lnb9pZK4ovXXkrlF4zPpWj6+MUeLxscTs4KFWJ2NxWkNxGQNFIbSZpUgokZrCqy2Wkl81mz1CJjtVvJLY4arB6y1XGlthZiuvqpS2q60nqINSF9f2SxITo8I0Y32qxyd3uJZLVhaayMmrK+1lTZsMpt8IxYOic1/zTdhr7WoLdiFlcGAXRFN9msEm7xLAd9t6qH6QohNSWE084+LhUaBBFIGlHpYDF/u099Eciak+7o/5VhUjQAPkDahPh46SfN8MRPOnP9W9QKkUNCE9WnqmardHRsRICBtGY/dBr6oyh+Nq4wBYXv54qT28IQMGAfXH9y02dzMvXEvAURLWL5cO86eFyhy5H0wT8jSwu6b6/+oRsi95rXKl7KivJ+f4ORhrmJWnLs5BN+kr+TFQKucAanaf6kdtIVcQVYR0+h+ejoCL8oEY/siYqh/OLhliFIAnoylh8ZpYB6XCf6749ZcSNjUqm5cHr7/VG3rih5sgKwR8c33Q9cygyGSMyA9d+O86lAgq4hFY7t2B2XLefr6ImGo/Vu9pSu/CFi+wXKL+DuJtkxFDXhwzuIKQucsRjXH5tPtOhPIhsSSBrSdGC2RtKFdd03zlKsZwETY8KUoh+wKZvHHMntXwpkU7FoNniRSR1DOWE9PWHyx1LclXLErqsETy2LCjtgIU+eHJecn7Ib1pqXOC0thYU7YFUzrg2VmJ+mCDaamyQNLoXMO2BXd6n+l0An3q7fb0ntfaR2BOF999aD0vQrwUNdrAqv2vFLorON1hTf7XakvjLldV1it15XUTIjT1VNLSp8rs2egnJ7BlsHi82S0hgzb6G8VY5M7fau3ldTOiLPV085KX2s8fwJXKxS2rws96HStSHT6aeGCHbnpO2gHcKn+/LO+3rEjal1+1NeJmjuXellrB68bV+4tcZ+BtHbK8XWpX+L3whGObT1+rtodbNNeMEIpEUqYkD+7iG8phFVCXzu1JW3J22KoXoomZdX/0fVfn5ruG4iy/lxsokZViqesxxTznfXuoe82bhg+nx4rGj7CIyymgBQsw2U5iKBn4hUrw+OXar+HXIoUiUuZggzUHbGWymLRDaO+I9JCJTlIuwIqpuURTfu7Yw/c7Xr9RR7+3PRusijuunbsu2YJmUmqvsGLSfcalzZow7IBDXVoNkXVqD6/A4RaL4ZLjlxyQA11PwaLsO32VQ0PU78bL1L2boSze1lgT7AQ9nCoWszEC7B9wVLtdrveCQbtWaoQaj3cNd0AxvYDXE+uGPLDVKrb1hse25MshH7emz2OVc9+7Ei2LIM3Ldv3gWQh9PG08xX2QCJdmoWgFyLZQkvF5nmu9l6qc1LxQjwumRL8XLjKFUN+6JpXyWoSSBZCH/vXX9woZZBIF+uD216ghk5CRVsuwPUFi7UXuZgo1frpnUQFWi1Dj2SLtf1N09QHMDkhavwqWG6uNVUrmeVXuaJ67rSGL4KProJ9C4m2SwsV4tS7l/kmIo7FKlaqL9YGfeznHBcsgBx2Blbqh7KCr0sTUUvvTcviR/m70s1KOdzBnXYd8HOO8b48Ei7HYdp1SBl4oqW05mXvI94kFRyX04/V7Bfj0UPRQvhP/fQvj72KFXMi9PXUmvpFAB7J/gAGj7XEoZHIF2KycycXzUM19/Lo+rd9t//12H8Z5iSM6185gvJqyvFOq59BQxoC3sJqiu2SanZxPsuU0nCHphZ4PU5CpVrZLb0q8hlGsj+AwePxy73I4YUVKmQTk0lfARFT4hfrlSETWaJdqimVhWFAJ4EFBGyJYOzcoyJvwQTUJ4RJsJGksBRbmRjGaQAkOSzUAMoEMc4CwJLEQgNAmyjGrwp0slis/G0JYwwLNmksYGFOHOP2GETyWLi5MCSQsboGzzMI1Iw2kUyGiyeTQfD6hDKGBZ9UFtCwJ5YxIwBNLgvg1Qlm7MqLJJlFS60y0Yy348iEr9iSMyV98dpHzsGaeKbhACWf4SQ0CWic9seS0ELtr01EA+ZdFAAfsc3V/IM8/P2l68F7sPyKbq5CeBB2oYNhvCKXcYcgVykrysNJlIO5itlwNq7FzK0V5SpkxOjasW6P3REe1x6OL2jD2lbD8xY81OQDrVJ2FCRCG4KQp68ZjA48QhkgdOT5Sbr+53q7dbBptSJchYxtwNM+vFbosz4iTE3SRzDaDMfyE3DJSS4fljnMRddfwzc6BwA1fakzg3CYT0727Xs8m3VFimVtiIPb7SdJfM+1AkaitkE5HwU71cOgBYI2rEGKNeRjzZedtVsZXCxrQ+zdvptDUBLEWNa4lDSu6h9Ow46b3qGocb4Nj6/D6PZ33R49khvMPUC+jGZBrDIPWmeP0cvbWN19umPXt4tUGdTlg0F3R6afVXNpJPuFcZPX/656i1eAShm8CbjF3qU4SMzdlUSOtUt9dcLYXcENti6FSZi6K6bB0mVWAsbIDBYDo43JrHtiBnYrV8yA29xm2LjkmoWbuN5ipbdw45nmGbiXl04S0MsPivzuaV2ZUG+n5buCX8cL6ryB5OGV8EpSt5UP4ZRbeQBTupWPm6nfygPgwKM2D81x964FVqWQQCIs7mTefAiRSPOBq394roHclRDgImNDWMIgi/QmvTcjBIpEbXiLsfPx6ZN76iv4DFsICsnbkJ96N7Tu9HyRggBRzMajv1bxS9MNw/TxhlS1xqMVLGLGb5waHyqS9R0+Xevk0MECNuxtPczBn+WoLbSoRtoxkc7r8Rfobhq4p1+ou2k4vEPvXmr3DX70J8SLRK29utxDJcGLRG1453u1JHiRqA3P7ethzlWXAMayRr1/vnhLghjL5moFCWYqnbv6iL4mIG5tbfii3em1ZuGuASxm3aQ9VccmNeXiXdpFyoZyfrLiCDzyGgIFgmasn+txf7pVX4QYi9twh6iit3XjBLszolgZHkr8rH4/7hW9Hgjb27pWo+hxsFAJDirsnL5+077UfdfOvlFxl4NlzK1Oa5N/ALJsQUYWJllazrNQ5BoPLGTuBaA6+YehC9s4PVr6BS1k43B4fh3qTdU0rz9X0FHZaFOaSNtQx+5BhQvJG61cNgwRWbnmMATLhGu0wknO7maQMES0m1GGIThULAwReZyUYQj+C8NhiPi76sIQQlQsDAGCa8MQHAcuDBGSsIYhuK+OhCEiY0wXhuD1CRiGiJWIKgwhWFGIIECygBiCAIJ1VczAFoZQMeC8RcYwBMcBCUNE9qEuDAHNND8M4YY0oWP+oyL8sNwTM5+zmY9ZnO+L+dUBk/ZS7Q1RBFkLZ5rojPn83Dv3n8M8Jz64fgetwVdoWFqPujbBq0/U5FBej4wFXa5Q2oBLiCUOtqxNswRaQlDZZScrJHjPibT+52q4qzbPbnvecd51Xb+t2+nzAPP+CkmXMrF4mNTHpj5Uzd3lRCZDAC6gx56ExvrkWQNX1ytmIqgfrvXwoWrrp66hv6cnpMd4cRPNDdl7nohFxRy6ptu9vtnuSJBYTo/0VNHNuPyur7mdD6U0VN2rhO0LuO+nC/GYr+CJGb6EZsqCwgZVP2/rz7P+fjIsKFWYihrxHo/9/K0leKGoZUGZ1Hf3+vk8eMmVJZa0o0G3aKVI8S1aSpSHi/7ioXxRPd5w9WrLhiYmb0I2rGZ0KT2LnYkFXcowc+bMlg2587xK6Gs/5ccSlV8FrNvJ6xikOg0Qzdw0S7fLpr0GcVB6hTGckaZ3kMSRTX/XYTiryezp0EPRwUZOfR6a/JboUWjvO6pPQbOI4AHoCFF19pnUcuCxZ0+fqU48U0jIYecVSnnOmdGa1BHnQFFaTjdT2MzB5hXbeKaZXJ3R48zesqw+yUxrBMSV6ikDpRuVR0NdqDGo2n1KYLOu0yu42W1KfFnMZXoF1bpLyTWMXbx0blJ6l0U5KP19lcU5SesIEbLRLSpFZrZxJncopYURV+iqhZVu0GjGRC7Qt5P99L4e4Nly+ZF0iWrcZkGFomumA47IxN+g0z3G41w5HNJ/HastrlxCNF/WjjiNrGp+RVGKGstn9Go12QtgTmXasauoCi+edAKoHeMrF6DMIr9TfrMEMSqRjX7nwGPmKPZV3o68+Eskn7KJL+/VIp29CgKsVdKOVm23n/t6lhIABsJZmP8xTW45qCdtR10SWKQtDYSzMBUtDaUzxmrXzu7Sua7hc/f5rNEkcxUvmc3m19OFpVVvp0VVkc3vWtnnbqleTgsomcHm2DT3buda189RP9SpHzEBS9lZ1MNf4fscUmhP1I73XA2/TsbiFg+ThKCxvG6VjrZw09bzesUjDB5IyOPbaP40WCWfSJ1wRUNBw/jplAzukCA9AJ+UymQx7d+aaU+jJwIVzORy7trbtmpeh3rQsIGLZvNBjV2QQmL5SlE1xgWALLUwMPhwK35y1X+arzCWEojKZDL4z2q3c9v5knPpPL8Ji2Ti9+6pbt0vPeJOAuCDEpnoQ70/NG65NVzc/KhMJoM5hnIc3TUHQT4Mk3K5TJYkkI9L8OBhfYJLTAgtnslrN33pDzWRXQGQicqUYFB91zNYyxRgcDtvqDTwlwIlsOcza+On+Y59FYOgWAke09Srn2ZPNhaGxphEBXP1dtc45HYARGl7BTKx93Vb74/7z1oKQLls3d0sV6+rqUAFy/TKvPtFbtaiuyUomMul+m7kAhQssr6qdEdYJHNbR8QVwGnChsZFqETkBEAFwijivo4Mp1+XtC/U+73+XMz/HVUp3p96TNU+8BSTW+VANJGvNsbivLU80iBEGrKRcA9p0oOsj5RHo7ykMZ7ET8ojVlt41x6jneSyevK03f2VyLtMB2VUJAd/fjm7/lOFnxTJwX9q6oMI9SyonfeRGktSyFCNBkoWU2547WI9BzdFrfJIJpz24ziIFCHBgNOJKnxMPRL4nKZU4WNKhcDn9As7BuLh76We4yM/Eio36KGK5eM95q4f6gg+O8px5HBztvwOXZOFgntFbC2PPvDva+o8+n0jmWKfF6pX/HVj4uqPi6Bz31aKSwX4YWhJnB9HF2lOEJjTmUJMTFuCmJyeFGLi20q4i9m9pRAX08wgKqeTiREFTlZmnv6AKWqdnTkTUz8nKbTj4O6745fGPfRuU8+3XJFJKjEFsriSV3LMQtwRnnAOJq0ctHrBrhK02iBHEeh1gNW+jPEk9iWPSCscra4xR/djOFF8n8d8ht63hPCe44ctDWPyufsmG5Qnwdx23TZwvinUtJNsbuukiKts1sw7Ns1v7RE7WJ1MP188C7fbf5n2we+m0TfO994Il5KkkHZV8Zfkbusa4p6c4GdNZgjssk2rU5/JDwkbtgQAB9M5fYyI9ioigA99IZGBBTCwIVhiQGM4siuIoO8OXESkR0SvH4K+MnAJkeWLIudlwO+oPDmjYYCeocGJqE/TiPiw52oAQuYTNqJRgUWMACLaUzcifCxOBuBrT+KI8JkzOQAN4+kcERvmnA7AxnhiR88GMJ04OopTPCI+2HkegIf2ZA86e70NAPGC9fqTfOFfL/MBnYJRlTeJOKyZPZIs7m2/UcCepPNR7+p+AwTlceBrgXzsN01THwYN+FoiD10ImY1zvgfroavbUTRWb/BysrnDM0O2uDER5fYWxJVubZNOEHi6QMDwmgLwkdAYi34llEephyWzrAWsoBgqELXizVcNuD/rSasfKuBSiRgzEbcO6Lqdh+bg7t0OuuclaWssbsWdz6o/1G7jvtWDOzWFBYfLWBn07nBJuqn/5FueiFtxd/MjC03jrik/LDRUIht91kFy5LO0WW2eTu7Mg/VzJ/zacBkrg8PcAn5eXcWsOF9b6OHXGOYiZdUW225f1ak/MVH2F7EMZR+97bF37QClxybQnmQp9GEaCrBJF6P7ksXaLtOQ21Qz5uGilyym6xBw1WIu9sNUrNvW/B42EC2Fv0zH2/FxrHr+o0fChTm8afkvEIiWwh/nszjyXkjEi/OQ9EQkXGqTu3me670Xa6FUvhSTepgtRCBAls6Lq2A57IeueW0kBm0gWgp/7F9/caOYQyJerh8kxvVFqmzrJci+ZLk2C017T7Bsy4X4kXC59kvdC75kwZm3HIiXzLuLYFndd1riF8H5kKRQA6alSrGaDATXC77GKlesP9Y2feznZ93gc1tJh2DFfiyv5UinkdylbCmG522KdDtTEHlwp22JzPqMpQuymLYlYg6ebDFNetkeyTdSJUfo5VyvAD+ULcXgaXZkCNBXuXJu0r5+Wc4HCuAj4R/B4RHK06F4PMb5Onlc5ot959+vvqXZH78Um289VfioxPUUZJ7Wv4QyAh4S5sJ6yu2jan7hPgsV03mHppb4TU5SxVrayeN5N5Hwj+AwP2Iic51hpUpZ08Rly0koQ3/lssSzQ1wpm+5mDdfKymIe2CXMUMBDexWzZCZiFzKn01F7LbMQHbycGURXXdEs0AjgRc2JRlBd1yywF+BLmxNzQXd1s2i1oC5wBhYFyzXOsriXYuYZr3QW7EHQi52TzYf6emeJ9oGT1lLFo0tYEyNjyWoIAW2iGs+DS1KLiVgT1PiRgCSnxQSUiWmSdRlMSksXYlVCmsj6I9K/APvPkPol0kcKFrYENCULPmxpTDwTrApw0lmyKugSzuBZCCab/XvbjeAhsFSkyEEwpFplisyVtepAGI5NHYSSo85xyGp/cFsuYBXCJ8WK8aADVgiLOHAl5sAeDMOgqcNhckTogBiGSB0SkyOOnWbm3FzFc3HrdtJF4ywl/7p+kVz8OYnjw7EZ63l/BJ1LxlgABXO5nPILf5tf5uv3/87koETTHipahs8lI8BCKC6bPS+OB9c/NcfuOKiGTFrOopfARWfxKjNz5ypTeNkJ61WuOytx48KToMtWHgHuOcG2ed11LXI/GtUJUGkLK8UiEJGQrQIsJr0MRJiydYDFPMUap4XzD1fvnskZH/d8WjKbzWw6C3J4IyZRqSIsfu1aG5GwoGl2xIrn/AQlzOP8o/Z4BV+ZKPH+Qo0/3NBhoVQA0ytQAvvxMBkaOvRrkSJtn5No0AR4rP1roVwOn47NtEOXDqIbsJCdA3XIIcC1HHNIsVXLathuwwlehITqWEJAQnowgcFcjlL8JsC7CmZi/S7F+j1rMPELRIAoXxkEuOySkECL1wIGPTzBIfmsaYlS6JIPnZawoy9p95ImXwUzsSQNvArasajDDQGW5HgDq4EeO9R1H6mfi2SW/ou3tVQAN8D3ZcsxoI4BREuQ/iAA13r6AETYetsRCMlIwzJn0qGmTZvh+l766S0HXxjsyS6bjyL97oQ7gFi+HJN2uWRV9BE80XL4ZPJWAG9K3+JWEPI4TKSALAdiWHz6SEzEwHYohuXwWLe7Y4MlIsdqeBUuyWHORTtVjDo/IyJxicJs0HzolIY6CZrF74gkpwj/KloO/5yuJDfMkgI/igv+fgNHCn7AocD8JVL449lrSOLn567UheCJFtWfchdCIFyUg8yFcxUsif2564+SzfIqWXYXcZIwJdwmOwxpXUVbkCIsbq6Ii6wF4rrK+VC41MvQz2BMvmStKC4JLBqK1iQwhgebghnQMCdhcisGnYYZrhG2REwJAzwVM2WgT8bkbDs8HTO06/QJmQwylZIZQFuSMnltwqZlxirDnJgp8MupZmVOciZn6dLpmaGxa0vQZDUUkaIZKSdDkqYMnUzThEiYEjUZLqJUzYBMVrImMzKodM2AhCVhk93Z4ymb0UZen7TJe/64hMnY+2dNmeR1lopJRvKmholkS5uTwMmtIkQKZ7iKGJI4gRmKBLbpRM5IqFxODVSxPKkm5q7PqkHw2bQaIbIkpROkoEnq1HJB0zppJmxiJ85DltUDwrNpPUJUNK8HRGUTe4SoVIonCCxJ8hRic2me8NcWJnoKOchSPUEmumRPIR9puiesFpQJnypOgpRPgpQi6VM6XyRpn/Dc0SR+EroLWaiY5M9YqvhSZU0ATeibFyt9EqgKm47zQ+CygL8MnY78Q+iyFAB7sikMLV2XJLjEjRoouOBmSSkDbmnUJr1KccV5ROZUUw0TaWZRTropNRM8dfdx8Z3ejpO18eU4unQ5iAXkiadIIiBYoTYZMKGtV7QwD0tSIEEmfBZc3h176j1qKV49vJsaM0fn7ucXvet52JzKClmQFeRxe6mHGvLgwURW6TzU5R8Z5Fk0D29TDePw+Fxtu2/CmXUTFcnD793G1S9OSSEtlcdivlJwfD24x+7YAzFmmERSKPNLzO8MqgiEJfLQD0033qkZpKXyWZwOb6hpRMUy9VLqE0D0D+4FkGLNMDKwk2TmSK9eXf+u3bo0TIKMcr9AHva+mq89rxoNfFymDAPV6EoK5XE4xYKXWSMkEJYoNM+1MzwbeVsPh2kwfQQfXkC2XGGRUrpFrVUKffP7aQfZw/dLUh8+KJbH41vdTxuldoCcTzCFsETujsp9O3T9CLxshm2qvAJ52NVmvvju8QDltcHgYYk89F3fHQ9w3A8GDwqosYVpETA0nBphQX6uhvvTDJ4fbfr44voeuqcQpoEWzuO07atvGv3ny2ciu03VSDe4V+E8zL0bnqfuq59q10uh4zJ5DHZu/GUey6CPEhn7YZE8/Gq7/dwt1UmnvV8gD7t3++5lOTqpIZCWKsXitmmWKuVWFlQy1+KHE0Iw816XFKJkgSWGkGS0ySFiO4BJEEFsAmOSiHT0IIkiMBllsoh4BYMTRpDlS5c0IuVAJ47AVGzJIwrNqmZkSyIxMZIqGWMyiVj7wQkliMLTJZVQM9tzYD88vw7zm9bN68/V4LYfzuZkwgmRKxKzo+oWRe2wRiDKbDge5o07cMCKZOIXK8Tjy4CcZmGIeOUKM3ncVOMs2+4+VdsaOEQgZAbUU4Tp3o2TLHAyjeTllSrTXwe3Ac+m0b2zlirCondPjVsMwXcfP+moxEWL9spnKEYq6pnPVKRU2zvdcffcukE5hP1iRXhUbT10Y98dtIM2LFiay6cOeU1EysmroMzoeXZOyeZSpBy+Yeh6xYrw2DSu6jddpeThFyvL45NtIoHlizDrDtWcZqZWekG5kkxMNApzMH4loHQRVl8mIdiVRdLxixXh4fb1ML+LZ+ASF/1hOy0DN6oaM0/fLADfclr+Ks9g+db1zfZvfyequVlFENYLD4NJsUKIDIgIJukK7NS5/2N2ak9SmTatJ6Bq7LQA35LOg5AQ3bCTMtDesIOgC2/YSfH1N+xIGCA37EADQHXDjqj16A07QOvVN+xIGGA37KT42ht2RH0v/fTKG3Yk2PQNOykF2w07EiboDTspCfUNOxJ87IadFF57w44EHb1hB1JAyht2ZPjoDTsQA/UNOzIO6A07oBrW3rAj40DfsAMRsd2wI2YD3bCD0NDcsCPDR27YgfCVN+xI8JkbdlIWxht29FzwG3Y4UvobdoTzF75hB5y9uht2hHMXvmEHnLm6G3aE+hO7YQfUoNobdoQcoBt2QHzNDTsybPiGHQhcd8OOdBdxPp6gvGEH3mFI6yraAuMNO2ALCt+wI7FgiBt2UoqGG3ZkVhRxlwc0FA03eUh4UDfspDQsN+yIVgw0lQxYI9Q37IgZgDfsIAxUN+yIbDvwhh3ArlPdsCNBRm7YSaGVN+wItQl1ww6oMiw37Ei4MDfspFyMN+yILF30hh3A2FXfsCPTUHBCFaScdMlUCnQskQoloU2iknDhEqhSMtbkKcnIQBKnUhLKpCnZzh5MmII28qpkKaHnj0hLAr1/hpQkoc5SMbElR6mZSLa0xqQo0SoCJ0QBq4guGQqbob6bHzzZvfw137F/rUXt0V9YGVz5K6Io/hHBhKeyug2SKbCCeDIGBGozvWJYdtEUKr19XnFt+2YKmdwwr8CmnXKEK90ir6iGvTGLCW+KI0zdbpjCRLbBK55y/0thYRvfFUy746XQuK3uimrd41Lo3OZ2Rbfuail0Yjvr6Vf9PpbWEcgG1lcPyp2rAA/dsiaw6r0qhc5uUld48+6U+sLYtnSF1e5HSc2EbEQ9taTcgZI6id7webrJttNjtIYM27jLFGMD20sEXLGvJLUzsqH0tLNyJxnPn3gL+S+IsviXrXwbyazT56oEhyEvjIwbyAuQeAsZQAFdAx60834rc5wgqk9Dn7z0qsKy/RLAikvxE6DhGjhsG3UMV4DzhdtO+GhfkB0Fj8le4JVgUdd2CTCgq7ISDOqCLAHGkuIq+EZnMTPO6apHHugqZ0Y6naqE8jJiLE/SjFZtUWW5Ap2EzBisLvVu9JTqU2bc3TbN30Rj7yyYiQUkWMJYRJqlFOsfUqx/ZI2Lw8G1kqFxkVNpv3hZumu6IwK2/CRft9fnaD8/987954BvMNeab7BSRKNOlA1OKA/W4omKcVVLst9kS14pREC6ZAbY7IpJojzX261rT3IiQKCAFXt+vr2atPyS6o1spsNuDsVzcX9dUgHlwKt8LvJk7B6dHPgqnov71+XjvW0qzHYBwMMy1mm87BqkHzqQzUIUf+JQOAtT1clpASv2afn41X1jQX1JK9ppcyZB8yWtaHvX7/g14CJl7kFsA+f3Hbd/4xAWodNIk4CF4rm4yNkcBJY5gqNsrQ47LJPLYFGgYuyLdMF26wgABTO4fKra3enqX14fJeJlcKVqGCtVhoVw+UEKFe0JE5W4bBlGwr0IUugH9IqJEFxD3uomXNqycTRLAlSiALpMOQMFirVczaDMCuFVKNPRQIGyfaCmUXC1ONW6TCshg4usFZF20XlwMg8diXV5vYDXLb6kFQ09FxhhQacC1e2SLrCBaAaecP3yJTPQhCuCL2m34LqpGPIyRmq9BcJWzLHTONhiaatPgEtT8iCtuUokPp+w5Csbc9YS7f3iUpd8x5c1f4n+9rRD3//utkwmHh1PZ4rR9TlNJDqR2OQhG7Kb6BWHSHHy1xtDnhOnx9hkp1CZmTOeaF+KIO3Jd6pk5D7Rjn06Acr37duyoBjtQ6RCBYrHkA8lQSaTolICpswokocoPcojkpUjRY4EKlHKI2DJlmLWXeGCq8+bovUen8Dk6z97FhOnjxQsMnKp5CxEWzxzVhW9KhCpVf6qYMivSmYhGLJ9NzpqDzD/XC6fKKxSnlK0MjVl10ewsjR7FpNaS1cwJsWHRUESpSIUJkmKRflThPJnJkrL+ZpWqFbqZKLwNoxvxx+JMncOhXaKUIvgrqI5eC+Mw2aFexG6Zyi0GnzRB0KryXd8cLRYPf3SY/uk+Zcyx4muNZkSORaGRlW4IpvTOCJ4lZW9wluNbAqdt7FXfLuJTTFgLeyVgNnAjvA19vWKbjSvWWzcuo6w9cY1hU3Y1iuuwbSmMCnLegW1GNYUqsSuXtFzzGqKhcSqXlnkGNUUC8am9rSszaSmdQ1hUftqxmBQC3BJezqBN5nTFAuRNb3SyDKmqRFA2dIrvMWUJjUdYUl7as5gSJM6jrdgPV1nN2AZ7SPnkGFEizkgNjRCQmlCk9qfsKA97W8woON5F2xQm1fklrnLL9qE57uuHfuuOe2PBVXf4MWkbby0QbtxDmioN84pqnzjHHaAaeOcwodXS7vd3rVoUnJAIJLFDB4GsR5+dQP4jkqI5skZkaad7i9V+khZhHOVkqNE6vHUK5IxHMkaEU8x+rl3YGUYQMbCRkz3/dAIZscqZsQ5Jc2+r6FL+kKoQDIL7bYHblSFwE6CWViiYRKKZuE9nkacDHEVLjAXiOv48EkB37un4nC4CIgJgCXyegC7KhxsOXBXuAUTfoQahqQfn2Y1K3YddrRUKu/CZlHr/fxuL+j2DoE9wVLrJH4BetTB+tvP2XYjF7/HGxPdre/8On2HXHcdr9N3yruueWT8ousYW3/LNYd+ThR7HCswNTXSHIFsWQZvwNOMEP6btmDvj3OqobgHEunSLAS9EMkWMgc2z3O191Kdk4oX4lEP8x4HPDIezYWrXDHkWaQR7MUCyULoY//6y5wfKmOQSBfrA8Hu8CJUtOUCXF+wWHvv6n4DulZjrX+RK9pqGXokW6ztb5qmPgyCxq+C5eYacjl8MtOUN8PL9NxpDV8E4dcMIG2XFirEqXcvrue/wypWqi/WBn3s66kQlmURdgZW6oeyQl7bklC7FC3ED0/BhzYr5XAHd9p1YFnkkeETCpfjMO06pAw80VJa87L3EW+SCo7L6cdqPPbwuZJwHAaihfDR54BCbPVbQLyjuK+n1tTIgZrIKgtkfwCDx1ritE7kCzGZj54ErhPpoxIhQXk15XjDD0DoXEfyaortkmp2cT7LlNJwh6YWeD1OQqVaeXqOR+QsjWR/AIPH4xeZPw8rVMgmJpOcAiKmJCfWK0MmXkS7VFPaBR/PIZKc4qCOIcmJnXt4klM0AfVJThJsJMkpxVYmOXEaAElyCjWAMsmJswCwJKfQANAmOfGrAp3kFCt/W5ITw4JNcgpYmJOcuD0GkeQUbi4MSU6srsGSnCI1o01ykuHiSU4QvD7JiWHBJzkFNOxJTlzMF0tyCkO+2iQnduVFkpyipVaZ5MTbcWSCUWzJmRKMeO0j52BNctJwgJKccBKaJCdO+2NJTqH21yY5AfMuSnJCXc3zD9oUp3ftsOnrL247V7BD/EjXim/QQniQdqFLp1nV/ea4N/BACuZwmf0vGgqhfA7ybJGhd1KkwIG4GFeT1uUhig6FJWDi5XJFglZLDQqbKrZCiTPF6FYRAWi/WUD8WYPTuHY3PjMoVyHbMLyQnPcKdUu8TAs2LS1lY0E5aldU/qYUGoV2Sa44sEdSNbmXi0Fw56s3ywLJHLSR9g3FkKMsp4jsT84Z4nUp5gvR4V0kZJCxtA11flP2pDU4HR1K2tDOCoodo76cTbsQDwAEowW6/Z/bzZC4AjWd3mqcg0g/CuDjYi8CKNHj8cOPm2Jo8EMB4cgph4Y9GRCqG23uB7leYTfzBctTei9fDiZxR5mPCt5QloML30frQ8a30eag0U5ET6+afIjMmEUeGYjGbfLCQD4q9NxAivr3wqjQwwMp6j/KjSTsCYJgMKXvD2i1LmC00kv1ajQrzFfZCZ2w+iKndNb26E/qRHQMp3UgdK1p53eIwr7js0Jp4ytOtpDZX3xuhxgwD2twRCpHBOfJZiB+vm5eJZiBdMaXJLLn4+GrjyDy6GRGa0zAlM/KcqCz6eNPbcqo5/sBz6pPlIg6s55FZ50bYa6lPsNewIDMsk84mDLtZVqNyjWH1Iwl21zKBMs3h3loM85ZFoLs+4hJRga+nI2wV8yZ+KymlmTjxytvRkY+y4fMyk/mjiEzX8BAs3YZM/RZFoIs/XiM2DP1BX2CZc0n3aHNmhf2hBDflrkvaD+RP5+uKvr8eWEvyFmYM/kFfUFl8yedYcnol8xRPKs/naH6zH6h3pRk94PaMyfDn+VGZflHbCyZ/nzfyLP9487Jz/g3ssOz/kUU9Zn/MguR8Nqlm6ay+PwpgNR0NJ4EkHAhTwOkTEwnAngtzIbgoE1b4fF7pE8HxOP1aDshwPKgTglEHCwnBQTOKua0QGJtGk8MqJigpwYINuqTAyyjnNMDEdEfcYJAwt98iiDlX/wkgWC3hpwmSHZpyhMFvKZETxUk3h/tyQK+1ZKAepBraDxhoGJCnzIgKNlOGrC2P3PaICJkPHEg8FIxmdDJLtqYC80y4U4fRESsJxAEc5YLIAYT1xpF5DmgpxEgDuoTCbwGQU8lxBpEfTKBt1zw0wmx4aI/oSBZdbhTCuniYj2pwLIRnFaI2GScWOD3OOSphXhzYzq5INBZdDpmoK70Jxik+NQpBpiG5SQDy0ZymiGik3OigR0hxKmGiIbhZINgxUdPNyRLvPqEg8Q+ZU4YpBaq8ZSBRIvpuNhPPOi44PmHGBndyQd+dcFPP8Sri/4EBDhfg4SSYXzz9DRt5gACl5/IVBJ5skRQnTBT4soOU36Q3g2ByBx4rv4R3hCHCGO8D9ZhzC+2NL/O/+eAfEkzWj2MyNIdga2CVizQvRqikIc9uPqH5+4bD3GRUqDE6oKy7UOwSNiKOWgwBzOmrwo+uXbr+rvnqm0d8Ohp+HMRlQBUKVILEVNkcOyhdR+C3FNX2MqwNsdh7PbvtqJuu/GltajpB+va0QEbreBXeTIgkmyX1qZNtgvZmgeLz8ByRTZGI/icy58EBM5y5Dekkerh7rluRGCraBbe5+7w3r24dMMBQnrSOaiyBma2bV6GwWUUwPJkMxBbIVqbjTTzfSfqxatkBlq/CL1pd9PuUYaalMhAPzTH3btWhuvJ5nzHbnSo6g4+5Fkw50tWgMkBfcdql4m067vjQdaNq2gGHvJEHADHvBAnHKNPbpIHTlWCw3MVzsCsjmN37xoH+JsA0EA6A3Uzq/3Hphulyi0uoMMG9r6y/cWNL5yH+bbuh1G8MsYF8rB/dd/Hx/pLA/kpYPCwRB66ZnkOxTNwJwPis2LxDMUzcK8D9aNIbYTiee2900EnJUq0+nYPukipll+LFGq9nAJYKm+s/+3De+EwP0nmtVmINpRBEysvTzYD8Wn6kxjSF87A3C5rmxg1FM9ekxDfCLosMe4R6XdVIYscM0K77fF1GN3+rtsfula4HkOF8qzk8PtXY3X36U707a+iBfGXM9Cy/e0qWtBLgAX+wC+hC/xp8LHAH05DG/gTseECfwAda+BPNDqQwB9AQxn4E6EjgT/IztMF/qR6igi2wYrKEGyTamsdF1vgT89FZIUbA38iNkjgDzJfdYE/dL4mzuM37Uvddy34ZlgiUciJHNdocyT7zK3O5ISJ3aEM04lUgr63b+JC1BYC5iB1bCfQiXPb2gsKh3dCAnJ6F+LBWNoAFdDYLsNG3iE/oC8Yx3k6KCHjvwgTwqGesEic6sX6At1Tgj2h3lYKWIgc8AkbwglfhBXjmE/4gM75MuOEcNinAyVx2pcZKbgjPx0nsTO/CAPawZ+QgJz8RXiQjv+EBuD8LzRn6IAAMF2goEARLmygICGDBAuKsJEEENK9EBpEKLIb4gIL6egFgwuluLABB4gPEnQoxYkPRECksGBEKVbabRMWpCjChw9cJHyw4EURPnxAA59nH8voRH2gA+oiLNhRtpfI6APeU0D4oXhv6agxwZFScw8PYUDTLg5jlOojBQsgmFL0S2m/T3kmXOAloQIHX4pw4QMygO8FDsoUXOPJcAmyzAMhk1LjRs0IDeIU8kPIAjuAOyIvuCMZT2SAJx1LpiCPZL0gAz3pOmEK9oi+FRXwAb6QJegj50EHfjA6tuCPgJUsAJTQygsCCUYPGQhK6JiCQSLvLxEQAty+hqCQTP+xwRhIAZoDMrJVQs8pJ0ik5ST28mQFiwSsyIBR6t6wBI2QeU4FjgTdU/K4SFKt4shIwBpRY1+qzdfZU9ZuJSvOmUJUKJfD8PW1qXfP4zSMFCTiUgVZfHxxfQ/dISPg4pXNZdS7p8Zt5putFN0SFSrHQd0p/z9v79YdWY7be34X12utPMEbSPqtutpl9yzbp5er3e12LT+oK5VVGqukHKWyL54vPxEAUwr+A8C+hM48eLWzAAUYAW5u4kcAVP90z3guHsd/uTluTu9urLXhi/iNTnCnj9t3fPsy4L3LwDyG/Qe3ykDgvb3lt/1qUvdcq9hde1I7W9xxTLtk2z+jnc3vO6BdHsECZsRB7ESMi+NY+SO89fdfOJGFObcPZy6NwTmLne3vOIhd8/3NJf7y228O9pbsrzp/ncdx1eHr0ngWTl7nkew8dl2cD86ZK0yIHQeuizPCPm2F+bD9qHXJtn/OOpvfd8i6NAL3hHUewK7j1eXnwT9bxUdh38Hq0igWT1XnYew+Ul0ax5rzVNifXHGYurRDWTpJhfm58xh1xSgWz1AvRrL7AHXFaJZPTy+Gs//odMV4Nm1o9h+aLo1k+cR0Hsn+49KlkSyflRrP0OYjyRW/yfIp6cXPsv+IdPUv4x5CGr/OruPHLb/QhkFdfSy64rmyTyMvHqntR5Erfpe19ncdha71yyZvvPEYlk5A50HsPf5cGsXy2SdSi70Hn+vex+4Zo/ZK3nXAuGJ+bBvLFYedyzH9upNODO2vO+ZcnDfuGSfMmV0HnIurvXu6Cav8rqPNZc9455rojz2HmitH4J9oqgPZd5y5NJ51Z5nzgK47yFyaJe4p5jyQXUeYyxzUOb9EBrrj8HLFSrZ4SnixlO0+Ilyxxm8czTUHlptGs46SXHVUuTQe95wSUMGeQ0rt6b04Evn+9vnZ+Tm+iN/oSGT6uH1HIi8D3nskMo9h/5GIMpAZw/zyp9MNM/98Ot9bNRT4A+9YZMn260Hrt4/3j0/HIHnVCNQ/e8Nx/Orx+fnxskX7iqG8/OU1ozm+ev6JsR//xKum/FeXf3PNCN7ffnz++dvPax+PF+VrbH64v3n+/ueblc/kufY1VoXz/+roxe9ufjSB+Gz78m+uHwHfI7TF/MsfXG+bOwpvsf3yB9fb/s2nR45Qtpg//5vrR/Avt59+/of3P236Ac7/5voRfPPw8Cg3fG0Zw/xXV643v7+7/cvHx6fn7+/+Z93zd/k314yAb3n41ctS+rvH75T7ZbRhGH94zVj4xgv5m9cPXjUY6y+vGc3dLzc/3f76492qAZwpX+WN47r6+Jd/uXEJN/gB/+Qa+6f/eX+aXatMn2tf9a0fbj5+//Pjynn3qnyVzY+3P959uPvxy6O0zvblH10zBpmm+tWEmvlZ/6pvf/Ph9rsn++gCvvaZ9lV7m7vn017ZDPRgc3OmfdV3HRl0677qq/I1Nu/54uI/PD7994f7x3UP08WfvMHuwm9Bru4vXv/kqt/8s3X6Az/356UWgOu+6YosWu3bwp9dM46PL13h1w1g1r/qPeVCR3hN7YKOK0fgQ0d1IPug44pd1QroeLGrugI6KiNaDx3ngeyCjkv2XegIW6k90HHJ/hroCCvDFZhvaTRroCO8ef//Gs26xeMq6Lg0Hhc6wiq6BzpqT+8FdPzd7V9Pl9oaoxjSN0KO55+2jzh+Ge1e4DiNYD9vvBzGjHnu7r10lWkQZ7reu+nSIiw76/341bnyFTY/nbKh7m+dpNvJ6qy+ze7aPPPJ4I408wXLfpb5ZHxfkvmi/YWULBjCzoSspVGs+wHe+Lsv5JfPE3xf+tfCCNZO9B3J5Su+u3ncfvHNNx+2L1hflVk+jeKqxPKF0SzklU/j2JlWvjQPnKzyeSLsSCpfmgl2Tvk8D7anlC9Y9jPKJ+P7EsoX7Lv55JP5Xenki8+An00O039fMvnCGBZzyadB7E4lXxjFmkzyeZd1RSL5wg5kKY98npU708iXx7CYRY7j2J1EvjyW5RxyHMz+FPLl0WzZruxPIF/epy7kj+M+dWf6+MI4lrPH9edmc7L28u+xnDuOP8n+1PG1v4qbpK3/MrsStDf8OuuHdHXa+PKzZGdt42O0PWl7+TdZaX1XyvhKj2zxw9uOYClfHAL6feniC2NYzhYHurI3WXzVO9fNz1Zeu7vSs5fnxaaRXJEovhiXr8sTh/D8ujTxpfniZonPc2VXkvjSuu7miM/r+a4U8UWfeIc14Ik9ZzXr7PtHNdow9p3ULIxm3UHNNJzrzmkWZod7TDMNY9cpzSItdQ5pAJXuOKNZXrcWD0Vw4dp9JrK8mm8byzXnM1vGsopyXHU6szAa93BmDvf3nM0oz+t0NPPn7z8/fbhRecMX0fpDmR+fbm9UajB91FcvahacfxnU1sOf2c7mkx/F7vpjH/iOu858lAHgBuBRf9nM1l/1rrCMi8mvH3+5udPiuNn2ueZbWX9/+9PT7RqHD7U3+9Yfbx6sFxl86zPNt7L+8ZSW/M2y7Ve9N/u917n6/Vv7+bjQfn/8IX9/u+oZQ+23GsXD49MvN/crfvgzxbey/eEUOKww/ar3VpbvPn17//jpds3i8qL4drZ/e/yzx/d3P66wfqb6dva/P77ZP9/fLE+6SfXt7H/z/OVj757/tmIQqP+mI7m90Qp2lCGI4tvZfuRqiBW2XxTfyvbz479+fvrTp5W7oa8u1P/PjON3j/e3Tzf6cZA3oPO/e8Nn9P7mYdUT8qL4hs/nx+MfrpkZL4pvuC7+7f7utJdeszK+qr6h/Uc1nfzC9uPD237v3z0+fdbiIzT8Re8tdwGi8cLRvnt6/IUn+HfHV65H4y53CGs/6Q1Hf/n5J6s4kjWjX/1JbxVhPP7p/z5up04HU4vDm1TfLsL59e2H07bqT/dr5vyk/FZj+Pnm06+ebj+efvbFIcy6b/YWOFU/fVhj/1zzTa3fr4nkzzXfLOY6laEtx1tD662sPp3q/5bNvqi94Wrxq1MN0HEz96vHv65ZEmb1txrHLzf/fbvhybtQf7PI8/PH+7sf17jiXPPtVh8L5uPCs5Xkr7RsY3x1ANsZ/tI4lgH+PJD99H5pJpjofh7AZm6/vAM3oD1uuDcS+xWEzUXkF5RtFx9fsR5tGMVeSr9pFMtb0N18fvGtYMF5eCtsJfPaU3iG5b83izlfJC6UXwut509bdVvE69CMBeT24fRGuFxCwdar2k47H2+fTsW7z3d/vv3fD/eXyATsXarvtPvh7vb+/T8+3b1XUprA5qy60979ccSssGxvVt1p74ZvYVhpEZWvt/nPdw//vTx7tD+43vZ/fK9uPW3bL39wve0/brX9xyttP98936+dWKB7tcV1Tlb0r7a8zsWK/tWW1zlY0d9g+fwV8vPn5+PPpr3EX0Vv8xKZP27dW+R1dBaHUCYlGHp05uLi55/evs/aHAQjr3p7LZ0S5P/943stpEFjk+rub/b49OPtSoOz7l6LP+o9jy4mht/pSLWjpCZ+c39vNFlCg5f6W76h+jDp5xMgf+PH6vUzNz5bMtj11XWqybs1c9+19HTz/k7hyKq1F92rLH58ejyVu64z+ap8lU1z36vZXNz9rvyen+8vgxP9S4rmdTPm068+/3LZVFCfNV90N1s8f+ysPi9fBG/zoJ1/2Lon7Mu4tk6FydLiHFiwIm2ifvPwfPvwSTsznq1daq+3eu4S/RhO/vP6RDEjgevsY7TkrWmcMpAd7j6zscrZaGgVMDy3osHC9Rbe3xmnRdOP9aq0x4a1Qp9ZWFqY3c//8ai08A1eVPZ8/sPj0/PPv33UVvwzE+dae6x8evy8wsq51kor06Nxf3OMAT6/v/234w9+ozQxPLd1qXuNxV9z9tw6i6+6uyw+Pvy0/kteKl9lc9XXvFTeY9NK4Ds3pSXvrbdgpqrBxL9MU1tv48dTttenZ26S6j/Ds+I1tswzcs2eegy+3ubz4+kE17X0orLv893UotmOmVa03p5xcHJuRzk02fJ91AOS+XtcHI746+z5FuPzn359+eHH/3j99uLLh2zNDOch7dhqvNjbkw0ORlflgb9a1DLAnU+/LKn6hz/f3H/mlrjf3vz4s/djGurb7X5mEHGM139389Onbx7ef8+Jvd8+3n74cPfjqU26smi/jGLVH28f06fPf3p/92ftKuNX0+c6qyyszbh5NbEj18afP85Z//kk2nHG79n1Mmteze7JqfF8aGfTvNrcnkezaFHNoAGLm3Jn3Hmq0+XXObopX8azZGTKvJramCPj2VrIjnm1uTMvxrO9kBHzantnLoxn286COXuHbc5/8VcEI5A9Wwy25byssGZlu1wY3Zrn4tleynA5e6XszG3xPGttzl6MbsxncVchY6P2ugRty2Fx1x83b+RsHdqVMbKwRqyyvC9XZbVlb2+yMz/FXYX1zJSzVXhbTgo+MdOGXDmL+/ywfjv+6fMDX+hySl3+5l4AgvmJXxna1sbqYdfG/GEDAJxMTEvJL3cPf7xVKiJePv9VYftn3/x14bNfFDZ/9p/1+rqXj/7zZUXdyk8WqH3chT/+RQPgXwyg2k47WubCbMLLV/B++4fPN/ffPj48Pz3eL34ZQ/s6q95Xu1TcbItZqG3hi3jz5978z90vn71PflXY/tmLS8fNtuVizrO6Wfr0M43tn/4FKDoff6ay+fOf7365/U+tTOjl4880Nn/6+xs5FPr+5s/HF5g3NRXNK639y93DZ60PpmHyVX2z3b+5y+3f9q7jx8fUeR6+iPf8Su5vsuczf378/OT80l/Emz/3zj6k/PLZd8snk87nm8HLgx27rH1y9RPol6fWvVsEPnfaVBk0eGvPDZN17m+Esb8LxtUtMHb2v1hsfuHbWNnpYkWbiw12jJ4WSw0ttnwTs3vFitYVG+yYx1xLTSq2/ForXKK0o9hgwe89sbLxxAZ79tHdYouJDVasfhKLzSQ22DA7Ryy3jdhkxewRsaZBxCZLZjeINa0gNlny+z6sbvqw1abW4WG5vcMmK0Yvh+VGDhusLB2trmzZsNui3Z9hc3OGbU+C3olhuQ3DtqfASPZabLiwbe2wuiusaa2wzZIeIPlNFDZZ0DsmLLZL2PiW2tcb4Q0aI2wb584uCG/QAmHDjtI9fb2u2cE1nQ6ub3NwRY+Dqxsc7O5ucGVrg919Da5sarCro8EV7Qz29TK4ppHBdV0M3qKFwXX9C96iecHuzgVXti3Y2bPgqoYF13UreItWBVf2KXiTJgX7OhRc055gX2+CaxoTXNWV4A1aElzVj+ANmhFc14ngLdoQ7OtBcE0DgoXuA2Nr9fT4VzMiZeFbQcrXD9tJKmWou3Hlmf0rmCUOYgu4PBvB1ta9hvVtSPPM/vb2vWtG4MPOaQJsauG76tsvYdDzb7+5je+aESwA0jP7W1v5rvrt17p+YzvfNbZXQdWzIexr6btmJEu49WwQm9v6rrG/AGLPzG9t7bvG+hKinRagje1919lfgrfTCDa3+F03hiWsOy/DW9v8rhvDKuA7DWRfq9/Vo3FQMA5jS7vfdfZ9SDzZ39jyd439dfj4bBQ72/5uH8siWDYHtb3178rn10XO89O7rf3vymfXhdHzk7utBfDK9XMBU88r6NY2wCvH4ADs2f6WVsDrbLtoezK+rR3w2l3EVdAbdhjbyfcbfIPrcPj8Dd64LfCaCGYZlJ8NcT8tX4iilhHfNBX3Uz53HCvg+dkwriDo/htjCaOfvyP2svTlEXhAHUewh6r7sZ2H1s/juj183bXsQ/Yz0/tI+9JqsgK3z0vGFczdHcs68H42luvoux/pLiH482B3L4dfWKFcGD8tTruI/BrrC1j+chA72bw7lpWA/mwwV1J6d2b4qP5sEPt4/cLO3oP200Z+D7lfIn/L+Hymf/sZ+tKatWkkV9H89SNZs6W9juv7bxEX7p+/RXYR/osn9Azzn24GvDB8+o9XY/2XD9mK83lI2zH+q709+B6MziUnDw+nt/fd44O68X01fKF4ve33d7+cMuIfH75//tv9rXLD7dnPfKl6vf2nux9/9ufIV2cq19v7eH9z97Bg8FznDS2e3n/fnZo1X64Giu1J+01GoUT1k90Nwbxn6fko+82nPzzdfPyokOBXi6i3y/K0UPzl+FkLrj1Tuf6bOsHqq8UdQapn0w1OX63uCko9u14w+mp2TxDqedQOPs/m0eagc9GiGmyCxU1BpmdRDy5frW0LKj1LRjB5ttJuCyI9WwvB46vNnUGjZ3shWHy1vTNI9GzbweHZi3RzUOivCHoweL4YbAsCV1izgr8Lo1uDPs/2UrD3anxvkOd51gjuXo1uDOrcVUgP5s6WoG1BnLv+uCHT2Tq0K1RaWCNWWd4XpK227G3HdgZl7iqsB2Nnq/C2IAyfGAi+fv2oPyjH//4mIdiXz9kThZ3Gti8Qe7G6NxabTc9bZbUF5WT1o9t8cuHzn60t6svHP+MOdcOnfzq64eH9zdPfzJ3wixlU3WXvw+PD8z/dquXLk7FJb7el77QT9As73+Gx+QYrC5v6Fzs79/WO5cWt/Yvt3bt7x/rSBv/F+N49/mx7wzb/9bHYtdNfsmtu9me7m/f7jl17y//6bG7e9Tv2nI3/i8Ede3/H4ort/4vlKyIAZwQrgoCXEVwRBzgj8EOB1/fmrmjAXUfsgOBsCdkeEyzb9MICNL0nMnBGsCY4eBnCNfGB43EnRHgxvSNK8FYwO1B4Xb62xwre2rW4aT/bX+zdt/sry1r7++OGtfb10EEfwLbowVvN7QDidTXfHkPAswVhxGclK278dzeM2LKp/7zlxowvg7I2i3f3t/96+n9dQ2dau6yccPK/+ya+qOz+/N8vf/7vr/n8Pyx//h/2fv7nP//ld+7e7sUMaO6yZrzzXmw43XoWPtm6a2f6+KWrdhZsPIvYjDxe7MyKu2wd9++3N/o78sXMi84uC48fPhyXf9/Ci86+7zCOQhe+xavWWitzQcVxhfi32w+3R20j8pwWk3PV1d/qcqn9l5uPH63X26t4Pb/58enoylvM3Nxg5aulT3C/7Bc1d3SnfO4tX/wr9c+uH8eXrOrtQ7n8y+tHI1nmOzwFf3fNSL7lTzzGZluGofzRNWNwCCRa3gEiVfsbty6zE3ZiSXUgsHT/P5/vnm4//f726fgi+FcuItO3oTgm6y83ugXiPrPiShvCiq5Z6+z+fPPJyFVBk180r/qW60wt7y8WJvnz09/+8fZ5KJmlIJpp6y/fbDRGYcziWBb6Nq0bydPtn2+fPt0O5W8fH5/e3z1YYOVy2pt/fM2YPv1FMkm2D8j6y6t8ddx77BuN9ZfXjOZWrulZN4Az5etWIpt6XS5D2+HX6hF4DMwYyB4UtjyeNUQMB3QNGFsxL2w+djErtmOyFU+JTcsuHovt0GzFmrHIri7Wit0Ia3k0yyQNR7MfqG0czboNzRV4bcU7x6ZsF2+Y7bBNf3rPA8Gf737879sH1TMvorchb/PHrYNvr6Oz4n8lLgdDXlC++Pnv7z49q5XLaOVMca+tT2pTFTT0yW0HveIXYxryvx/uL+v1L365c9W99v70+Pzz93fvb5VnDcyda26xdj6dbQr4RbKeZhyH8vCs9TWYP+urMz1j2C+jMiz9z+3T44uSQZtmm+pf7LT++UFFaLPBL0o7bXw52z4O9D/++J9Lxi60r7dqNG2xDS/0w160bRy+z/Yuj9832bDZ5GxmmU6utSS/ivIs6wZf1Xfa/eXu6WnZbS9aV1n5rV67oJn67UUZwyZ7XAXxu8dVBkF372z8WbsPBGfjz961IMu/4uf757uP2nsFfsJXvfWWVm8zZlurdhmKOYi4vvnw4W7ZVWd6uy39Zu1L51xzt7V/Po52eV6c6e229G8rl6pJc7c1I0ZHU/49Kivs/OfxNbxsZmhdZSX/Na8zJIpX2dq2FTH+ZucInu5+unuvH07CK+ZMcaetT3e/3EkjqjUGL7R3Wv3lcFhcIVll9+eH5c8P13x+XP78eM3np+XPT1d8flj+/cM1v39Y/v3DNb9/WP79wzW/f1j+/cM1v39c/v3jNb9/XP794zW/f1z+/eM1v39c/v3jNb9/Wv790zW/f1r+/dM1v39a/v3TNb9/Wv7907bfH46Yn2+ffrl7uNFY+WxnVt0dBJ/OyX7zwMdTywHwrHxN4H1ScLOzldj78m+uGcHHxzXf+FVxr63H7+4fb56/eXpSrjFEc7Puhjl6hrl+f3f7l988fLjcen4RvAmxnT5sVST1Mi7j0XrQMiVnMw9emuTS5//l5v7+483H2yc1JXM2hLr7LH76+fEvf/jySb95+MejV79Xwc9s3PmzK7/5P929P8aFa7/7i/Y+qx8ej4P+1f3np19bmHy2q+lfafmb47dQs4YNy2f6V1r+v+6etRaHht0X7Sutfn/zy8f7W/2k1TA9/8lq+3hsdlL5+Pi0ZHbW3Gft02prn/ZZw8X09PfmgvpFuP7k4P3th5vP98+/e/y4/IFfTcr2N3gZom/zt8cX98fbH5/vlEbEpu35j64Zg3rwrtnddOxu2N7yIpvt78mbMwahkadvj/96uvnuyXoLzYNR/2iTE+wxbDX/Fpa/e/r86fnz5RGcafr1D66xfcoWvr+/vf/t0+OpZFYjV9oI1D+7ahyvD9PWoRh/ec1ofveXx9+eqsj3j2rpE/aP7keecv98fE+tHMzFH1xr+9d3T6t/icu/uNb6v695PZypXmvvP1ab+483sPbH1db++AbWLs+ULWv2efIaa59+fLq9ffittTOZDU7Kb2HzG34CN1l++ZNrf+FvHn4y4hrtV/6ifa3VVH755Z9vHz4d/++n559Xm7/4s/3jeL55Ou5pf6t267g0P2tfsXJfHl8pi7N9eLVmu/bjzzcPP53Olve8Od0/foMx7XxfLf399SO79o269nP2j/QYFH279dWq/c0bjGDLC1b9ozcYw6rX7Kx9ldX1+99Jeb/Nn7bY/OnNbP6HmminWvyiut/e7V+fj8qXiUeX5l41rwhkH+/v//YPq02C+n67H8Qz3x7/4vZp7StH/aP9Y5A3mEv0tFfeKqS3MoJcHzr+n4jercoKcxBb6yrWjGWpquJyMHtrKlY9fXpFhfLwbaunWDUf9WoKZR5uq6VYuZo7tQvqgr6jcmHlertpJPtqKDaPZM3quLN+Ys1YjOqJyzFsrJ0wbNNZYYCQ0xfTHz4/8Jbl0/8aEo0W/9fXf3eqmPzr3/39//t3pxPW0xbn7/8uvkvv+lHzg7Th/vsfvpyT/fj4yy+n8fzXkH3Jpv37H0Tlfx3+7usfDl9Tf5dL+q//+vqHL3/BAv4PrBaO/wpfl/QulT6phUktHv8Vv671XY80qcVJLR3/lTS1NKnl47/y16W+K6VOanlSK8d/Fe0rlEmNjv8izShNavX4r6qp1UmtHf/VviZ61/Ok1Sato09+6No36POve/qxw0GzGsAP7Iigas6uOOXv/BBUZ4TZG6dMnB9C0n7BMDsknH74kJWvHWaXhNNPH1SnhNkr4fTrB9UvYXZMODkgHF0T37XQZs3ZN6GZs3V2Tzi5ITTV+OyhyB7q6tSePXTKC/ohqr6M8LDw06L6Ms4eOuXq/BD1B2v2UDz5IarPVpxdFE9+OO4WNM3ZRfHkh1hUzdlF8eSHqDozzi6KJ0dE1Zlx9lE8OSKqPoqzj04ZRz9E1Udp9tEpd+iHpPoozT46ZQH9kII2kROsabyoqT5Ks4/SyRFJfd7S7KN0ckTKqubso3RyRFIfuDT7KJ0ckVQfpdlH6eSIpPoozT5KJ0ekpmrOPsonRyTVR3n2UT45Iqs+yrOP8skROWjW8+yjfHJEVn2U4dXD7x71Ocqzj/LJEVl9jvLso3xyRFafozz7KJ8ckVUf5dlH+eSIrL6v8uyjfHJEVp+jPPuonByRVR+V2Ufl5Iii+qjMPionRxR1rSuzj8rJEUX1UZl9VE6OKKqPCuwQeIug+qjMPionRxTVR2X2UTk5oqg+KrOPyskRRfVRmX1UTo4oqo/K7CM6OaKoPqLZR3RyBKk+otlHdHIEqT6i2Ud0cgRF7Ymj2Ud0cgSpPqLZR3RyBKk+ItjI8U5O9RHNPqKTI0jf9M0+opMjSF3raPYRnRxBx61fehdpXmlp9lE9OYJUH9XZR/XkiKr6qM4+qidHVHWtq7OP6skRVX2O6uyjenJEVX1UZx/VkyOq6qM6+6ieHFGLOk7Yb1drs1ZnF9WTH6rqzDq7qJ78UKuyTa2zh9rJDVV93trsocYe6tr3abOHWrS+T5sd1E5eaGrs1WYHtZMXmur0NjuonbzQovqZs4PayQstqZ85O6id3NCyqgkxkbnvbrOD2skNTZ0dbfZQP7mhkabZZw/1kxua+gT32UP95Iem7lb67KKezGe9zy7q7CL1We+zi/rJD/2gWp9d1E9+6Op63GcX9ZMfuvqs99lF/eSIrrq9Q+jazenZMXo9mLNOZOe6J190dTaJ7Fw3Ws+xiM5VT+7o6owS2bnuySFdDzkPEMce2Fvqu1tk57rsLz2aPEAse2CPqfNFZOe6/FgdDDwAEe2BQ9qDuliI8Ex5cAcdElyQB0YPB/U9ERA+CH04qK+KgPxBAMRBfaMHRBDCIA6kzjbEEMIhVBKAHEJAxEF3NaIIYREH3ddIIwRHHHRnI5EQJGGwIIASQaiEgYOAS4Qo6MggQgiP2H9BXSgC0InADOL42+ufDP5jDHH89XVl8B+TiBDU9T8ApggMI3RnA6cITCOOjlInEaCKwEDi6ChdGfwXxX/qTiEAsAiMJfQRA7EIKTgjBmgRUnRGnJD+sfei+kYKgC4CA4oQ9eUF6EVI9tMH+CIwpDC/HngvVe/rgfcYVYSoBisBOEZgWmGMGHzHuEJ/PwZAGYGBhb6BCwAzAiML42UKOCMwtNA3cSEjuhXPGcrgOSYX+sYnANUIzC6CThIDgI3A+CLoMDEA2whZXKe/qQFvBIYYIerrNxCOwBzjlMGv/RgAOQKjjKCDxQCcIzDNCDpbDIA6QhHyrq/fQDsCM42gE8ZQkL/zo6dDxgDMIxR74QToERhtHB90fRDgP6Ybx0ddVwb/MeAIOpgMQD8CM46gs8kAACQw5ghJf1kDAwkk/tOdDRgkMOwIOqQMQEICyeGJvgoADAmMPIKOKgPhEQr7T6eVAZBIYPARdGAZgIoEZh8h6/tqACOB8cfxiVfnHLCRwATk+MR/TeFdS3FWBjwSGIKErD+uQEgCc5Cg88sAkCQwCglFf/kBJwlMQ4JOMQOgklDlCEz3INCSwEwk6CwzVDwHYw/qODMANAmMRkLRPQjcJDAeCTrUDMBOAhOSoHPNAPgkMCQJOtoMQFCCIJTSv87lXa4Q+QFFCcxKjMM+8B/DkuPyoM45ICmBeUnQcWgAmBKanGLqb23gKYGpyXF50JXxKJP9R+oZUACsEhieHJcHXRn8x/zkuDxo4TWwlcAEJZDua8ArgSFKIH17BoQlMEc5rg66MjiQUcpxddCVwYFMU0LVHQioJTBQCTouDUBbQpeTaN2BAFwCY5WgQ9MAzCUwWTmuDvon45E0n6XpZ6iAXSKjlaDT0wjcJTJcOa4kujIcTTNdCTpEjYBeIuMV/aAwAnqJB/GfceYOR9TMV/R3awT2EpmvHFco/YPhnFrgS9NP6QG+RIEvTT+oB/gSBb40dRZFgC9R4EvTj+sBvkSBLzpfjQBfYjDXzwjoJQZn/YyAXqKgl6YtLxHYSxT2osPbCOwlCntp+oQD9hKFvehgNgJ7icJeupG7Ae4bGSH6lMOckGjmT8WLpBCO/3TfYVoIsxWdjkdMDGG0YvzEmBoi2KWrMXPE7BBmKzp6jZgfItyl6/kpmCIi3EVnxRGzRKIZuUegLlGoizGNgbtE4S76NAbsEgW76CQlAnaJgl26utRHwC5RsIv67QC6RIEuXd2FR8AuUbBL12cFYJco2EUH3BGwSxTs0tX3egTsEpmtxIPxw4H7GK4YswLAS8ySjKWv3kBeItOVqNPwCOglMl6JOg2PwF4i45Wo0/AI7CUyX4k6DY8AXyLzleMbTlcGBzJfiTrijgBfIvOVqCPuCPAlZnGgvswCfInMV6KOuCPAl8h8JeqIOwJ8iUUy6nQPAnyJzFdi0D0I8CUyX4k64o4AXyLzlagj7gjwJTJhiXoGZAT8EpmwxKB7EPBLZMIS9fTGCPglMmGJRoYj4JfIhCUaSY6AXyITlqgj4wj4JTJhiTqtjYBfIklapO5BwC+RCUuM+roB+CUyYYlWziOmR7IHjbRHwC+RCUvUMWUE/BKZsEQdU0bAL5EJS9QxZQT8EpmwRB1TRsAvkQlL1DFlBPwSmbDEpHsQ8Eus9uYT4EusktmqOxvgS2S+EnVMGQG+ROYrUceUEeBLZL4SdUwZAb5E5isx6c4G+BKZr0QdU0aAL7GJ/3RnA3yJzFeijikjwJfIfCVm3dkAXyITlqhjygj4JTJhiTqmjIBfYpP0ZN2DgF8iE5aop1ZGwC+RCUvUsysj4JfIhCXqCZYR8EtkwhL1HMsI+CUyYok6pozAXyIjlqhnWkbgL5ERS9QxZQT+EhmxRB1TRuAvkRFL1DFlBP4SGbFEHVNG4C+xS4657kHgL5ERS9QxZQT+EhmxRB1TRuAvkRGLviUH+pKYsESdaCbAL+kg/utfp/iuxA7KkHLOhEVlXAngS2K+opbIJEAv6SDsTM3RBvSSmK7o2fkJyEtiumJkyAN5SQxX9LzRBOAlMVvRMx0TcJfEaEXPNkyAXRKTFT2TLwF1SQxW9NS3BNAlBTurLAFzSQxW9BywBNAlMVfRM7YSMJckzEVP/kkAXdJIeFEDxQTQJQl00RMxEkCXJNBFz4FIAF2SQBd9e5gAuiSBLvr2MAF0SQJd9BPvBNglScKLvtVKwF2SJLwYJRwAXpIkvBh1FEBekpAXHWQmIC9JEl7007kE6CUJetFPuhKglxSdU6ME6CUJetGPaxLW6Ah80flWwjKdAV/0nw4rdYS+6EAuXRTrCH3RJxLW6wh90ZFDwpKdwV/0Uhys2kkSOhhjBg8mCR2MYYAHkxM6JCzfEf6i79kT8JfEjCWSPpEAwCQBMKS/HgDAJAEwxvsBAEwSAEP60w0AJgmAIf2nAwCTBMCQPkUBwCTJftFxWwIAkwTAnI7cLvNqEgCYxIxFzX5NgF+S5L7oh4QJ8EtiwmIVlYH7hL7odREJ6EtiwGLUoAF8SQJfSJ+eAF+SwBfS3ycAXxLzFWNpBvaShL1UfSoDe0nCXowdCbCXNFJf9FGA9yTzRUXMCchLEvJS9UcEyEsS8lL1RwTISxLyUvVHBMhLEvJi7LiAvCRJfNEPxxOQlyRlQPqEA/CSBLxU/dkD8JIEvFTjk8F9Al6qPj0BvCQBL8aWEsBLEvDS9CkH4CUJeGnh60LvaoSpAeAlCXhp+tQA8JKYrkQ9dTABekmCXox9MKCXJOjFeMEDekmCXpruQUAvSdBLU3NEE6CXJOjF2I8DekmCXpruQUAvSdBL1wM0QC9J0EvX33+AXpKgF2NTAuglCXoxAgNAL0nQi7GDAfSSJPNFP5hOgF6SoBf9+C8BekmCXroeRQB6SYJe9LOpBOglCXrpursBvSRBL113N6CX1KVWXH9gAb0kpivJCMAAvSSmK+mguxvQS2K6kg66uwG9JKYr6aC7G9BLYrqSDroHAb0kpivpoHsQ0EtiupIOugcBvSTmK+lgFJFjFTnvYQ6qBzPAl8x8JQXVgxngSz5Iwb9eTQ74JTNjSUH1YAYAkyX3RS+pyEBgMlOWFFQPZkAweSAY1YMZGExmzpL0SD4DhMkMWpJOjTJQmMykJelp+RkwTGbUknRGkIHDZGYtST9YzwBiMsOWY3yvDgNITA7StUH3IKCYLPkvet5XBhaThcXoWXAZWEweXVDU0/IMLCYzbkk618jAYjLjlqQHjRlYTBYWo+7gM6CYHO30wQwkJkfxn/7BQGJyFP+pe4IMJCZH8Z8+QYHEZIYtSY+JM5CYzLAlRX2CAonJQmL0xMsMJCYzbElJn81AYjLDlpSM7hbgP4YtSY/jM5CYzLAlJX0aAYnJ0jEl6dMISEyWpilJX4+AxGTpm5L09QhITB6tU3R3A4nJ0j1FzzbMQGKyNFBJuruBxGTpoZJ1DwKJydJGxehPAiQmSyeVrHsQe6lIM5WsexDbqTBsSVn3IHZUYdiSdLKYsakKw5aU6euS35UaQRn7qrAHs+5BbK2SZQ1VM7Uydldh2JL0IoGMDVayeFB3N/ZYYdySdHSasc0K45ZUdHcDi8nCYoruboAxmXlLKrq7AcbkAWN0dwONyQxcko57M9CYzMAlFf2BBRqThcYUNWbLgGNykSZG+isTcExm4pKK7kHAMZmRSyI1ZsvAYzIzl0S6BwHIZGYuSYcbGYBMZuaSdGaZAchkZi5JZ5YZgExm5pKMFxAAmczMJZH+hgUgkxm6JJ3IZCAymaFLMjY9QGQySScq3YNAZLJUIumZ8RmITGbokvQ6gQxEJkslkl6OkYHIZIYuSYeAGYhMHpVI2g4JeEyWRBhjxMBjMiOXVPU5BzwmM3JJOgTMwGMyI5dUVTicgcdkRi7p6JKc3qWKXxD8V6WZmL5qAI/JVfynzzngMbk55xEZeExu4r/2dQ7vMhD4DDwmC4/RT+0z8JjczKP4DDQmN/Ff/7ocf2XCEYP/GLikdtCVwX8MXNIJGGrK4D8GLqlFXRn7jDXnJQ80JjfpB5f0Twb/MXBJLavKQGOyFCLpZ40ZaEwWGtOOE5TeHQ74yeA/oTGNdGXwoNAYY+oDjclCY1o9jbkmmBtAY7LQmNZ0ZfCg0JjW9TGDB4XG9IP+ydgsjj3Yg/7J2C9OmvpFTbkAjSlCY3r6Oh/eBQJdaBonMKbnr3N8F1oGZegbJzCmF10ZWscJjOmkrQMFYEwRGNPrSZkSfj9oICcwpjd9GNBDTmBM77oytJFj3pIPB10ZOskxb8mHcBpzCxWUwYFBllAVmRSAMSVIY0Z1z1oAxpTgLKEFYEwRGKNPDWAxhXFLPqhLTAEWUxi3qH14C5CYwrBFa+xbAMMUwTD6ilgAw5QgvstaJFMAw5QgvlO34wU4TGHWkk9pPPldT+A7ADEliu/0XoQAYgqzlqxXABQAMYVZS9YrAAqAmMKsJesVAAVATGHWkvUKgAIgpkSpA9TbRwKIKcxask5kC4CYwqwl6xUABUBMYdaS9QqAAiCmMGvJOpEtAGIKs5YcqjrvAcSUJAkVar5BARBTmLXk0L4uh3fHnxuUwYNJPNi1k8kCIKYwa8nxoD1VwGEKo5Z8orfakMGBjFpyPO5g2vHHgCcbOEwZ7WzVd3YBDlMYteSY9O8HDhwZMfqKCBymSF9bHcgW4DBFWtvqdQgFOEwZ3W31eQQcpkiDW70OoQCHKdLjNh6XxcO7gh8MDhQMo++wC2CYIgkxxusBMEyRXrd6gUMBDFOy2Xq9YLtb6XdrLAPY8bYE52HFprdSj2S8V7HvLXOWnA7q+wRb30pKjJ4ZUC6637L7UtA/GfzHnCWnqCuD/5iz5JS0Co6CbXCZs+SUT8o9g1OwEy5zlnzKJrqccsBgCmOWnEjTBQRTmLLkVFVdcB9DlpzUaQ8AppB4T43pCgCYwowlZzWmKwBgCkmD6aCOArsXs/NyVHXBd0xYck6qLriOAUvOWdUFz1F3dmYAXwrzlZxVNwN7KYxXclbdDOilMF/JuaqzGOBLYb6Ss+pnYC+lZueVA+ylVHFdVz8YXFelO/hB1cXW09V5VQN5KQxXclHnD4CXwmwlF3X+AHcp7eBsAYC7FEYrxyVQnRTAXQqjlVyy6jzgLkW4Syn6J4P3GK7kok4hAC+F2Uou6koB3KU0cZ46gwC7lFadHRxgl9LEefqyAtilNG/TAtilMFnJpM43oC7Foy4FqEvxqEsB6lI86lKAuhSPuhSgLsWjLgWoS/GoSwHqUjzqUoC6FI+6FKAuxaMuBagLedSFgLqQQ10IqAt51IWAupBHXQioC3nUhYC6kEddCKgLedSFgLqQR10IqAt51IWAupBHXQioCw3qou47CagLCXUxuvMDdSEGK5nUKJiAuhCTlWz06AfsQkEqANUNOwF2oSCJ9GqoQwBeiPFKtpTBg8GJGwjYCzFeMfL5CdgLMV4xPxk8GCWZV92FE7AXis4jCOiFBL3ox3kE6IUEvRjXHAB6oYFe1K0DAXqhgV7UVzwBeiFBL/orngC9kKAX/VVFgF5I0AtppRAE5IWEvJBG8AjACwl40Q8gCcALCXjRN/gE4IVStF/bBOCFRi2SehxLAF5IMmD08JoAvFAqzmQG8kJCXvRiCALyQkJeqhrZEpAXSnJJjb4cAXkhIS/6dRQE5IUYrmS9uRoBeSEhL8ftgxKsEpAXkgwY/WkF8EKSAGO8MAG8kCTAGC9MAC+Ui/PCBPJCQl6MFyaQF5IEGOOFCeSFJAHGeGECeSG5aMh4YQJ7IWEvxgsT2AuNaiQVZxKwF2K8kvWOdwTshSQBxniqgL1Q8d6BwF5IEmD0eQTohQS96H33CNALCXrR++4RoBcqzvEDAXohQS96PQvhPUTCXvR6FsKriAS+6M30CG8jEvqik2DCC4kEv+id9wjvJBL80vQlBq8lEvyiF7/Qxc1E7MFm3E0EHiQnf4LwfiIhME095iG8okjyX4xlAxAM1YOzbACDIbmpSH0TA4Kh6hz9ESAYqvbRHwGCIUEwxmQGBEOCYIzJDAyGhMEYkxkgDHkQhgDCkEAYYzIDhaGR/qJPDMAwJG149dpPAgxDgmGavsIAhiHBMHqjRQIMQ4Jh9EaLBBiGBMPojRYJOAwJh9HruglADAmI0UuoCEgMCYnRuxESkBgSEqOXUBGQGBIS0/V1AEgMCYnRL6QhQDHEtCXrN9IQoBgSFGO81gDF0OgEoz+vgGKoiwebusEFFENdPKg/g4BiiGlL0W+7IUAxxLSl6PVWBCiGmLYUvb8fAYoh6QSj9/cjQDGVaUvR660qoJjKuKXop/sVWEw9OK2wK7CYKixGJ28VWEwdrXhV8laBxVRhMfqKVIHFVGExOnmrwGKqsBidvFVgMVXKkXTyVoHFVClH0slbBRZTpRxJJ28VWEyVciSdvFVgMTXYgUQFFFODE0hUQDE1OIFEBRRTgxNIVEAxNTiBRAUUU4MTSFRAMTU4gUQFFFODE0hUQDE1OoFEBRRTBcWor8wKKKYKilHPviuQmBqdMKICianRCSMqkJjKsKXodZcVSEwVEqOfJFcgMVXubNYZVgUSU4XE6CfJFVBMFRSjnyRXYDFVWIx+klyBxdTBYtST5AospgqLUU+SK6CYKjkw6klyBRJTJQVGPUmuAGKqZMCoJ8kVOEwVDqODpgocpgqH0U+SK3CYKhxGPUmugGGqYBj1JLkChalCYdST5AoQpgqEUU+SKzCYKtkv+klyBQhTJftFPUmuwGCqJL+oJ8kVEEwd9zurJ8kVEEyVK57Vk+QKBKZmJ3mpAoGpkvuiniRXADBVAIx6klyBv9SR+6IGMRX4S5XcF/UkuQJ+qYJf1JPkCvSlSuaLjpkr0Jda5AhXnxRAX6pkvugnyRXwSxX8op8kV8AvVfCLepJcgb5UoS/qSXIF+FIFvqgnyRXYSxX2op8kV2AvVdiLjqQrsJc62IuK5yuwlyrsRT1JroBeqvSCMfazgF6qlB4Z+1lAL1VKj4z9LKCX6qGXCuilUnP2s4BeqqAXYz+LF0QLejH2s3hHtJQeGftZvCa6Rmc/izdFD/ii72fxsmgpPtL3s3hdtNQeGftZvDFaao+M/ezFpdHV2c/ixdFSe2TsZ/HuaIEvxn4W4EttB2c/C/ClCnwx9rMAX6rAF2M/C/ClSi8YvUavAnypzdt3AnypTfad9TQ1SoX3A8CX2iR0P/509V1uqAwelOoj9YSzAnupUnxk7KuBvdTmnOBWYC+1S+SuX9IO7KUyXil62noF9lIZrxQ9bb0Ce6mMV4qetl6BvVTGK0VvXF+BvVTGK0VvJFKBvVRhL3ojkQrspXahZyoCqsBeqrCXQBqzrcBeavcCB2Av7SCBgxqSNGAv7RDs7U4D9tIOEjioYVQD9tIO4kH1PrsG7KUdxIPaS74BemkHZwvTAL00uQZJj6IaoJd2kORdNYpqgF7aQRzY9e/XQJnhWVTr9hugl8Z0pZzQuKIM6KUxXSnHTbOqDA5kvFJOu5jLHXYD9tIYr5Sonio0YC9Nqo/0oKABe2mMV8qp+4n2yeBBxislqg9KA/bSGK+UqE86YC+N8Uo5gQxNGTwYxIO6u4G9NMYrJenuBvbSopNL2AC+tOjkEjagLy06uYQN6EuLTi5hA/rSopNL2IC+tOjkEjagLy06uYQN6EuLTi5hA/rSopNL2IC+tOTkEjagLy3ZiUwN4EtLTi5hA/rSkpNL2AC/tOTkEjbgLy05uYQNAExLTi5hAwDTkpNL2ADAtOTkEjYgMC05uYQNEEwbJUhq85MGDKZlpxt9AwjTmLMYO8AGEKYxaDF2gA0oTMtOW9cGGKZlJ5WpAYZpmbwxgwdz9cYMHpRMGLVXRAMO06QTjL5rbQBimlyKZHw/ADGNYUvRL2RpQGIa05ai3xvdAMU0pi1Fv2WlAYppTFtK0hpcNCAxTS6kNpZ9IDFNGsEYyz6QmCaNYIxlH1BMK04RYAMW06QRjLHsA4xp0gjGWPYBxjRpBGMs+wBjmjSCMZZ9gDFNGsEYyz7QmCaNYIxlH2hMIzuTqQGMaQJjjGUfYEwTGGMs+wBjmsAYY9kHGNNGHoy+7AOMaSMPRl/2Aca0AWP0ZR9gTJNiJGPZBxjTpBjJWPYBxjTpzKvnbDagMa16SyjQmFa9JRRoTKveEgo0pklnXr2FTgMa06oTzDegMa0dnDEDjWnN6a3cgMa0Jmuoms/RgMa0Jmuoms/RgMa0Jmuoms/RgMY0oTH6FVENaEyTVBg9ca0BjWlyJ7X+XgMa0zwa04DGNI/GNKAxTWhM6lqSWwMa0yQTRqvwbcBi2siDUdl3AxbTRkmSeqTWgMU0KUnSG+40YDFtlCSpDXcasJgmJUl6e4kGLKaNkiT1UKQBi2lSkqQ33GnAYlp3LvdowGK6lCTp7+0OLKZLSZL+3u7AYrrUJOnv7Q4spo88GPW93YHF9JEHo763O8CYLnkw+nu7A4zpoyZJfW93gDF91CSp7+0OMKZLHoz+3u4AY/rIg9He2x1YTB9pMOp7uwOL6SMNRn1vd2AxfaTBqO/tDiymjzwY9b3dgcX0kQejvrc7sJg+8mDU93YHFtOlJEl/b3dgMZ1xi/He7sBi+riWWmue2wHFdK8iqQOK6fFgOxtITGfYorZI6MBhulxKrY0WIEyPTjPQDhCmRyeTtwOE6VGqydTs/w4Qpo+rkdSamg4Qpksxkp6R1wHCdOYsRb9MsQOE6aMPjMqbO0CYnpyC6g4QpksKjH5Y3YHCdEmBURuwdIAwXVJg9EzlDhCmJ4eidYAwPTkUrQOE6aMPjJod0QHC9ORUk3WAMF1uRtKvUOkAYXpyYvgOEKZnJ4bvAGF6tilaBwbTs0PROjCYnh2K1oHB9OxQtA4MpmeHonVgMD07FK0Dg+nZoWgdGEzPDkXrAGF6dihaBwjTBcLovTI7QJheHIrWAcJ0acerlst1YDBdGMwpTetyF9yBwXQpRtKv7ekAYXpxIsAOEKaPaiRjzOBA5iz6uwQQTBcEo098IDCdIUvR22F3IDCdIUvR75ftQGA6Q5ait8PuQGA6Q5ai3y/bgcB0Evep4V8HAtMZshhHVB0ITB+lSGoNUAcE08flSPpLDRBMJ6eeugOC6eS0Au2AYDqJB9X4tgOC6VU8qMa3HRBMr+JB9ei+A4LpTFmKfoFuBwTTmbIU/QLdDgimM2UpRT2s7oBgepWG5mrn3g4Ipks1kpp53IHA9NGLV39PAYHpQmAMbwOB6dISRj8F70BgenMK4jsQmC75MPrJfQcC0yUfRs8J6EBguhQj6cfgHQhMl2Ik/Ri8A4HpUoykJhN3ADBdAIyaTNyBv3QpRVKTiTvwly6VSGoycQf80qUQSU8m7oBfuhQi6cnEHfBLF/yiJhN34C+9SzcmLRm0A37pXfJ4tWTiDvSlSxWSmkzcAb50KULSk4k7wJfeJY9XdTOwly55MGoycQf00ruk8ap5Ax3QS5c0GDWZuAN5CQdJg9H3y0M6qYv3tHziIZy0JZlXy/AcwknbaSQ5pJO6JPRqE2kIJ21Jh9Gm0hBO2tIOVA2phnRSl6RedY4M6aQueb1qas6QTuqS2quGbEN6rs64Rc8wHsJJW+JBbQEZwklbHKpNrSGctMWhap7xkE7q4lB1zRnSSV2aS6rB25BO6tInRp+LAT0q91br+HJIJ3VBoyrAHNJJXQ4IVYQ5pOfqAmf0aHlIJ3UBpGq8PKSTuuTKqCBzSCd1gaQqyhzSSV0CRRVmDumkLqGiijOHdFKXYFEFmkM6qUu4qIUQQzhpS8ChRs9DOqkLL1Xj5yE9Vx+pM2oEPaSTuoT9agw9pJO6RP5qFD2kk7rE/mocPaSTuvA3NZIe0kldXqFqLD2kk7pEICqDG9JJ3YlBhnRSZw53XKsVTjWkk7rZD3bIzpWZ1ZSitpUZ0kmdI5Gi5jIP6aQusYgaIA7ppC7RiBpBDemkLkBAzQUf0kndbu07hJO209x3SCd116UZXZqlQFstchzSSd2JTIb0XL04scmQTupOdDKkk7oTnwzppO5EKEM6qTsxypBO6naUMoSTth2nDOGkbUcqQzhp27HKEE7aTrQypOfq5MQrQzqp2xHLEE7adswyhJO2HbUM4aRtxy1DOGk7kcuQTup27DKEk7YdvQzhpO3EL0M6qdsRzBCea1c3hKnozuqFMBXdWb0QpqI7qxvCVPRn9UKYiv6sXghT0Z3VDWEq+rO6IUxFh1Y3hKno0OqGMBU92rwQpqFDmxfCNHRo80KYhg5tbgjT0KHNDWEaerS5IUxDlzYvhGno0eaGMA092twQpqFHmxvCNPRod0OYji7tbgjT0afdDWE6OrW7IUxHp3Y3hOno1O6GMB2d2t0QpqNXuxfCdHRqd0OYjk7tbgiD7CgcvBAmIDsKBy+ECQiPwsELYQLSo3DwQpiA9CgcvBAmID4KBy+ECciPwkFCGDWtfkgndW+/G5AfhYN9EjaEkzafpBT1cGRIz9UFH+m5FUM6qTvnYUM6qUsMox6+DOmkzjEMqccvQzqp85mK3ux4SCd183qnIZuUObFV7408pJM6v0/1M7chndSlyEo9zxvSSZ1ze/TudEN6rh6dBIMhndTZp3pn5yGd1NmnpEe9AQFSiOJT9VB0SCd18ake9QYESIERUejqjehDOqmLV/UgOSBACsyIChnPEhKkIDk/ZMx2JEhBsn70k/MhPVdnRmRMX+RHgQlRqcaThPwoMCEq1XiSkB8FJkRF79Q7pJM6+1Tv1TukkzqnL+vdeod0UmefVmOCIT8Kwo/05o1DOqk7WcxDOqk7WXhDeq4uBKmqZZxDOqmbqXhDNimLT425jvwoCD/Sk6qHdFLnF6oxFPSoZATpidVDOqlLXY8esAfER0GygvTk6iGd1GXnq6ZXD+mkzpskPY1hSM/V5apuPcV6SCd12fmqSdZDOqk7ff6GdFJ3Ov0N6aTu9Pob0knd6fY3pJO60+9vSCd1p+PfkE7qTs+/IZ3Una5/Q3quTk7fvyGd1J3Of0M6qdu9/4Zw0na6/w3ppO70/xvSSd3pADikk7rTA3BIJ3WnC+CQTupOH8AhndSdToBDeq5enV6AQzqpO5VAQzqpO01Vh3RSd9qqDumk7iy/SJJCdZdfREmhussvoqRQ3eUXUVKo7vKLKClUd/lFlBSau/wiSwrNXX4RJoXmLr9Ik0Jzl1+kSaG5yy/SpNDc5RdpUmju8os4KTR3+UWcFJq7/CJOCs1dfhEnhe4uv4iTQneXX8RJoXvLL9Kk0N3lF2lS6O7yizQpdHf5RZoUurv8Ik0K3V1+ESeF7i6/iJNCd5dfxEnx4C2/EXFSPMjyq+b4Dumk7i2/EXFSPHjLb0ScFA9ONueQTuoS0ehxZEScFA8S0ehxZEScFBkYlabHehFxUpQWPfrtCkM6qTNP0q9MGNJzdWnTo1+aMKSTOsepTY/1IvKkKDxJvzhhSCd1jmmaDhMi8qQoPElvez+kkzp7VW98P6STOntVb30/pJM6e1Vvfj+kkzp7tRteRaIUpXFPN7yKRClK6x69Bf6QTurs1W54FYlSFKKkt8Ef0kmdvao3wh/SSZ29qrfCH9JJnb3aDa8iUYpClLrhVSRKkZkR6W3rh3RSb6xueBWJUmRmRHrr+iE9V2dqRHrz+iGd1AOrG15FphSZGtHB8CoypcjUiA6GV5EpRaZGpF9RP6STemF1w6vIlCJTI9L7/Q3ppM5e1Tv+Demkzl7Ve/4N6aTOXtW7/g3puTpTIzoV6SsgJyJTisyNSL+wfkgndfaqfmX9kE7q7NVgeBWpUmRyRMHwKnKlyOSIguFV5EqRyREFw6vIlWJ2zt4iYqWYvbO3iFgpZu/sLSJWisU7e4uIlWLxzt4iYqVYvLO3iFgpFu/sLSJWisU7e4uIlWLxzt4iYqXI4Cg2tRhvSCd1pwJmSCd1pwZmSCd1fq0aPDciVorkNLIY0kndbGUxZJOy08xiSCd1p53FkE7qTkOLIZ3UnZYWQzqpO00thnRSd9paDOmk7jS2GNJJ3WltMaTn6tVpbjGkk7rT3mJIJ3WnwcWQTupOi4shndSdJhdDOqk7bS6GdFJ3Gl0M6aTutLoY0kndaXYxpJO63e5iCM+1m9PwYkgndaflxZBO6k7TiyGd1J22F0M6qTuNL4Z0UndaXwzppO40vxjSSd1pfzGkkzovv3pzoiGd1J0y/CE9V+/eOXlErBSlr7O1uCNWitLZ2VrckStFKWjTF3ekSnFccW4s7kiV4ugoZCzuSJXiuObcWNyRKsXRVchY3JEqxe7UBQ/ppN69xR2pUhq9hfTFPSFVSgenzeyQTupOo9khndSdVrNDOqk7bTKGdFJ3GmUM6aTuNJwd0kndaTk7pJO603R2SCd1p+3skJ6rB6fx7JBO6nbTjCGctJ22GUM6qTuNM4Z0UndaZwzppO40zxjSSd1pnzGkk7rTQGNIJ3WnhcaQTupOE40hPVcf16KrrQeGdFIPzuKeEColxkbW4p4QKiWBSsbinhAqJYFKxuKeEColuSFdXdwTIqUkVW7G4p4QKaXRG1pf3BMipSRlbsbinhApJSlzMxb3hEgpSZmbsbgnREpJytyMxT0hUkpS5mYt7oiUktyYbi3uiJSSdCmyFndESmn0KTIWd0RKSdpFW4s7IqUkDaOtxR2RUpI0JWtxR6SUpF+RtbgjUkr54C3uiJTS6FlkLO6IlNJoW2Qs7oiU0mhcpC/uSJTS6FxkLO5IlNLoXWQs7kiU0uheZCzuSJTSIErG4o5IKQ2kZCzuiJTSQErG4o5IKY071Y3FHZFSkkI3a3FHpJQYGsWmV3UmREqpeOdvCZFSkpbSRlVnQqSURqaS2k9lSCd15oRRx7kJkVJiaERRx7kJkVJiaERRx7kJkVJiaERRh/QJkVJiaERRx7kJkVJibERRx7kJoVJibERRx7kJoVJibERRx7kJoVJibERRx7kJoVJibERRx7kJoVJibETJ8CpCpcTYiPTm6UM6qbNX9fbpQzqpc57ocXlXZyRCpVS9SDUhVEqMjSgZjwdCpcTYiJIxZxAqJUlVanq1Q0KolBgbkd4UeUgndfaq3hZ5SCd18aoxxRAqpSpeNaYYQqXktUAa0kmdn9VkzEikSmm0QdLT+hNSpdScTnJDOqmzV/UOlEM6qfOzmo35jlQpMTeibMx3pEqJuRHpTdeGdFJnr2ZjRiJVSsyNSG+8NqSTOj+reuu1IZ3U+Vk97n7UZxWpUnKpUkKqlJgbkd75bEgndfGqMYGRKqUuXjVmJHKlxOSI9P5nQzqps1eL2qN9SCd19mox5gxypcTkiIoxZ5ArJbk7zMjJSciVEpMjKjpaTMiVMpMjKvoUy8iVMpMjMpo3ZORKmckRGc0bMnKlLNlKXa8cyciV8sG5ym9IJ/XibK4ycqV8EK/qMzIjV8oH8ao+IzNypSzZSkbTjIxcKTM5IqOCLCNXykyOyKggy8iVMqOj2PUctIxgKQcPQWQESzmIV/WTzIxgKTM6IrIGg14NTlPPIZ3UhevrBW0ZwVJmdESk3gwwpJM6r8BGDVlGsJSDeFW9Gm1Iz9UFLHX90c4IlnL03qsZwVJmdERGhVpGsJQZHZFRcpYRLOUoXjWeJgRLmeERGSVnGdFSln7XzXAToqUs2UpVawg9hJM2O9UoIstIlrIkKxlFZBnJUpZkJaOILCNZysmjhRnJUk7uo4pkKUuyklGilpEsZUlWMkrUMpKlLMlK1ZhhSJayJCsZhV4ZyVKWZCUjGTUjWcqSrGQko2YkS1mSlYxk1IxkKcud8PrtoEM6qfNr1chdzUiWsiQrGbmrGclSlmQlI3c1I1rKkqxk5K5mREs5O215h3RSZ68aqa4Z0VJmeERGqmtGtJQZHpGR6poRLeUsXjXmDKKlzPCIjFTXjGgpMzwiI9U1I1rKDI/ISHXNiJYywyMyUl0zoqXM8IiMVNeMaCkzPCIj1TUjWsqCloxU14xoKTM8Mq7lHdJJnTdL+sW8Qzqpc7aSftvukJ6rSx8lo3dVRrSUyeuMlREtZWmkZPTSyYiWsnRSMrp6ZURLWRpo6/fuDumkzltg9ebdIZy0ea9kdMfJSJay9FIymnplJEtZmikZTb0ykqUsnbT1G3iH9Fxdemnrd/AO6aTOORD6LbxDOqlzDoR+D++QTup8CGe0RchIlrL01Nbv4h3SSZ0XYKMrVUaylOVqM/0+3iGd1PlR1W/kHdJJXTpAGBMSyVJmdmTcyjuk5+pyxZl+L++QTupyUaQxCZAsZbcMLiNZym4ZXEaylN0yuIxkKbtlcBnJUnbL4DKSpeyWwWUkS9ktg8tIlrJbBpeRLGW3DC4jWcpuGVxGspS9MriMYCm7ZXAZwVJ2y+AygqXslsFlBEvZLYPLCJayWwaXESxltwwuI1jKbhlcRrBU3DK4gmCpSBlc11/xBcFSEbBkQIKCYKlIwpIRNRUES8UFSwXBUjnIXknfoxYES0XAklG4UxAsFQFLRuFOQbBUGB2RUbhTECwVRkfVKNwpCJYKo6NqFO4UBEuF0VE1CncKgqXC6KgahTsFwVJhdFSNwp2CYKkwOqpG4U5BsFQYHdWDdknZEE7axNqGU5ErFSZH1ajbKciVCpOjatTtFORKhclRNep2CnKlwuSoGnU7BblSYXJUjbqdglypMDmqwXAqcqXC5KgadTsFuVJhclSNup2CXKkwOapG3U5BrlSYHFWjbqcgVyqMjqpRt1MQLBVGR9Wo2ykIlgqjo2oc3xcES0VSlk4dIhUmVhAsldGZW381FQRLhdFRNZIDCoKlwuioGskBBcFSYXRUjeSAgmCpMDqqRnJAQbBUGB1VIzmgIFgqjI6qkRxQECyVccu98eJDsFSks1LXuz4XBEvFu2RtSCd13gHrdwIP6aTOcY1+k/GQTuri1WPkEd/Fil8VwVLJ4lU1+izIlUoWp+ptoQpypcLkqJ4CZyXGKsiVivTm7nqf8IJcqWTvwLwgVypMjuyfHZ3K5Mj82ZErFSZH5i+DXKlIylLX8xoKcqXipiwV5EpFUpasr4pcqTA5sr8qerWQN8OQK5VSnRmGWKkwOLJ/R3QqgyNzhiFWKiSnNXoWREGsVMg7rSmIlYrcyWb97IiVitzKZv3siJUKZe9nR6xUyH1UkSsVKYM76K3qCnKl4t3ONqSTenN/GfSqcCXzl0GvMjkyfxnkSqUGZ0IiVioMjqqRm1UQKxUGR9XIzSqIlUrNnpcQKxUGRzXpZ2oFsVKRKriDnjNRECuV6joVsVKprlMRK5XqOhWxUmFwVI1EsYJYqbTgzQHESqVF73dHrFRa8pYZxEpFsNLBiIQRK5XmHZcXxEqFwZH5uyNWKgyOzN8dsVJpzf0h0atNFmBj34ZYqfSD8+whVSrMjczpjlSpdNepiJVKd52KWKkIVjroKRMFsVLprlMRK5XuOhWxUumuUxErle46FbFS6d3zEviUDgfnZyekSnQIzs9OSJXoEJ05QEiV6CBO1QMDQqpEzI2qkdJJSJVIyuAO+hkZIVUi6dVtzAFCqkTSXMmYA4RUiSRdyZgDhFSJhCoZc4CQKlFwnlRCqETB2/4SQiUSqGTNAYRKJFDJyKQlhEokZXD65elDOql7TyohVaIgTSD0agNCqkRBgho9f46QKpFc91azoY5OHd26rcGgU+W6NzLUkSqRUCUjx5iQKpFQJSMLmJAqkVAlIwuYkCqRUCUjC5iQKpFQJSMLmJAqkRTCGRc9EVIlit5WiZAqkVAlI8eYkCqRUCUjx5iQKpFQpYMeNxNSJUpeVENIlSh5UQ0hVaLkRTWEVImEKhn50YRUiYQqGRnMhFSJhCoZGcyEVImEKhkZzIRUiZgbVSODmZAqEXOjqt/hPKTn6syNqpHBTEiViLlRNTKYCakSMTeqxn1yhFSJhCoZKcmEVImEKhkpyYRYiQQrGSnJhFiJBCsZWcCEWIkYHFUjC5gQKxGDo2qk9RJiJcruaxWxEjE4qkYWMCFWIsFKxtUQhFiJRnMl/ZCXECtRSc47HqkSley9tJEqkRTCHXTERUiVqLh7JaRKJL2VDjrJIcRK5PZWIsRKVDxWSIiViDxWSIiVSFp2B521EGIlIi9flBAr0cBKxtgRK5FkK5ljR6+6WIkQKxF5BJgQK5F0Vwo6sCDESkSuVxErEXk9AwixEkl3paBH8YRYiar7WkWuRNV9rSJXouphfUKuRNX1KnIlGlzJcBNyJRKuFPRQmJArkcuVCLkSVVmAjTcZciWSQjijMIiQK5EUwhkVVoRciYQrGdUDhFyJhCsZN9AQciUSrmTk9xNyJWJyVI38fkKuREyOqpHfT8iViMlRNfL7CbkSMTmqxrUvhFyJhCsZGfuEXImEKxkZ+4RciYQrGRn7hGCJJF2J9CJtQrBEkq5kpMYSgiXq3mkNIVii7p3WEIIl6t5pDSFYou6d1hCCJerVW98RLJGAJWvhQLBE0mDJSBomJEv14B2sViRL9eAdrFYkS/XgHaxWJEtVyJJRh1GRLFUhS7WoVzhUJEuV2VE16jAqkqV6IHvnVhEsVemvFPTgtiJYqgfvtVoRLNWDt1mqCJZq8DZLFclSFbJk/Y5IlqqQJWO6VyRLVRosBT10rkiWavCS0CqSpSrpSka1TEWyVCVfyaiWqUiWqjRYCnoySUWyVCVfySiuqUiWquQrGcU1FclSde+Bq0iWqpClpr+0K5KlKmTJKK6pSJZqFK/qwUFFslSj61UkS1XIklG6U5EsVclXMkp3KpKlKvlKRi1ORbJUhSwZtTgVyVIVsmTU4lQkS5XZUTVqcSqSpZrEq8YUQ7JUJV/JqMWpSJaq5CsZtTgVyVIVsmTU4lQkS1XIklGLU5EsVSFLRi1ORbJUhSwZtTgVyVIVsmRkr1YkS1VaLEU9oKxIlqq0WDIybyuSpZq9wKYiWarZy9ivSJZq9jL2K5Klmr2M/YpkqWYvY78iWarZy9ivSJZq9jL2K5Klmr2M/YpkqWYvY78iWarFy9ivSJZq8TL2K5KlWpyM/YpgqRYvY78iWarFy9ivSJZq8TL2K5KlWryM/YpkqRYvY78iWarFy9ivSJZq8TL2K5KlSl7GfkWyVIUsRf2wqSJZqi5ZqkiWqrRYMlr9VCRLVRKWjJz6imSpClkyUuIqkqUqZMnIqa9Iliqzo2bk1FckS5XZUTNy6iuSpcrsqBk59RXJUmV21Iyc+opkqTI7akZOfUWyVJkdNSOnviJZqsyOmnEZRkWyVKVvd9SpWEWyVMd9cMa7BslSrR4FrkiWqhTCGX1YKpKlyuwon2IJpRqyIlmqkrGUg1pFXZEs1dG4W18iESzV0bfbWCIRLNXRt9tYIhEs1dG321giESzV0bfbWCIRLNXRt9tYIhEsVamDs5ZIBEt19O02lkgES7V5ud0VwVJldHTcFOlLJIKl2t29EoKl2t29EoKl2uVRNZZIBEu1y6NqbMcRLFUBS9l4VBEsVSmEM/qpVgRLldFRM+pfKoKlyuioGfUvFcFSZXRk7iIRLNXRudvYRSJYaqNzt76LbAiW2iE4u8iGYKmNzt36LrIhWGqjc7e+i2wIlpp07jZ2kQ3BUpOUJWMX2RAsNencbewiG5KlJmTJ2EU2JEttdO5Wl8iGYKmNxt36EtkQLLXRuFtfIhuCpRa84pqGYKmNzt36EtkQLLXRuVtfIhuCpTY6d+tLZEOw1EJxlsiGYKmNBkv6EtkQLDVGR4F0sNQQLLWRsqQvkQ3BUpOUJWOJbAiWWpRmaDp7bwiWmlwHZ+wIGoKlxujI2hE0BEuN0VEzqvIagqXG6KgZVXkNwVJjdNSMqryGYKkxOmpGVV5DsNSic8VUQ67UonfFVEOu1KJ3xVRDrtSSd8VUQ67UknfFVEOu1JJ3xVRDrtSSd8VUQ67UknfFVEOu1JJ3xVRDrtSYHAXq+rOHXKkl74qphlypJY/sN+RKjclRMwo5G3KlxuSoGYWcDblSy959GA25UsvefRgNuVLL3n0YDblSy959GA25UsvefRgNuVLL3n0YDblSy959GA25UsvefRgNuVLL3n0YDblSK959GA25UivOfRgNsVIr3n0YDblSK959GA25UivefRgNuVIr3n0YDblSK959GA25UivefRgNuVIr3n0YDblSK15uS0Ou1JgcpahncDTkSo3JUTNqrhtypcbkqBk11w25UiN5q+qRREOu1JgcNaPmuiFXakyOmlEV3ZArNSZHzaiKbsiVmnAloyq6IVdqwpWMquiGXKkJVzKqohtypSZcyaiKbsiVmnAlo2V6Q67UqkcLG3KlJvfBRWPjhlypCVey3mTIlVr1kvYbcqUmDZasbSFypVblEE4/nmzIlZrLlRpypVbFq8bjgVypNfGq8XggWGqMjlrSD4MagqXG6Kgl46siWGqMjlrSmUJDsNQYHR33UMbY0auMjppR9NcQLDVGRy3p6SQNwVJjdBSyTpgbgqXG6KgZpUQNwVJrHi1sCJYao6NmVB41BEuti1eNOYNgqQlYMio3GoKlJmDJqNxoCJYao6NmVG40BEuN0VEzKjcagqUmYMmo3GgIlpqAJaO2oiFYaoyOmlFb0RAsNUZHzahPaAiWOqOjZtQndARL/eBsljpypX7wNksduVI/eJuljlypH7zNUkeu1A/eZqkjV+oHb7PUkSv1g7dZ6siV+sHbLHUES/3gbZY6gqXO6CjobcE7cqUevG7AHblSdxt3d+RKPXh3h3XkSj3Ik6ovGx25Ug/23WEdqVIP3t1hHalSD97dYR2pUg/e3WEdqVIP3t1hHalSj97dYR2pUo/e3WEdqVKP3t1hHalSj97dYR2pUo/e3WEdqVKP3t1hHalSj97dYR2pUo/e3WEdsVKP3t1hHbFSj97dYR2xUk/e3WEdsVJP3t1hHbFST97dYR2xUk/O3WEdqVJP3t1hHalST97dYR2pUk/e3WEdqVJP3t1hHalST97dYR2pUk/e3WEdqVLP3t1hHalSz97dYR2pUpdsJVI7ynWESj17PQs7QqWevcTCjlCpZ9kn6Zu2jlCpMzYKB72YtyNU6oyNmlGt2BEqdcZGzahW7AiVOmOjZlQrdoRKnbFRM6oVO0KlztyoGdWKHalSZ25UjmGE5lSESp2xUSt6FNERKnXGRs2obewIlTpjo1b0DOOOUKkzNmpGbWNHqNSLONWYMgiVOmOjZtQ2doRKnbFRMOp8OkKlztgoGP27OkKlLlCJ9MizI1TqApWMUsiOUKkLVDKqiDpCpS5Qyajz6QiVukAlo86nI1Tq5N1w0hEqdenaXfUQviNU6gKVSE/v7wiVunRXMlhIR6jUBSoZRUcdoVIXqGQUHXWESl2SlYyio45QqVd3q4RQqVd3q4RQqVd3q4RQqVd3q4RQqVd3q4RQqVd3q4RQqVd3q4RQqTd3q4RQqTd3q4RQqTd3q4RQqTdvq4RMqTd3q4RMqTd3q4RMqTd3q4RMqTd3q4RMqTd3q4RMqTd3q4RMqXd3q4RMqXd3q4RMqUsVXDTiYGRK3a2C68iUujAlo5ywI1PqwpSMcsKOTKl3dwFGptS7c1beESl1QUrWBgKRUhekZJQ2dkBK8SBNu/XLKoZ0UndylYZ0UhenqpvIIZ3UHacO6aQuTlVfwkM6qYtT1ZfwkE7qvFfSrzoa0kmd90p6id2QTursVb14a0gndfGq+t4b0nN1SVaK6l5pSCd1flTVer8hnLTZqXqYMqSTuuvUgE6VXCV9HRjSSZ2Zkn57ypBO6tJeKWj1fkM6qcsFJ+rNL0M6qcsFJ+reZ0gndQaF+vUpQ3quHuXWGvX6lCGd1OXWmqI6NaJTJVUpka6NPo1yZ03VtdGlDI1y0qdXRI9G8agK/oZ0Uue1N6vgb0gndfbo6RxFGws6lJFRzlHXRn8yMco56droTgZGOWdVO6E3k7xNVUY4pJM6uzPrzk/oTuZFOevOT+hOSVHSb58Z0kldLqvRvZ/QnUyLcoxayfeQTurizq5/OLpTGnWXg66N7mRWZL4aE/pTSFLRZ1ZGfwpIKvrMyujOLFdKdX3ZyuhPRkXHxVOfLBkdyqjIuPVpSCd1duhxQ6J/Ono0y51S+uTK6FAmRbnoK0tGh2ZxqD63Mjo0i0OrMXB0aBGHGgtRQY8WeYkm3UcFXcqgKJM+Fwt6tDiR6ZBO6k5kOqSTuhOZDumk7kSmQzqpO5HpkE7qTmQ6pJO6E5kO6bk6OZHpkE7qTmQ6pJO6E5kO6aRuR6ZDOGk7kemQTupOZDqkk7oTmQ7ppO5EpkM6qTuR6ZBO6k5kOqTn6tWJTId0Unci0yGd1CWIURM7hnRSZzSod0IY0kmdgxi9E8KQTuocxOj3hg7ppC6RqXqx3JBO6hzE6J0QhnRS5yBG71UwpJM6BzF6r4IhPVeXzCS9V8GQTuqc8JvVe+iGdFJ3o5iGXm1uFNPQq8yJDAo6pJM6d93Rs3uGdFLn0FRvyzCkk7p4teohVUOvSmaS3pZhSCd18aox3xt6VTKTukqfh3RSZ+Crt2UY0kmdga/elmFIJ3V+Vo8LsDpnOnqVOZGRiTekkzo/q914+Dp6VTKTunpN45BO6jZFGsJJ26m4GNJJ3am4GNIz9XBwKi6GdFJ3Ki6GdFJ3Ki6GdFJ3Ki6GdFJ3Ki6GdFJ3Ki6GdFLn12pUm8UM6aTOj6remmNIJ3WnOGpIJ3WnOGpIz9WDPKo6owpIkUJwiqOGdFKXR1VfZgJipMCgKHS1dGVIJ3V+reoF/EM6qZ/81vUC/iGd1InV9VUpIEYKDIq6XsA/pJN6Y3X9tRoQIwUGRV0v4B/Sc3UGRV0v4B/SST2wujEjkSMFRkVdrzke0kk9sboxCZAkBYZFXe/LOqSTOntVrwoe0kmdvarX3w3ppM5e1evvhnRSZ6/q9XdDOqlz48mmdcMYwnNt5kVdr9Yb0kmdnaqXXg3ppM5O1UuvhnRSZ6fq9RxDOqmzU/V6jiGd1MWpxpONQCkwMup6PceQTursVL2eY0gndXaqXs8xpJM6P6p6PceQnqszNep6PceQTursVb2eY0gndfaqXs8xpJM6e1Wv5xjSSZ29qpchDOmkXpydWECoFAQqGTuxgFQpSHaSsRMLiJWCZCcZO7GAXCmMkjd1JxYQK4VR8abvxAJipTAq3vSdWECsFEbJm7ETQ64URsmbsRNDrhRGyZuxE0OuFEbJm7ETQ64UCnk7MeRKoVRvJ4ZcKTA5CqQfLAXkSqHIo2osM8iVApOjnoxlBrlSYHLU9bqYIZ3UvWA1IFcK5AWrAcFSIDmf0c+hAoKlwOio65eQDemkzguwXqQzpJM6L8B6kc6QTupMgPU794Z0UpduomrZ2JCeq1fxqrGiIlgKVVrEGl5FsBQYHXW9BGhIJ3VegPWaniGd1HkB1mt6hnRSF68a8x3BUmB01PWaniGd1Nmrek3PkE7q/FrVa3qGdFLnZ1Wv6RnSc3VGR12v6RnSSZ2fVb2mZ0gndfaqXtMzpJM6e1Wv6RnSSZ29mtXuGUM6qbNX9aTfIZ3U2atFhzMBwVKQkjfjVCIgWAqSnmScSgQES0HSk4xTiYBgKYxeSvqpRECwFKRJt3EqERAsBUlPMk4lAoKl0KU/gH4qERAsBbn9zTiVCAiWgvRSMk4lAoKl0AXt66cSAcFS8MBSQLAUXLAUECwFFywFBEvRBUsRwVJ0wVJEsBRdsBQRLEUXLEUES9EFSxHBUnTBUkSwFAUs6YW4QzqpO7ckDOmk7ty+OaSTOi/Aejr/kJ6rMzrqejr/kE7qvACXpCTcD+Gk7TReH9JJnddfPfl/SCd1Xn/1q4qGdFI/uY1IjyQicqUoPboPWr3IEE7a/FLVawWGdFLnl6p+D9KQTuriU33/EBErRcFKeq3AkE7q7FO9VmBIJ3V+qeoXGw3ppM5O1bP5h3RSZ6fq2fxDOqnzS5X0TWRErBQFK+nZ/EM6qfPya4QGEbFSZHBkcKKIVCkyOOr6lSBDeq4uWEnPzh/SSV2cakwZxEoxeVFNRKwUkxfVRMRKUbCSnvs/pJM6O1XPEB7SSZ2dqmcID+mkzo+qnpU7pJM6P6pGZmtErBQFKxmZrRGxUhSsZGS2RsRKUbCSkdkaEStFwUpGZmtErBQFKxmZrRGxUhSsZJyuR8RKkcFRN07XI2KlyOCoG6frEbFSZHDUjePyiFgpMjjqxnF5RKwUmRx147g8IleKTI66cVwekSvF4m6VkCtFlytF5EpRuJLeyGNIJ3WnlHFIJ/Xi7U6QK0UmR+aOALlSLHL1kHonyJBO6s17xSNXikyOrFc8YqXI4Mi4cGRIJ3V+VI3EgIhYKTI46vp9DUM6qcvdb2olwpBO6hzUJLW+b0gndafnzpBO6uTNAcRKkcGROQcQK0Vq3hxArBTJuaZxSM/V5e63ZGwgECtF7+63IZ3UnbvfhnRS5wXYSPeIiJWiFL3pXXGGdFJ3vYpYKVbXq4iVomAlIzJAqhRr8+YAUqVYuzcHkCpF5kbmOoBUKcrVb9aUQaoUJV0pqVWYQzqpu3slpEqxOZeEDemkLm9V4yWMVCkKVdJvYhnSSd19VJEqxeY+qkiVInMj203oVbn6zViuESrF7joVoVLsEtUY6wBCpcjYqBu5UBGhUmRs1I1cqIhQKTI26voVNUM6qYtTjd0JQqXI3KjrV9QM6aTOWyUjDyYiVYpClZJe7xSRKqWD03Z9SCd1b/1NSJXSQRJb9KPMhFQpMTeyjjITUqUkRW/GUWZCqpSk6M04ykxIldJopKSyv4RQKY0+Sjr7SwiV0ujPrbO/hFApjQbd+pYzIVRKo0G3vqFNCJXSaNCts7+EVCmNBt06+0tIlRJzI4v9JaRKKQgq1NlfQqqUmBulpGckJ6RKSbKVjDyuhFgpSdGb3lpxSCd1PoGL+pspIVZKgpWMtK+EWClJg+5jWK6svwmpUopOIWNCqJSixx8SQqUUvXdqQqiUBCoZGWgJoVKSsjfjeDohVEpR2rMYGWsJqVKSujfSz0kTUqXE4Oj48fq7JiFXSkyOjvr6yyYhWEqMjo76+tsmIVlKzI6O+vrrJiFaSgyPjvr6+yYhW0rJaXw2pJN6lo/X308J4VJKXpVqQriUklelmhAupeRVqSaESyl5VaoJ4VJKXpVqQriUslelmhAupexUqSZkSyk7VaoJ0VLKTpVqQrKUslOlmhAspexVqSYESyl7VaoJwVLKTpVqQq6UslOlmhArpexUqSakSqk4VaoJoVIqXpVqQqiUilOlmpAppeJUqSZESql4VaoJkVIqTpVqQqKUilelmpAopeJUqSYESqk4VaoJeVIqXpVqQqCUyKlSTciTEjlVqglxUiKvSjUhTkrkVakmxEmJvCrVhDgpkVelmhAnJXKqVBPSpEROlWpCmJTIqVJNyJISeVWqCVlSql6VakKWlKpXpZqQJaXqVKkmREnJ6580pJO6V6WaECUlr3/SkE7qXpVqQpSUvP5JQzqpe1WqCVlS8vonDem5utc/aUgnda9KNSFLSl7/pCGd1J0q1YQoKXn9k4Z0UveqVBOipOT1TxrSSd2rUk2IkpLXP2lIJ3WvSjUhSkpe/6QhndS9KtWELClJglIyNvjIkpLXP2lIJ3UPECZkSYlp0XF/rAOZhDAp9RHNGBEt0qTUPUSYkCal7iHChDQp9RHMWL8lODYfJJgJei5ORp6UDxLMBP2IPyNQygcJZoJ+mpaRKGVmRkd9/eQlI1LKB4lmgh7xZ2RKWZpzZ+vrFlR3bt0c0km9OlMtI1TKB4lUjVqWjFQpH7ozdTJSpczcyJo6GalSDsO1emCYESvlIO/XquGNjFQpC1U6JXto2uhW6aSUjVmGUClLqpJOWjIypSyXvnVjyiBTysKUujGDkSllYUrdGjr6NMgDa1QcZYRKOXr8NyNVytHjvxmxUpZWSgbJyYiVchxPq07EMnKlHMfTqoOljGApD7CkTzHkSlnaKRlTDKlSZm4UDkZ1VUaslAdWMsqrMmKlPLCSUV+VESvlgZWMAquMWCkzN7KwT0aqlKWr0nF/oO21M0KlLFApWJ+OjpW+SgaXyciU8mBKOvXJyJSyNFYy4sSMTCkPpqQTq4xMKTM1KkFvvpCRKWWmRiWoEVFGpJRHZyU98suIlPJASjqwysiU8mBKOrDKCJVyFqd2/ZsiVcoMjsrxAdHV0akMjsrpinVVHZ3K4KgcHw9dHZ3K5Kicgj8FW2TkSpnRUYn6UVNGsJQHWNKJS0aylBkelaifTGVES5nhUYnGw4RoKUuT7mhMSGRLmfFROR0cqOro1SJeNSYBwqUs+UrJmARIlzLzIyuMzkiX8uivpIfRGfFSHv2V9DA6I1/K0l/JCKMz8qUs/ZWMMDojYMrSX8kIozMSpix1cEYYnZEw5dFfSQ+jMxKmPBos6WF0RsKUR4MlPYzOSJgyOUerGQlTJu9oNSNiyuQdrWZkTJm8o9WMjClX72g1I2PK1TtazciYcvWOVjNCply9o9WMkClX72g1I2TKApn0W82HdFJ3YxuETLm6sQ1CplzHKZweRmekTLmOwFUPozNipswgyYyFEDNlSVmyYiHETLmNMzg9jM7ImXIbG2EjrkTSlNvYCBtRAqKm3ARKWGE0sqbcBEpYYTTCpizVcGYYjbQpC23K1sejc5vXvCUjbcr94E01pE25S+Bq9BrIiJtyF+cazQYy8qbckzfVkDflLr41mhNkBE6ZiZI5NZE3ZWnYbcRESJtyl7NzPSZC2JSlIC4bswBhU5bUJSsWRdZUGCZZs6AgaioDNRmdoAuipjJQk9G2oSBqKge5sFHPBi1ImsrBa4tWEDSVgzyxRhF+QdJUDvLEGlX4BVFTOcgTm/RwtCBrKoM1GaXvBVlTOch6bNS+F4RNRa6COxjF7wVpU5G+3UbqWEHYVII41yhnL4ibirRcOhgF6gWBUwny0BoV6gWJUwniXqNEvSBzKmG415gOCJ0KYyXj8tEhndTFu0ZNe0HqVBgrGZeVDum5OmOlcJwLGhYqCJ1KlCfXKJkvSJ1KFOcaNfMFsVNhrnQwBoOeHczJqLAvyJyK3ApnBA0FoVMZyUxGRX5B7FQGdjJK8gtipzKwk1GTXxA7lYGdjKL8gtipDOykX4Q4xJP+8K0xkZE7lZHNpN+uNcSTvjy4Rj1uQfJUxvVwamhSEDyVcTucHpoUBE9l3A6nhyYFwVMZt8PpoUlB8FTG7XB6aFIQPJVxO5wemhQkTyVL4KOHJgXJUxm3w+mhSUHyVIQ8GaFJQfJU5Hq4bLxrkTwV73q4IZ3UZTE2irILoqcy7ofTL1kb4klfnlmj0LogfCpZnlmj0rogfSpyRZx+39eQnqsXeWSN4umC+KkUeWSN6umC/KmU8cgaSwICqFLGI2ssCUigSpEV2SigLoigShH3GhXUBRlUKeP6P2M6IIQqRdxr1FAXpFBFujEd9CvRhnjSlyXZqKIuyKEKk6Z40GPJghyqkLjXKIwuCKIKiXuNyuiCJKqQ9DnUQ+GCJKrQ8K4xexBFFUFR+oWzQzqpD+cakw1hVCGveURBGFUERmUj5kAYVciLgArCqFLdCAhhVJGEJ+PMpiCMKlI8Z5zZFIRRRWCUcWZTEEYVgVHGmU1BGFUYN1lnNgVhVJFm38aZTUEYVQRGGWc2BWFUkeo5/cymIIoqzJqsM5uCJKo0yRrWz2wKkqjS5IhHP7MpSKJKE6fquL4giCpNDgN0XF+QQxUpnjPObApiqCK9vo0zm4IUqjQ54tHPbApCqCLFc8aZTUEGVZqkDutnNgUZVGHKZJ3ZFGRQRRiUcWZTkEGVLkc8xoREBFW6HPHoZzYFCVQRAmWc2RQkUEUynowzm4IAqkjGk3FmUxBAFWnJZJzZFCRQRVoyGWc2BRFUEQRlhV+IoIogKOPMpiCCIqmeM85sCBEUSU8m48yGkEDR6Mmkn9kQAigaPZn0MxtCAEUHiXT0MxtCAEWS6aQHRoT4iUbxnB4YEdInGtVzemBECJ9oVM/pgREhe6JRPacHRoToiUb1nB4YEZInGtVzemBESJ5I0pyMwIgQPNGontMDI0LuRMKdSH9UCbETSfWcsd8gpE4UvCMeQuhEjJX026GHcNJuzrJBiJwodGfZIEROJHlOxrJBiJwoepc7EhInkvI5Y9kgBE4Uk7dsIHKimL1lA4kTCXGylg0kThTJWzYQOJH0ZLKWDeRNFJuzbCBtoti9ZQNhE6WDt2wga6IUvGUDURNJTyZr2UDSRCl5ywaCJhqgyVg2kDSRpDhZywaSJpIUJ2vZQNJEQpqyflhKSJooeS9VQtJEyTuuIyRNJKQp6wEiIWmi7KUkEpImkp5Mep8MQtBEkuJkHB0SgiYS0HQMnbUWZISgiSTFyTgJJORMxCDJOtkjxEzEHMlq70BImWhQpqqDcELKRFkwRA2GPrq1eP17CCkTFXcFRshEAzJV/QiCEDLRgExVP3ImhEw0IFPVzzIJIRMV6TarN6clZEwk98gZ3WYJERMV6QytEz5CwkTFuxuFEDBRcZ9X5EtE3vE6IV+iwZeMnmuEfIkGXzKarhHyJaLhWZ1HEQImGoDJaLtGCJiIBB8afdcICRMNwmQ0XiMkTESCD43Oa4SIiUieW6P1GiFjIpLn1ui9RgiZqAoeNpqvEVImquJfo/saIWYiBknmuoCYiaSw7mA09iLkTFTFvUZnL0LQRFXcazSBIiRN9P9R9qZJkvM6luhe7u9rbeJM1g56DW3Pyjw8FBGq9Kl8yMz4ynrvjxRJiIAIZvav9AyScLk4AQfAgSvTyywHCjVZl6eXoQCyFGuyJfCJobqxFG2yJfCJ4bqxFG6yPk8vQ3ZjKd5kc225iWG7sRRwsiX0iaG7sRRxsiX0ieG7sRRysiX0ibu2KOZkS+gTQwFiKehkS+gTw9JhKepkS+gTQ3ZhKexkV2BJCIa9wlLcya7IUuzPrAcKPNkVWor9mfVAkSdbop+4a51CTzbkFA/mXqTQk13BJQ7HtRR6sjn4STDkGJZiTzZjT4Ihx7AUfLI5204w5BiWok82xz8lgLOn4FH0yWbuJu5ap+iTzdl2nAlM0SdX0Ke+Cewo+uQK+tQ3gR1Fn1xGnxgFzFH0yWX0iTGBHUWfXEafGBPYUfTJZfSJMYEdhZ9cgZ/6JrCj8JMr8FPfBHYUfnIFfuqbwI7CT24a1MRxFH1yYlQTx1H0yYlRTRxH0ScnRtyljqJPToxq4jiKPjkxqonjKPrkxKgmjqPokxOjmjiOok9OjGriOAo/uRVgUqavUjsKPzkx0pEdhZ/cCjAxUJij6JPLAU+C4dRxFH5yOeBJMKXmHMWfXM6zE0ytOUcBKJdjnhLdSOdKcBSAcivE5Bk+fkcBKJdDnphqtY4CUC5HPImpf8E6ikC5FWTiCso6CkG5DEGZvh3pKATl1Ch/0lEIyqkRWOEoBOVytBNzITgKQbkMQXEXAoWgXIaguAuBQlBOjSLZHIWgXA524i4ECkG5DEFxFwKFoFyGoLgLgUJQrgQ7MRcChaBcCXZiLgQKQTktRhcChaCcloMLgUJQLsc6cRcChaCc1qMLgUJQTpvRhUAhKKft6EKgEJTTbnQhUAjKaT+6ECgC5XKWHXchUADKZf4m7kKgAJTLAJTpA0SOAlAuEzj1+fYchZ9cJgXnjg2KPrkhKbij4JNb4SWuyrWj4JPLAU6CKQ7qKPrkcoCTYKqDOgo/uRzgJJjyoI7iTy4HOAmmPqijAJSz2cRhSn46ikC5jEAJhifBUQTKZQRKMEwGjiJQLiNQgsnBdxSBcjbzmDL3JQWgXAagBJMl7ygA5WyZXubCpACUywCUYDLZHQWgXAagBJPJ7igA5TKrExOb4yj+5HKQE8MA6Cj85HKQExNX5Cj65DKrExO15Cj65EqQUz84x1HwyZUgp35wjqPYk8tBTn0GQEeRJ1dinLo8XY7iTs7lLPYuT5ejqJNzmRixf5pRzMnlCCeGAdBRyMnlCCeGAdBRxMnlCKc+A6CjeJPzmUivy9PmKNrkfCbS6zIAOoo1OZ+J9LoMgI4iTc5nl12f1M1RoMn5zIvYn3wKMzmfefT6k09BJjeMbXIUY3I+p6/3Z58iTC6TOTEMgI4CTC6TOfUZAB2Fl1yGl/oMgI6iS26ILjmKLrmQefT6K4tiSy5kGr3+yqLIkst5dQwDoKPAksvAEsMA6Ciw5ELm0evHFDoKLLmQQxD7DICOAkt+yiwT3cXlKa7kp8yM2D1ZPIWV/JQntLu2PEWVfGYEZxgAPUWVfK4zxzAAeooq+VxnjmEA9BRV8lNOleyuRU9BJT+NKkJ6Cir5aVQR0lNQyU+jipCeokpejCpCeooqeTGqCOkpquTFqCKkp6iSF6OKkJ6iSl6MKkJ6iip5MaoI6Smq5MWoIqSnqJIXg4qQnoJKXowqQnoKKnkxqgjpKajk5agipKeokpejMkeegkpejipCeoopeTmqCOkppOTlqCKkp5CSl6OKkJ5CSj7HNJm+U8JTSMkXSInhVvIUUvKyaLx9A8VTTMnnJDrBZJR7Cip5lS3VPgblKajkh6CSp6CSVwP4wVNMya+oEWdLeoop+cLc1FeQPcWUfAlrsl1wzlNMyatsyjCp9p6CSj5TNzH6gKegks904Myd7Smo5FWZ1r5d6Cmq5DN5k+zSynkKKnk9oqf1FFTyOhupsm90egoreZ2NVCa93VNcyevsiWMS0D0FlnwuN9ePs/IUV/J6VOzIU1zJr8gRF2flKa7k9ajakae4ktejakee4krejKodeYor+ZI+xzisPQWWfI1s6jtkPYWW/AoecfEUnkJLfgWPWM2AQku+JM8xcVaeYku+JM8xcVaeYku+JM8xcVaeYkt+BY+4OCtPoSWfKZxMP3HUU2TJZ4rwPqjnKa7kM4MTA+p5Civ5FTdij22KKvmCKjGMDp6iSt6OQsE9RZV8QZUYAghPUSVfUCWGAMJTVMnbEYuep6CSX1EjDvXxFFPyBVPqoz6eYko+M4UzqI+nmJJ3Ixo9TzEl70Y0ep5iSr5gSl3D31NIyRdIqW+bUUTJF0Spb5tRRMkXRKm/3Cmi5AuixBhbFFLyGVJiUB9PMSWfMaU+6uMppOQLpNS1zT1FlHxBlLqoj6eIki+IUhf18RRR8hlRYlAfTyElXyCl/uRTSMlnSKmP+niKKPmCKPVRH08hJV8gpf7sU0jJZ0iJQX08hZR8gZS6qI+nkJLPkFIf9fEUUfIZUeK0PAop+QIp9VcWhZR8hpT6qI+niJLPiBKnQVJIyRdIiVksFFPyGVNiUB9PMSVfMKU+6uMppuQLptRfXBRS8gVS6p8sFFEKBVHqrq1AEaWQESUG9QkUUgoFUuofRIFiSiFjSoxiHSimFDKm1Ed9AoWUwjRKfgwUUgrTKPkxUEwpTKPkx0AxpTCN8jQCxZTCNEp+DBRTCmKU/BgophTEKPkxUEwpiFHyY6CYUhCj5MdAMaUgRsmPgWJKQQySHwOFlIIYJT8GCikFMUp+DBRTCmKU/BgophTEKPkxUEwpyFHyY6CYUpCj5MdAMaUgR8mPgWJKQY6SHwPFlELOkzP98nuBYkphRY04/TtQTClkOnCGYSxQTCkUTIkhPAsUUwoFU2IIzwLFlELBlBgGs0AxpbCiRibZ4x2TOVBMKWReJsEQngUKKoUcqSSSptlBcgKFlYIq1oxn+tO5zbFKpg9DBYorBTWcW4orhYwrcdyAgeJKQZXJ7YMhgQJLIUcrmb6VGiiwFNSIBiRQXCnoEQ1IoMBS0HlqdReHChRYCityZIXqTxTFlULBlZLi3pNO5zWXmuN2FUWVQqZmEknR70mn85phJYZkMVBYKWRiJqG7oFWgsFLIGXNCd6M6A4WVQk6YE0nX73Wns5ppmdaoy053CisFU2a1S+QZKKoUMqokdJfJM1BQKeR0OSZGM1BQKeRsOZHU/Z50OqsZVBKmvyIpphRKvJLpLzEKKYUSrmT6a4YiSqFEK/WRy0ARpVCClUx/EVBEKZRYJdNfBBRSCiVUyfQXAYWUQolUMv1FQCGlUCAl018EFFEKGVFKym23O53VgijZ/qxSQCkUQMn2Z5XiSaFEKdn+rFI8KZQgJdufVYonhZwkJ2x/VimeFHKOnLD9WaV4UnBieFlSQCk4ObwsKaIUVtCIK7sdKKQUXI4/6xPlBIophRU24upoBwoqBTcgew8UVApuRPYeKKgU3IjsPVBQKbgR2XugqFLwI7L3QGGl4Edk74HiSsGPyN4DBZaCH5G9BwosBT8iew8UWQq5+JzpJ90HCi2FXHyO01AotBT8iDUtUGwplJw4hoIuUHAplJw4RqOh6FJYASRWo6HwUghipNFQeClkeInTaCi+FIIaaTQUYAphRBsdKMAUSj4co9FQgCmUdDhGo6EAUwhupNFQgCkEP9JoKMIUQhhpNARiUtM08RpNaUXdBa/RlFbUXfIaTWlF3RWv0ZRW1F3zGk1pRd0Nr9GUVtTd8hpNaUXdHa/RlFbU3fMaTWlF3QOv0ZTWtruYeI2mtKLugtdoSivqLnmNprSi7orXaEor6q55jaa0ou6G12hKK+pueY2mtKLujtdoSivq7nmNprSi7mGg0ZTmtn9mAGc0mtKM+gteoymtqLvkNZrSirorXqMprag7zxFdGlHvAUd0aUXdBxzRpRV1H3BEl1bUfcARXVpR9wFHdGltu6sBR3RpRd0HHNGlFXUfcESXVtR9RYRtN8yitKLugxSb0oq6l83aDbcpzah/2a3dcJvSjPqX7dpFmEoz6p/3q+tGB5Rm1D9vWNd195fmtn/OiOtzSpdW1H0QClFaUfdBKERpRd3zOey6sQelGfXXvH5YWlF3w+uHpRV1t7x+WFpRd8frh6UVdfe8flhaUffA64elte1eQab+JWLotFaQqX+JGDqtFWTqXyKGTqtRvH5YWlF3zeuHpRV1NyP90NBZNYOs5NKKuruRfmjorFaQqb8iDZ3VCjL1l5ihs1pBpv6asXRWK8jUXwSWzmoFmfqLwNJZrSBTfxFYOqsVZOovAktntYBMjH5o6awWkInRDy2d1QIyMfqhpbNaQab+rFo6qxVk6s+qpbNaQab+rDo6qwVkYvRDR2e1YEyMfujorDo10g8dndXMwsTqh45OqzND/dDReV1xJFY/dHReVxyJ1Q8dndcVR2L1Q0fn1fGEH6Wx7e0HhB+lFXUfEH6UVtR9QPhRWlH3AeFHaUXdB4QfpRV1HxB+lFbUfUD4UVpR9wHhR2lF3VdVOO2mnn7o6aT6gU+utLbdw8AnV1pR97xZXddbXJpR/7xbXddbXJpR/6Ixdb3FpRn1z/u1T7pXmlH/vF/7pHulGfXP53CfdK80o/75IO6T7pVm1D+fxH3SvdKM+uejuE+6V5qb/qKATX3SvdKM+uf57ZPulWbUP89vn3SvNKP+eX77pHulGfXP89tn0SvNqH+e3z6LXmlG/fP89ln0SjPqn+e3z6JXmlH/PL99Fr3SjPrn+e2z6JXmtn+BnfoseqUZ9V9PZdmN0S+tqPt6KqfLs9udzu6KLMl+Dk5pRd3XU9l2ow1KK+q+nsqyy+5TWlH3nFvFPQyd2Rzd1M92KK2oez6Vue50Xgvu1GcvLM1t/xLe1L2aBUWdRIlu6l/NgqJOomTM9a9mQVEnUTLm+lezoKiTKKhT/2oWFHYSBXbqX82Cwk6iwE79q1lQ2ElIN7iaBYWdxAoscVezoLCTyLCT7eaMlNa2+4iDqbSi7oN0udKKuq/xL7ZbrLC0ou75JO7zY5Zm1D+fxH1+zNKM+hcztmtjCIo7iRVY4rAMQWEnUWCnPpYhKOokcsIcg2UICjqJAjr1sQxBMSehc8haH8sQFHMSNa6pa/AIijmJkjDXxzIExZxEjWvqGjyCQk6iQk5dM1ZQyEnUuKauGSso5CQq5NQ1YwWFnESOa2KwDEEhJ1Ehp67VKyjkJEpcUx/LEBRyEgVy6mMZgkJOokBOfSxDUMhJFMipj2UICjmJAjn1sQxBISdRIKc+liEo5CRqXFN/EVDISdS4pv4ioJCTqHFN/UVAISdRIaf+rFLISRTIqY9lCAo5iQI59bEMQSEnUSCnPpYhKOQkCuTUxzIEhZxEgZz6WIagkJMokFMfyxAUchI1U66PZQiKOYmaKdfHMgQFnYTN4EQfyxAUdBI2gxN9LENQ0EmssBKHZQgKOgk3Upgo5iTcUGGimJNwQ4WJYk7CDRUmijkJN1SYKOQk3FBhooiTcEOFiSJOwg0VJoo4CTdUmCjiJDLi1CdhLq1t9xVUsq6/tSniJPzIlyMo4iT8yJcjKOIkclhTvyhhaUXd1/iXflHC0oq65/xHRoWgiJPIiFM/jbS0ou4DeoHSirpnUq1uCmxpRd1XV06/KGFpbbvnCnPdooSlEfXOpD3dVLLSirrnlNZuBmxpRd1zSms3A7a0ou55Urv16Eor6p7LBnYzm0sr6p7LBnaLEpZW1D2XDewWJSytqPvKLdAvSlhaUfdcNpA5rSnOJHPeXD+Fs7Si7rlsYP9wlxRlklMuG9jfTJKCTHLKZQP7C1JSjElOuRhktyhhaUXd86z2F4GkCJNcISSmKGFpRd0HbEylFXUfsDGVVtR9wMZUWtvuIzam0oq6D9iYSivqPmBjKq2o+4CNqbSi7gM2ptKKug/YmEor6j5gYyqtqDvPxlQaUe8BG1NpRd0HbEylte0+YmMqraj7gI2ptKLuAzam0oq6D9iYSivqPmBjKq2o+4CNqbSi7uukMminpNiSlINg4dKKuqd5s6qb2FZaUfeCGPaRb0nBJakKEtxHviVFl2RJnOvXCynNqH82bfr1Qkoz6r/aNrJfL6Q0o/469+8j35LiSzLjS7JfL6Q0o/429+8jsJIiTDIjTLJfoaM0o/4+9+/jY5JiTDJjTLLPnV+a2/4lsKmPfksKMslRtbnSirqvN2w/67K0ou7rDWuYnUJBJqnL3DJrk6JMUpe5ZdYmhZmkLnPLrE2KM8mMM8k+kXRpRv0z2N/NuiytqPug5kJpbbtnvm8GnJQUaJIrlBT+bdz/MoYeaRRmkhlmkn0K7NKM+qvRIUVxJplxJtlnzC7NqH+e2D5jdmlG/fOJ3PcQSYo0STM8kSnSJM3wRKZIk1yxJG+7adulte1u84btZqqUVtR9ZL1KijTJESlTaUXd1UABoUCTzETfPatbUpRJrjASsxwpxCRtjpToWxWSIkzSln3KnMEUYpI5rkn2CdNLM+qfz+A+YXppbvvnyCbZJ0wvzai/yP2Zc4ziTNKV3cqcYxRokm5AI1xaUfdsvnYtb0lxJpkpmfolpEor6r5ObZc0sDSi3isi4bt8iqUVdR8Zr5LCTHKUPlda2+6j9LnSirqvs+qYy4/iTDJHNnEbm+JMckWS2I1NcSaZ0+cYWEpSnEnmqnKyz5lfmlH/fLP2OfNLM+qfd2yfobQ0o/7rjuXMXQo1yRzcxJm7FGqSITO/MOYuxZpkGJRyLa2oe7ZfGXOXYk0yZPuVMXcp1iRDLnrDmLsUa5Ih26+MuUuxJhmy/cqYuxRrkiHbr4y5S7EmGfzgtqFQkwx5tzLmLoWaVK4mx5i7ikJNKleTY84CRaEmlavJMWeBolCTytXkGHNXUahJ5WpyjLmrKNSkMu83Y+4qCjWpzPvNmLuKQk1qGkW8KAo1qRzKJPtkwqUZ9R9pwYpiTSpHMsk+93BpRv3z3dqn2C3NqH++W/skuKUZ9c/2a5+ntjSj/lkV7vPUlmbUv5zE/bteUcRJ5TQ62afVLM2ofz6J+zyZpRn1z9Pb58kszaj/Sj4buqXYS2vbPSfSyT7NUGlG/fP09mmGSjPqn6e3TzNUmlH/PL193qDSjPrn6VXMcqDQk5J5ehWzHCj2pGSZXmY5UPBJZdqmaPcz/en0ZtqmaPgz/en0rviSN32TV1H0SamB+1VR7Ell7Ml2ww0URZ5URp6YwCZFgSelBiWrSivqPsqnUxR2UpkInNG3FEWd1AorcW5ARUEnlXnAGTegopiTymFNjBtQUchJrZgSZy4oijipTAPOuAEVRZzUiilxbkBFESeVEae+MaIo4KR0ZrfsuwEVBZyUHrC7l1bUPXtf+25AReEmldmaGDegomiT0tlR1/cAKQo2qUwCzrgBFQWbVE6kY9yAioJNaoWTOEtKUbBJmeyo6xvsisJNKheXY9yAiqJNymRHXd8NqCjapEx21DGbiYJNymRHHbMgKdakTHa/9t2AimJNyuRZZRYBxZrUiiZxbkBFsSaVo5oYu0hRrEllrImxixTFmlTGmhi7SFGsSdlswfbtIkWxJpWxJsYuUhRsUjYbOn27SFG8Sa2YEmcXKYo4KZsNnb5dpCjipGw2dPp2kaKAk7LZ0OnbRYriTcoOEq4URZuUGyVcKQo2KTdKuFIUa1JulHClKNSk3CjhSlGoSblRwpWiWJNyo4QrRbEm5UYJV4qCTcqNEq4UBZtU5mpy/RRyRcEm5UYJV4qCTcqPEq4UBZtUpgDn9A0KNikvR/oGBZtUDmri9A0KNqkMNnH6BgWbVA5q4vQNijWpEtTE6BsUalIrlsTqGxRpUiuWxOkbFGhSmQac0zco0KQyDzinb1CgSeWgJk7foECTCnKkb1CgSQU10jco0KRyUBOnb1CgSZWgJkbfoECTKkFNjL5BgSZVgpoYfYMCTSoM6gWWVtQ9jPQNijTpaRroG5oiTboENfUXpKZIky5BTX19Q1OkSZegpv4i0BRp0jmoidE3NEWa9IgOvLSi7gM68NKKug/owEsr6j6gAy+tqPuADry0tt1HdOClFXUf0IGXVtR9QAdeWlH3AR14aUXdB3TgpRV15+nASyPqPaADL62o+4AOvLSi7gM68NKKug/owEtr231EB15aUfcBHXhpRd0HdOClFXUf0IGXVtR9hZa6OQCa4ko6p8sx2oamsJJecSNO29AUVdI5Xa7rzNUUUtKZo8l1yxmUVtQ9b9NuXZXS2nbPiFIqrNPrTiElrfI2lUx3OqO5tpy23YtDU0xJZ0zJd+tflFbUPZs0mulO51QND1+KKWk1PHwppqTV8PClmJJWw8OXYkpaDQ9fiilpPTx8Kaak9fDwpZiS1sPDl4JKWg8PXwoqaT08fCmopPXo8KWYktbDw5diSloPD1+KKWk9PHwppqT18PClmJI2w8OXYkraDA9fiilpMzx8KaakzfDwpZiSzhFMjBNMU0xJm+HxSzElbYbHL8WUdM6U65dCK62ou+cvDooo6YwoSd3372gKKemcKCd132GjKaakc6ac1H2Hjaagks6pctyhR0ElXUAl5tCjoJIuoBJz6FFQSWdQiTv0KKikM6jEHXoUVNIZVOIOPQoq6QwqcYceBZV0AZWYQ4+iSrqgSsyhR1ElXVAl5tCjqJJ2fM3W0oh6q9GhR0ElXUAl5tCjoJIuoBJz6FFQSZdEOebQo6CSLgTgzKFHQSVdCMCZQ4+CSjpXleMOPQoq6VxWjjv0KKikS6Zcn1JIU1BJDzPlNAWV9AobcUQEmoJK2mfPqu57bjVFlXQJYdJ9z62msJIuIUy677nVFFfSJYRJ9z23mgJL2o+4BTRFlvSKHXFBp5oiS3rFjhLrQvdlUmRJr9jRGn7VwS41RZZ0pmeSuu911hRa0pmeSZqJkU/nNgcxiX78rqbYks5BTP0arKUVdc8za/o+bU3BJZ3JmaRhrkCKLulMziQNcwVSeElnciZpmCuQ4ksmkzNJ01/5hgJMZhqFCBsKMJlptG0NBZjMVOa2v68MRZhMrjfHgJiGIkwmI0zS9LehoRCTmQZlrEor6l7mtr9rDcWYTIlmMv2VbyjIZDIxk7T9eAtDUSZTwplsf20aCjOZEs5k+2vTUJzJlHAm21+bhgJNRgwCwA3FmUzBmfoXs6E4kyk4U/9iNhRoMgVo6l/MhgJNpgBN/YvZUKDJFKCpfzEbCjSZAjT1L2ZDgSYjp8HFbCjQZKQYXMyGAk0mZ8853T0vDQWajBzFChsKNBmZazL0rx5DoSZTQphs/zgzFGsyJYTJMscZBZtMCWHqV88ozah/3rIMlbWhgJPJgBOj1BsKOBlVdixzglDEyaiyY5kThEJOZgWV+ve4oYCTKdlzDE22oYiTKdlzDE22oZCTUdmL3jdJDIWcTEmeY+59QzEnU5LnGOJrQ0EnU5LnGFpJQ1EnU5LnGFpJQ2Eno/PcMrSShuJOJlM0SYZW0lDgyWSOJsnQShqKPBk93LgUeTIlf45hoTQUejIlf45hoTQUfDIrvMSUvC6tqHueXYa00lD0yehBOLih4JPJNE2Sobg0FH0ymadJMhSXhsJPJhM1SYbi0lD8yZQUOobi0lAAymSqJslQXBqKQJmSQ8dQXBoKQZmSQ8dQXBqKQZnM1iQZiktDQShjyuwyi4eiUCajUJKhuDQUiDIFiGIoLg0FokwBohiKS0OBKFOAKIZq0VAgymQgSjJEeIYiUSaTNkmGCM9QKMpk1ibJJHIbikWZTNskmURuQ8Eok2mbJJPIbSgaZUpSHZPIbSgcZXJSnWISuQ3Fo0xOqlNMIrehgJTJSXWKSeQ2FJEyOalOMYnchkJSJifVKSaR21BQymTGcMUkchuKSplMGa6YRG5DYSmTYSnXTyM1FJYybgQhGwpLmRV44rgIDYWljCuTyyw2iksZVyaXWWwUmDK+TC6z2CgyZXJunWIysw2FpozPk8vkNxuKTRmfJ5dJWDYUnDIZnFJMwrKh4JTJ4JRiMlYNBadMBqcUk7FqKDhlfM7Z6YflG4pNmZxep5gEV0PBKZML1CkmwdVQdMqEEaOpoeiUCSNSAkPRKRPK5DKLjaJTJpTJZRYbRadMJg9XTDKkofCUyeThikmGNBSfMhmfUkwypKH4lMn4lGIyrAzFp0zGpxSTMmUoPmUyPqWYlClD8Smb8SnFpExZik/ZTB6umJQpSwEqm8nDFZMyZSlCZTNCpZiUKUsRKpvJwxWTMmUpRGUzRKWYlClLISqbycMVkzJlKUZlM0almBwoSzEqmzEqxeRAWYpR2RWE4iAzSyEqmyEqxaRMWQpR2QxRKSZlylKIymaISjEpU5ZCVDZn3CkmZcpSkMqKMr3McqAolc0Zd4pJmbIUprI5404xKVOW4lQ2Z9wpxsNqKVBlc8adYjysliJVNnOIK8bDailUZXPKnWIcK5ZiVTan3CnGsWIpWGVzyp1iHCuWolVWDiBIS8EqK0cQpKVglZUjCNJSrMrKEQRpKVRl5QiCtBSpsnIEQVoKVFk5giAtBaqsGkGQluJUVo0gSEthKptpxH0XI7QFp/r//v2v5fJzvj/n9/99eZ9//+s//s//+dfh7fpz/te//+df/7nkv7np36vQf/3H//wrauX/8T//9//+u8pa/5dkH94e19PrOT+vp/l+uBzn9/k2x/GxSyMqGqMgKl7LjKjj8XU/HL/bgdG83UaKVKGNG/tcrpePe+x5Wi4/5vdWyMpiBVJW7qo/SrlekITEm9VK+Ivn+P04Hk4zeQ6BpPBvAqR896RIJMUMpPycH7fDEY1vXsWU+v77Xyktfv0gE+bMCHtHr9RFJWGbl4R4rQJEgiPKJ6vrJzfVT17AJ18/hfop3XDlk4ZPrkq2oUp2oj5uYuGpn0L9VL9DJsaH/Mma2s+6OtabwU893I/o15pm3oRVgR/5dp9vaKid2qHa80OPy/2Ip9oZiQZPg8GvO9m9xqCxg187n07L7UFGKzSa3f5x9O/n/fVY8IZxxqPxlh+/XC7z/Xa/fiz4x9vQvrkUVzYQ8Xjms+djuSxP+ixRAWvWqh+8xSro+vZf8/GJ5xFNxehpTofv+Y4fwKAHGCyfeHjhedABrTzHDz3Pjy88BWioHgzt/Vy04s3gnd2uCz7snXbomdnzqYw9nq4vfLhotHjUYPFkAdfTFb1wMfnmEeKmZw/aIuFyvZ8PJyLCIhGD/dOI6D2KR3L+9DYaOT8Ppxc++qd2T0RhgzldhXUktFdxlPCnd/v7+x88NRZNzfDFnr53y9mg01ANTsP/fh3eP8jVFUw7rYlJlR0edZHPef0FD/IGBfr9fydinQ4qSLWCRqdKIyjPLpUk0SMNjoe9pO6TafRkg6OKk7euGyoV7Qc/2A+N1K4ggwSxqtT7++P2Nd/JAtLoUBsNft3p+nEGnUx6sBef8Vp7v+JzDemiVg/W/vP6eb++bvh3t0e5TP5lfvh92S99i5Y+u/NPy+cFq7/NQHa3n57z/XJ4zm/z6fqL7lrj2/tLCvalVymn+fL5/Io/4YkPQ9Nq0YnLhxe0PF/veO5Ceyk4a7Iet1LVMFLObwuxQ4RQ6AGKRhnMH2TsjvUwtae64NXmPD5Oyhd5ENc8yVp4kRFwOZy+HwveQrKdD/5iv3xijcq4dvkLfvOkge/z533GW1eLZimlgIr17RleF1rlXM+H5YLFNJdAClsZjE5Dds9h2ksoWPbdZwH3w/tyuBABphUwfA+d4bpdRSnOpbwH9gq4fD6e9+sZCUlUStsK4jWUy+frdMDqZGOWj0epG1506Pxihy6Pa3za23LEx5dBxxdvPW3j79fngSrjYmoNIpnc45ycS2+4bZfwYNfUwW8HbNjI9uuVLmtY89c3SHp+35Ck5iIqlm7iiyviygdfTdBU/6t+cvVTYoUtn0I1cxOzVDmURD3itOTn+RsfDO3b0eyhdvnea/ypBmhzorFv9jb/3mn80f5v9xP7Lm8JGkLHqEbHqC9vJhrs5bdHM53V0FZpxFIXol3k0vF7ex29s5rjeIfGs8t8HU9vyjjcoOH8a0zDL/MvopwjndKyE7iOfsyf5x3O1m6uVP43v0Vn2W12u52W47rA3+fnYcG6qUUXdoqq/aOUtTcSgZCiiT13NhGv+wlL8EgCuxnwUpCtCat02Wopcrcc1+zSuB9360K25r/SRXEwPCJzP34tPw9v8f5bVjDvcP/G8trrv8JnVozlzT/n+w5pabFNYSZ2zSRwCZ+lLaLBv4z5gE4916wIawrqNjBr7/frr7fT9fhjeRdYGWlnNdVd+bMAiQUgZZJfWEnA13x4x+9ft+9f1/c/fIokJN0CWBlrl7erFwG73ZKcrB5jxbidxIF2n4anR8CvMqCZ5BXiOhq/x4B1YnYJJh3mcj3HTXp6XRZsV8vWLkt0tYyM53O+vNZN/nOm1oFHENtALXtG++jt9cTz4DSyDCV7VL2e17590S4nZ9nlFMe/RwvnSQ7+FtmIL6De3VPVCdRkCtCtBjdzFH6OrwcdZK29LKq4gfEUZbxu74cn9Ro0C3Wt2cAM/70QXVm3dzvoM7yG8M9yfuHlvdKSbl+uWODm7XD8kSzneDNTi8vaVnvVklsdRMTb9RlfKTG9mhe61qT/K0nP642I0UjMnx9owV4ppMtG3ZHbNJuA2/2a1DZyA1ikE2vWFk1yfh3u73jPNZMLzhRewmPuIJzt90vD7ts0OilMySO1XD7RT5jQGaS4MyiJ6GifzeIK9UoSjnU0gpR/5vsVnWLtD6m7lb2ZVqwEKyqNZcb+hPmfZb53FIx2UWpTLyR2pyzP8wEvSATQKTAeitvMsl7PLAofpqKF/w17J8Shj9t8vy2/5xPWEpop4WHet1Nckrv5tLK9DJXhDrq36wm7DTy6iiV3yL5d7+/YQeNbVSIelOybuuJzrf1CcDaygEYa3VVGhGqPNhaLSuMfyztRPyQ6RQx7772tJ9Dl8+36G6872667imWoouEWR9e//xWqXSpt1ZakZ6Gn9cse58Pvn1hja28ywfp1yujl8sKjNRrNbkv8A1vMy9WzoTq8lS673LIBDtShK1rNUVQ3tqoea94RkATN759o17eeSdix1Vnt5OiZkqjT8njiyURroUydY7H6JIcCza2vUtn6SLKKYme8iNo/km8fqeIirOGU5Jyu+KpV7a8qLzzVpOQlFOx//zBtFIfR9WHYHRtFRV0TqQ/tXmXdsWngGl+DlqJCNl99taY+BbtzQdju97QhOqqGXngWTHx7ncmV0cIv/K/53rm0vUdAA/+N37doQRKQwgs0ltvIx8Pxa14dMa97VDviqb0k5wK2O1xr5BtX3wD3Lo8HvAEF+R3ssPN8R3ZwewpY/hekYcqcz9Hke+zNvjWWtNltf/j+HaC/xq6247kTNY9/X+577XGNJ25eYeCuHyKDusuRa2H8HNGY3wO7KQy6fQx+BpOIndIgWoeMYA3oPPpxu5LBre3H6lx5MHHrpfDqdgq4YykP/k3GOjSWO+/z2G8y1qOxnNadx/5DxgY0lrsfjoekqj/RF4c2MkgWoDipPc6BggAxVqyHNUo+xlse630t+ik0G7EUx1Is3iDH7jQY+ng+Hl+H9+sv4pSWyLvB6vzH+B98EqZqaJszSFR9woBiUQ76IMEBUCHIeN7UC1ayeEP+xvPh/gNPYasi16ukfKdnb+lN2GP5B79BhDJI1rzOEq4f8+GOzzLVXkXsQo7/Wc5zlEB8YQh0Z/ff1+H8gd++RUFOmj9Av1JMwvF0fcwZ9H/MB3St69YTYWrUoavWUwigOkKk4VQ1NgmXeHz22jqYhPVZ3uN7uFAwV6vm5xhbYWFVNbmqkAUPj2PgcUBDB/Mx7kl4HDZWKD/OfHn/NScvNdkXyJ2iWdAnC3le421/OJ3mUx+pWJMVmoOHhbtBXFwot3mNY2UlouP3jw/4/HVd746/kYwOZxYhP34tp/fH6fo8nOmJJgRymgYLjsIawqomWzFjwXq64BuobyXKb1WpUDVANU3wTXV9RPn82y7yadAzCrcqgOz69BA4DGEYgjXT92GtAoXWCVi2op5j5ZEDfxOvMg8YBkLw8UAHiWNf6RyZL9jy0ZNpT/L6EKzz9Xg6YHU61dZq3HfsJRSfnECbKJ5DQCgzvBpZj3YpPaB0cNTYarZLz89x+tK4NT+W+fR+jebEnSIJViCHDH91J0nH64FoUK1DSxrDv7Qy+n59fX5d5gc5b1q9Whp+S2Qx+9g3pM9b/lZN4+cUnbZqoqupgWEViVIG/PBtfC3v7/Pl43T4pE+DIvvs8NdgdNijKLmpBr9LURELWYDJ+Ck48DZI8DY48DawbuT1a7sRichCs3Y4mbfk1Llf8MNL9PDs0ZnGF1v9/fBEBlbQ7UwKNlB1lVGMxJ2M9jqNMvhJXG5Yq2iMO/6Ll9vtdCABAB7/cnbs9fjj10Ji7psdxBrUjQpzvafQsp0lpds4Q1OXhqvrRkxT9eFMrirvk6onCNjQ0gGi6dmI9f7T7N6Kbp1jpiq9DrI8porHxUeS8Eiw0OHwcwEsi8AfdOmRcnzL7fp4xtv9SE6Z0CKJUrLpHKuox97UFK3JJ/0fxj+TTrTqvOiVtOeLqZpkUJvpVO9YOVj6WT59wFT0t5FdHQD1/rb1aAiqOhNtcPBt7Cahjh/fqvzCQ96Nk0MRH/freYcnCYkCTVgtrgo4H+L7XAgGoZDTgr1+q4xODBT6RWyACEjYY1uiBWQEG9yWb67r634k0fntcMnH28T/vy2XeUl5dskfj1Y38gNJHkiJ/79e9i9BOowp1bUykHM7YBGhzQCRgsWfj/kVpnCmw5o8iC8RpCXypl0Ucr2kF7GOQ78EoWvVk8HrSEgSxRgUyt2r12w1yAaL5Xy7kwPIooQgxR/2ZWw8U0/zT+xisxp5ydgw+irjektHM3kMix6D37bn2+s5p2P+kK5ZfJYiOGi4SqKMjrYRkDUg2ZC54xVfKhL53+vhFgZ77vJ43l/H7g0lUUxANbwDf/lXYfhIlK29p+pFq32NFxMQOFbO25TlXj7AX6onqV4KtjoqIHnR1nBRV0El5+FDGe5rxJuvaICvjiVflQJf4QHvweSqH+r9E8ADWEGOUE3W4ECnqPqDmOovE2XHpk+yJoAKVa98AYmdcoJP9aJPbFTlk4IgfXAeCQUJpQqeQEFqqYKxulrBQtcXL3S1qYSWdYSu21kYGGHq7xcGNCcDT2AgDsbUlyGMg0++focJ9ZOtJ4Ww8AS2ho4LQHiEhQRagBAF3NyimBBrYiyMgO+FZSHcNMGnOsLVpSYczAesH+HqchEOvs1VTU2ALih8XSDxVK+SfV2XAlaWCPDGA0Q+h/p8EqKi5CTgUw2ajmd9tWyFhXCnupqkBK1F1o0RTw2wlN0GSMPfQDJsSakk/A2eStc5krA2pHbwN7C3TX270oAvHNaBhHRnaUUda9Vmq29JyfVvDix+p0CJgt/m4W++zozcvPEBQEjYsfHKhzhEcDNOGq6suj+UAMRF1BMqbjfQBOuTxk8VQ5IGWgENgre7FgUvn+B7VcUr1mo15RPgVHAyrnzG5RPYsJBWrsBmWFmG/oM7kp+HhWRqtEHtti4S7wfH+iqjhyw4lP/GRjlVESwmgGJNLO87LHK69rlD6a080lRk9LLwHEpLZePDk4jl8rq+0HCPzVweW46j79dTSgX9TDrMzgE6oXh5PVB4V0HZDb7zHOk2iMWy4WvH60p6ccn3/+GeUkwfz+szGhLJs4q1kjZ6XA78IVnmWNSERA0WcBL1uB0uz2sOE8PvqsUnpWI5KIoceJbndX06/EgSPRL/xsDr/v14zshjYlGIVz1c+JVA5sy0HmNXb0xfjymvIZqhfvDbjQy3L0AIxsDNDfeXgdvSgJ5gPBBUAKGEnbZ7GG5aiCO09ccJ0L/iTQv3JqApDm4tOQFaC46h4uBb7yWgr4C7RULmi6qSpYYbT4NrVUOMptVguwMJhmdpFta3P9/7sFNzRA5MgCjghZdj67CXenAux6E/yVC063l8MNqGOIzZOkQKIQG2qiqNBAUvXmqsobfKfbv+7nJX2DamRGg2og6knKMBSwJa16oATTgDHxawCsk+icfxvrzN7+W0JJBTa2b5PzwTHLuJHIFGmuo2cMBU48BVPTuA0jeBG3ESm9q0KSgAVbEJX+Vp0hPcFvqKnEaMGmzYZBGSuATe5zszYxLNGAvIIVH9aUMxWjx4skrC4acTgp9432Ye+vaNByPciHdj5sHLI95gx/lM0CenEOUHf9OsUlIE4eP6EY3y3cwglgb+7stiejNi2gBi94cNnqA0kryl28MFznup+MCeVtKKuGJFsD1xDJv5vElhwmV1S5/BkyC0cvD4NtHH+vGaT+P33lPdos+gIks+qYIK670d14r8i6ciWIxuKSdsDYqVmnfCbqLKbsTiRCvOgLg//8QOl1HAUY5setQm5ON1igri+30+HdYAgcPzC4fHt15G4f5SYhKDpKAENvcXP46mm4Y2tzL+sj+/bUoSpFt2Gp6LYxOwp1TR7dFl4KbwbBLHJuw+/+ywdOjW9Wl53xOI2dOE6NYBaT2Y8H9xfDxeb+/l/rzMGNVGMWJ8nH4rq/PjWlOF92KBjOfXfZ7/6/FfD3zAhhaOlsJuqML4JybjdqBlSKRljEXFc+S57EDlgGhOBO84zzLm+3J9X44/Ltdd5FGr8WgAjDRvvGeJy61/JVmHwgv/sDxXhLivIaBM4DB+R6vl1Vmeql2eYxH312nukdnEN9Tufv2HU+jx9XrG82N31SOeN95zl2Wsv6T/VlA+LR9EnOU8D/f++tNo/f1BSn4n4F7tPxdKAg/jtfP8iiuxow4hLjTeWM4y7kv88/veB96e1Za3llYhr8vycb2fe7tCol1RdXDN77PX20wyxVBGPh/qGq+s9/lzvsz3dBTFN00gBOT44dX3KOZ1eT2wshxQeIvkd1H1OeFwI92q6cAqaSvCCOCpmMC0n8CInjadCeBlVx3g0rPJy3uyCBRxVm8ZVaP8Am9NJ0lb9FFK6sInVXs6VKlDYUwsSGvJOgCAWUWjb6hJh0IswTxUm0eD3aibxBK1jfWoZhEAwssHzazC7tffmEnBoTDNzQ/FL8gU/otPiQmxu/IwyutBk4kRCxx/Ya4DFwzCJW9YG1/J5t/k0Z2cexSeyc5qR8GWDiUPVHBM8Akkq5A7jTVo48T85mxjhLwfHl+EU80jxpOJDf1OQ/EJ4hFfzcSy5qWYsCM2Lj0iyJuqj04KiKNU1Q8YTybwoEjYQPUoiRo3/8CEmae1qZViV0oct5KFPQ4/46ZJOZBPulhRXLJiD14sidy0EoVNK/ZOe5/JjEuHUkfAncseAauEcjXjzd8I8uCI4rSyVcwWqY29Ec10guuLhVBWSeRWbQnFJJ9DG4d2sxda+5JfiPPxis951e5CXd+B2TK2q9+/+p1tjX9z1Ufmqq3tNbjyIbqruvLddijWI1uA81YAqC0hCg/cfAKCjIVq3OUAv4Pr3oG73IEL2IEj3gtwFUOggAcarFBtRhH05haGOMDqIpQCYHUBjlAJAXMKnLIQMiD1hgoHcN5C/gY44qXdIgwrq5109aVLD8YVvNJ42sJ1BW7Sqb4rJRS4WGFlA9mXkuD0VApcpzUSQ+nq2l3L0edPpjoZ1poso+WV2IawZ6w1hNkchjQ4hwklbgSrH1GLJQwN7SIXivX4NZK+n/PhTtLWbHt4RTHcffMeFc7XiaSHtfpzXeN1TcIZLsELAwwOlnWVla+pJIsUHQntd0rJpjUVMU1OCYlLRGnZLKJRxFCiEdXm4KjCnN4dnpgS0ey34YRAze7qK3J1U4S6IqM1AIEy4Faa6u6VCmJytYLABwc69Mat7rb1DzyddedHIfxt8+PQOV9RJDhLZ7sn5XESEYdBHIqB481AFI2Bw8pAqpeteS4CTmDhWBUpf//hdOopmAJlE7C8CVnGmo+DNcU2Ij3qJJB/U6dGTXUa4mphNYJVOs4zcDhglaW+KGNpiKXDMbeO32hpeNwgP5f51+163zOqemRle5a8ZSfpMT+fVLfw6LTyrLX9Pt+eX2+vj5QNhF6LaXGDMHgrcfyRUGwLZJFMrD0ZdfLl5wowU+O29VXU6BpXt2+A63eCggkT5PltTjsFMVGwz+Ntzq+87WGoPapb7mEDkYawiyAfLKXfwHNYeI76ycMV7Vlr5X1O+ORtx3GEeJ8VbFHPUtNEQc/7lTjZEM/Kll0FcVoSYrLk4KJdBQP6icHP1pwRA11wlRFP+rgNPnF+tUbA7uCizSLIkR9ar2oczr/nRPaI1q3D9Gv8wPke7ZLDhYbOt7ioYfmP3pfDJ2UP0K0dadkI4Dh0l0fR7PNyFJo6mwEMNskficvHxwu7iwR2qlSNmac1LTI6HNEoCp51o74v5w7Lr2x9TFvEq2BRgk3MniGr9fiza7KXkCzbmVH1toRgG1sVbFcjMSANJEC4zmTg4beEI9hyqr7hqD/A8cCb1fUhkyts/v3cP7FFXA6SJRkCSY/nN3awyja4TTXmEb8uW1H4flWtmavr2emrISdAcxUCDCeIrUxVbcsnJWEh1len+NCU+ETpBdEV1cY2bPHXbOYuSNkvqPZCGCzIGj2GH6N1FWxkyLxeu8nZP0jrjuc36Hll8cZARktqr+DdK/5CqVL2D9F6zwe/Yl0ehGcNlabhYZjlnFIc91RpbTQBvzw7tC8elQcKoN8G/mZeHonPdsWUiHEYJswdzR8x/bgV6RGpUl3pQDslLOvabkU+fs1zMj1TQbJUP+t6P8fjkASuNmpdvR54s3gV/r3jixMTMkkM67qPAp40r0lg7lnD+tzel+fXTO1w2XLOKUB2AIlTQvCLqMiLl+jXlQSENr8nQAAdK+l6fKU/xFtvTb3dBXe61mUQbSb2J15Pp+/1GCd+LqVRPg6/KffVBdocPsjYcPX49BPEuYHyDEGk2m74E6jREGCvIUkWwtGlAzTJb0QOQAoH/PLR5mUX8PWMjdZWo+F/Nt4/KFWaH0O2Asow57/rfjhej1smGl6NrR9hS8bhDSYirJOVJtsQK8DFhBo94K8OK2m7gqThAfc4Op4UlBjVeMSGwBJDp+FpC5wPjx94vEXj2RfyyrTnGBhuw1cg28TWD64Cpq5e4r4Cjh6cj5D3M4HmACwCQmw8vpDZI7fpA3sOmM6Fhn6uJoQJD85VSC0TkMEsAFSSE8C1AngMFLRqsFMteF0gM0pC/pKEDKWok1YpoeY0KbDhlIRcZnBsKQ39tIZPLOUjzAkNuTCt992xxMEwvhO1YdqwFp6iNipdJ+xAQmXE2DimlZYp3jhf173SJttDHvJy4sYCvIvdYqtYoM2dT/PPnavZokp1in05jChKxWtRpTA1elGNuBSvR4m9LSpHp1gsiEi6Xj47ohAIzoa1rqIqy93yeOA4MotUL82Ghqf43DWDI4WAPb4I261FhSU16zVPUvbJFy3q5w37O+LYj+VETG6Eb0mWeC4NjiMWEjdiWspDvghnpjcl4Y5oD0j2klkDm9F3tvTSlg1OYgOiZRuPumWaQlCasPyG3MejyvZ0h3NQ8ORau/id1miAjEaWUnU+v83v76QkLiLcHnxzHkprc8o27EF58MKw11wraB9OK5EVxDL7tkKIAMzbwE7weVm1jg5Ug4IWJTg32NS6+ZKMocPpdP1Fiw0jUkdeic4S8J5WiNYPnBMO8qs2p5Y08DcoLKBZ11L+MhoEgCgklWDP2MvOc91GsULSNNzfFvjLq3rsqj7tqsniqwfJ11saUoa3jOFJAXQEGc3CAmIC2dUS9A9wrgoF+c7AgR61GMjMVps+Aw5rWMgeXNKgWUUdBxzWkCUeNngQgownwLvhmaUw4LCGv0mzua6rEaG2UGUwLAyYHRZ0IbvlCYOj3AHy78HtHcB1B+aOmiDDF1zrSkDOLeTlK1mlKAljIX9aAS6mNPigtIZPwEgFaKyybMWKvL72rusWFOaPqHVwx45wEtPBsPfU5X1HrKtbRc8MHvydr5XXOnH4EylVsLr3KOFxyWB++J79pz3LeEhpvvxc7tfLDoppLxe1xXSxFngjp1eoAqMMbZmwrRoKJzkHSFLwpL15DAvdzL9vhwu59DziO/Es4BjHnsiBF6/IFuJyLNYImPQAoG71Ub4IPJJ0/figWiQiPOarwPfRFUSdwuJ13Th6gUL2gAoSOC80v12quFyUpVPzu1XVWT50EHM83LoWVrv8/ySDJuW00f28clpHP6+33q9ow7r++G5/JcJUUhcAUbgNltomofciWiCMOz7ToLUTgqBafcyx87mLCTdtCiRwiknBWtpJwpN63lG5I70p26D5sPTOH4dlF7eEdEvF7tsylGxVifQx1nX2cTgvp+/dawwIBGWpkT5SZa14ks/3ffwRokZib5GPGZ8NEpVVZJXClQv087680zSM1gOq+Go8ad2r9zO+Plrcdsu1Z31nRUauQfNMSioW1zoGPITtsJR7Rdwa49mRhgpJACUAG45TpRXXTUdgq0ADjsKXFiwCW0OmI7TFP7ewJH7pZqFrxemdNNWWB1QA4hmW2apIWy7Zc/E+fyyXNc6hI7q1isGjadigviJ6Jf/rSGutYgjsM2yObJUWb8eUWNAR2GoK4Eg1LJRUBFZqwY7A9tZsmJ24q7cKjLv6fH1f4nbDgW2qJfRQGx0FqxEVgXvOPtVGtqh68Ape5UaSOr+03ShVUxP2TyfB7fT6jCIIC6tqNZUtdKfUeP0baZ0HbL3qYBryyY9V5PXxnD8+ur+5DdHTwOrBR6MUkff3H9UdtvvhbRI85GoJnk+3ilwvg5SEGhs7DypbqRs5yR8mpxcnp1o0eqNLs3/awlsy4Rrs2HnGtjryBFuFRUyr3DXuuCPOtOJgo7BIXhGXQgQ7wmwrrO4Vx1LXFGG/7suzZ2ei6F7d0K2xWkqUR3UFa1FyKhQSFcA0qdmo2STvPncIzVXL6K0hWNCBdD04Cy8pa+P3TsWzqPa8GuyORgDVqhDtJMukFUW890JhUaVR8HtPW/FVgCYEC98l2StZRL+WKAoftYOZpEUdHWaQBeDJAJ0QBHTGmwj27nbcAG0esD4KCyl31m07idUm0zOtD4OwEESvCzFHBnx5BtgGDeBrBoJzDKBqBu55ux27Yjsttwfkt9PlfacqI+ATSKuFAYWFL3DzsfyOWgoYyzuOMdse7IKvctWTQxYuqorIc51+nHBAbxsMwQZkpkGpMg2NJW7vzomNyvwgDOamVS2Ao0ryRQk+Ttfv90eK8H6b7zi4p62uyb68a1S4306v++EWdTvCESvQRagMSzMBUrpxM+iGVoZNBAAp/7U8qesKXZ7K8GdqlfE4RD1k70AT6OZUAy31igcq0Wou4Gh3LE6XBOxS/yUCcDR/CsfBX2tZFzIcsRzxlsX1fux7xKxFHFls2t4qoVuNuF3XfLGJTmRGG7YClJxscO1HIgeg8fUtt1A92cAN4EFdmbYYCoiN0IDuT8D9CRnfcVqAGRQi8l3Vn6MhXrFwiLpQUPtdKd5Ov8+Py7xm8f6+xv/E37SL5wsTigFi41WKrCjk1ANoJ4TtsXFt6epEc4Jo2QKvVgyu3FYp4EuSrZxK3cwylIwPAR/C8BdHJaLfX5coS82y1dw/7q/H83XONbH2dQKURonzbGRWlxyoDbwWDpIv+TpOn/P1PD/vOOOhDYKK5iC3wurYFP6ATqvWsarhmncs/vI5E5JH3159NQavrnlfE679xp0MEUcGfHoGPHRQEktAGqeAnRa1FJCymcDTZr2CumVBc7GbyQOfwLJ3YLI5KNkmwd8ma0JOvFWBm7ieE1LWZ5FgjktQwaWGPBkN7MN289+x0Hd8vanayuW1C7/xbaqiCCziGiU0BcnPpBymRVI0m1uepGTELhdeQWcIonQVbNJkktEnWVNtoJKux6epH4Bo01UHua9ecWBIDmAkTkBxPQEGJEAbFwDayS3sGJYMxG8KvQVJGVgUEDe6XRkeyMIDOI7DlhQFOZUCaD7VthQg+tQCr4sFomcH5NQOspB9PeUk+M6V3ELiIJAXUrAUEKErDYTQmi0QlKbode5PMgpHY51YUcLflHENKAFfsApiErenZhYo/NyyCXdp9MohUhmD0g1wed3fHilUvF+mBcf21yAGMJaAGTPVTKqzvNFIwMHgQQX3LGgRH68EnCdMkwRNtWQJgAmLepAKCUeaBAONp4aI39RC0IeS9Y0tRuSAZtNoGFEJyMEQpUNWv2HNsCRwcyn3lp5ECXIjQUlv3lfsDAZxD7FoaxGQuJRpEFswqIIQCxAkEcv98ezAGKiMaoAQnqluczUBYQBfiSbJJwaGbY/fqOmPhmb1hegsqPoLG9cWh68OB1qSOu7F9mQwLGQcBVB3l2lRQwfXsGZR3STj+j6fjqmODCmx0qYoCc36n6qI53UN2nzeD5f1NMCyHJI1eKWXuF4fy9uJ8pAJtGACFGUEfioFQdKKL12UvqBDB4+C+aRlte80fHfarRyc6FTE51+bOlgVOAf3J/B0iI2nY9pK1FkwfeBGC2y8K/t4lOgNn4yNrgCBTwLYVCSwaEgT4GaETaa22DlWy09lQ1c/CeFv8qgIr2fzeOL47qOnXM52UQCVSah6jZoELBTgIRIsE1j+IhLQE5eeREsPFlxVWhSoJYqvvLXKfn7taO0sypPQbLhDGj/fH/G0mFNw9fEH2SEeWSp8fjiS83OJe205kQrVHhFL83xuSdS+jDiq7cYD5HUwDvpCVeG36h+s2yNJyfEjnReLDp2RSVBEwNm1j81HySia9XdHWY/5k4aEeRR2PbFhU9tocjxJFI3ARm+k8bfD5edMqyqZ1sPiweOlN9gFeEnMRs0FbDwKGHoUS7W5fvf1uSY3pizPBdtWLXoeWJKLJIQcVX/WMI1EPFiQiraZBVAJBhwG8QAD1R72s2Yxk/hckD0qMZaGEhrCSBXqGgEo7XN01T+vt10Fs3gyIVYTOIUAd4snE8SlsnW9kvS08tej7/jd1RjRc7KB8lFSymjckx+pgOKxaqUu+FAvPFdDYV2dPeC78vVMDzUSOkClrAmQCQGLW2ykfOB/h5BvISHaTlW3V9TcYO3AiM1QAfBFgNEoPHyvBy6PAA5RILsSUG1cbsXP4Uml2GpcwN8UoCQQFSM10ANBbS0JniMJZGcSQsUl1CyVHqo1BShAAPllCqLEo+UOuatQbUgAs6SEKGfg91OQ+a2g5pPSBj5BFV2oB61GKFqzfghHdhuLV5c3YFO2Th1UgnJVf4EqW1BkC/L/w1bSVQGyAT58sXHzQcgFFMyKCwjQDuBmUwC4AVua2DQ9B+CahwJmEMMfFxDgHoCeQEGq+ACAgADHAzypFBuQBn9TUBYMIqDiAqp/2woCgL9UQrm8uIAAKdGAlEBKB7CCxAUEVWugENYEvG4CwuQF3ClSwrLZDmBYXhr4RrSBTxA6byCcng+jiQtoLdWE7GaHgjFHh3ynzJNANYMs6z9MowufEnFzoVx1lmU4jv9NzaZ4IuH6mwPF4feZXA2o/FIA/GoCdGvaMt5Z/9Xn8nno8Ykhlmn2J93nn8vp1Dc7xIRsLsVPaZWy1zQRaqV4nPS+vCcn5PKxHHeaXUDVxCRLersKoVkOASXyDaCCNHhltrunB8AiUEoer9tFEQnV2mcitqHOA9g6jj8f9pW/AqrKJlnq2XX8cumMR1gQrxrE8VHDOBLFwLQB64HHUe/YOy9QhSHeQFlB+p3ehNRp/ivXPAxqVagWPNuqYroNa2ITbVa4B8tqA9HqgR1PS34RRgl7V/qESLMMj1qm4QuB0RDaFODcnSZQCYBFU7C8zqvkNSoXgx9toBhrOaSxhNQFBbOwrumvwyNXeUtWDyGkRd5cxYZxJhH3+UZPXtXae+BhAvPB1WvW1XMV9CtQBMNWJR5sEiA4FQIUCQEpQlB5MxoCUKlVAYgH/Rxk9wEfnACPoIDKliJA/U6YQglGnQS9LdpHYPyBpw14qeQW++JAw/TghwNtN1pUUOMS6mNCyWgFYYIKSECUZknF4qz8ldMDFfvmYZ0orvgFElJ5/Tnf74SgL7Gdoy00WC9r0H8VgiHTNjZGSNbHG4V84oTkeGi017VjAds4lGxgRGIeNdDBS7gcfszvu9zugKgx5ein/5E0skVcPEsAmCRFDf+43A4nqE9AZhaFUbCx9l+H5xHXw0Q1Supy3oIZHBsj8pVQk56u004M61fbxwjp9oqyddEHqE4s2JsnyxLomkRcBTxDUR4q8VCBhrJ7LuV2p/IklKJetEepYGsf5HKtaCDijQC7ZfPzAaeQBPqseO+AJQFFbgV7d+QvzWX69tciUk34OPQvchiElqxASpaII407nE54KKpmwComX9f78k/KCDkd79fHo1dipEXM2MjqKOeflbRrvuAcMKQfCTZ1F8angjKEkg2tOFa5/rquuB9G+xAzGn8sX1/ED402m1IsOx8+AnU7z3Yrww0hZx5KoHsIL4FYBik2olWAX7YqXGFboxCuFoD4DDzVCvjgFaTSKw08Vgb8JZblGYmr6fIkSLyQbTyJ4p2BSzzUd3quR0HLniWnWaNY3m8LvpEQMxVf2CKe418zOTJbq4hFu+PA0yv+5r0/zmqUcsgyfxUJYyXBIr8ID2AXYbVAMo2RsBrF3I9+1X0+POYOl3gLglugyecrWWBRtHZsq9/qv5RBi8gKJIP/SSS6z7TbdGM+dBBH5je8E2oPurH86wd2SrYkbizCMAzo9AFRkrAX35JqjOPoWt0SmPLVwcvI39//4MEtVw6r465JgYfTf78O1P1mJeJbGnx9Yg8kV167LABWlxbKI3vWQZnFpYpZWKRAKw3YN/h0mizoMv/CclC5GT7ZKo8uV/qOkw5VorSDkwGE5POFSEHV3wfLi0jpPRAqRj84XXqidlilEG1KqORrNzbyekLQKhicVUnI/XD5pONbu4qvsbhPcUVicEBluTL1hn2zoTF7ufuETYHY0liP4l7UjSg6LXbCon97MQSwQLFeLACzF5Mj+1P6Ldl0rfYHOO1goa5yu0lsAjtfVZ0HcGexoWmJXu7yoMEBKJYnADikWHsmibk/9gy6qiUHgIw9wVfDXi5xrS/v9G21KIBiD6XH4eOD0KEJXMWLr9sbB5Pqyu2qMTVIEWr4BEhMmzZCVKirAn5GCXxJ0rPJOPG7o7F9QPCUaW9uDzkwGtjBNYRCQ7UBBdSRSgHNEE8LuH7tkunQyQowre4BUFD8drgaQFOGXD0ltlha0Jl5jsPlkcJm8VyhfCHJ5j4vj+PhdpvjtsokKTiMAyXdsGD3JoOUkrEe5UiwgH8UQAMWLQI1JXhwgwZ3GuBmUIMimhXs5sxfgfUmKxB3O4vXxsH7stitQ8ZUxATSBFx9zgBxhRMQj4L/TyoD1j2ofp5XFR7H0+Ec3zSxX1PmUIvfAuupZitCgKidKZtqWCJhAHyyuYRJ2JVU3NQtJgUVcKDela8mHnhFxQSqsYY4ZgCDpYDoGwXx6Br8sgbCV4CjVvoNgIUAN7hY474C3yp/Y5ff9Wt5fsVj+Xqa77ssQdEGLsvB7fBIUaNruZ1OifU23oMNvUoi8JFsWt3Xw50AYQQSPMMSUlsVhE0oBdcRH7Aav7RT0NG0YWvAjxu/GHJPYGFDpSMFBd/iFwMrLhueuTzivZ+UP5pP3ybk6TqfkCfs6q9zdbsBnuGhpA04AqCgkZiAn0XAOhSwNiUUxFCQpKMgGkFDPweOBbfVjIEUowC5IVDmUU4QbgU83hKqFEhdN058jRDeB3vCgXnhFKx6IO2DnJT44gFt2aLUIPwJCA6UVvCJN6MeW5FebMe1sBILQcfhtTzA4XSiKLA3yFE52AkdnlOtUZWIylld93mAHK1pO17gtSkovweBJ3JgST86bJoe6diBzTFNgz/va5VMGkzvAsrCG6hnq0aMz4I2dFoIHjh77LHngEgOJCQBSTaSdHn0AThUrtMM3sFy2TmLTVvlIPAAyOOvLJ4J+a35tMxNXM1KxHipRzUzPOvwWR77Eii6/UWm3mAO3BuQWbNlagF9ugQaUQnhfdJvAWIDbSU/SGd3IW8PS/S2PM6HVBAca2S6td3tVsSWrZ0TxcQlek96IdFXrEdc0qznr5GwU1Nsu9KEZskRlsdlfhDONyEQSuPYijTL47qrwm3aMISNuHULN9Qwb2YLD9xI4jWcwKy/Y0nBpYmmr6lAiyOdJCI4GAma78v1fcHmmGoT0qs721WlFGj2A/jQ4ZKKqhm4BMDnDWmLEpL8pNncVm5TwyDlBCKLFejuQBamDJsasf6eWvOSfTeIcoENQVtd3Be6X9v0u/q4wHQLoawBIl4niJvVW/wAKJ6g50gNVqyBax6K6cabZruqIRoAgksUm50Qf8NKHr/f6Sg/nnUIpvGnb8p7rlvAGuhZXHXZBCBJgZQxCSS/EuxVCTGlceL5Hb6GeNH6bK1LzEIApYJ7SbNBLlHgfHi/XnA1A9Nm+4/sq6SalKpmnZeq0fHJa8z363MXOSdwgTWeBDBRhqc6QuTMcoiF3Q3sjIRDnNZqfT/mvYKhkBT+4KhoBnqNrb0MiqbYuKM1FFQ2G9czpEHBhab4Ugbxi68n4rBsUWxbpTlQ5zYSDA0pTWaz+ABTkYDtQJiQUgMgaXXvk6O/5QIBaFZDeR5dnZnSgKItNw5rcNsrNik3fe21t6FRsUQ27SkO7xGztmW7Bgfi4/v8dj3t14xEa4Y/nB/f8aY9Jzs32qlYiEeu/glYCLZKympL2QNO8Ali5CcIexYsnd3y6Kd9oJiUreY3nGMKiocqPr03Cb+/cJZ0q2FuNcchBjsuB9gOgDvILRUAIjb4FM/4rb+u6xn/NxcfoghiuZOWx4oLI5u6nR2o/m1qjCXwhdk6H7Ze9LZCCLZOGjDEw8XvQbOod0moMGioSkSoUE7Yct0lGGyw16Emu4Ca7AIwHSEhxUVudZxAQwPqGwGogXAGPkGBmu1g8/AEHojLtkDFAOksG4YFRqZsoOyNmBiUANAH47LfShTVERvpjwFVwtYMAGklKBAQWAhwowQUSPotwRNSXAJsI+CpUFDMVwnIGYD4IyWB505uVSGATF1BKsxWEQ58VgpwdQXasYJFpQzg6pZloypr9RiX5v2AV7tAluYAG28krOxMRAzyaQzupVVMN4Vdoot94CNYRSQw8XQl+V6tQl7PQWDlsBq2Vv1QdU2YY1+XTBCwoyBVWsKWCtv2AZALvC8SEnzkVq0JYrYBMBUQ4Ru3D3yCKjWbiwNoUoSHbRYAPgsAn4GdETcNfAIWKwF3KmSmxU0D2wfGbqCxgdQcC5vLgj9p49YBsE76rW7FVusL0nCmqncqqDcdXwsoGKBqSKhMIQMYebCR9FZHFa4bSDFS4EGIm4FfQLRqlcD1cs1AL0hD9W9NRiNTaQAIpNF8vq/ApV4Nrxo/4w5AtqhD+dyOjdj6r8Pn5/yePHs48hVFcPBVCX4sp260auu5Z82CH8uFZgFMSKPYUgQhfR68C4J/psv1GRX955Kqt1EgbUIRznqrusQy/yVxNKq/TVZRrOK2jqQBU+2b0ayzeh1K46RaTU+zM3o6JFhmoWYOKhTF19vYRr+RmuuothMb+ktjmERAfHbc7+0VfBOydXUpvqJvHdwp3xKPE8SBz8b7VBlraeALldHyv0k2PWglocMhAS19Miiynq141qexE1NrZsvRy/8mO9GhXADDUtedonFPMuNQLEl+cg0pJIFlisyS1mI4bys/BCnHiUhc2YjiRsqeCdYgNF+y+YiNEBqsYZDVL//wXr4Oj9NhZTjDvwUVgGEj+7KMIqDDazuhCqOsb2I/UrcjzcaZAm5DyLeM+nO9fj17buYviEYupW1ocQIhWX6UnXEt2rIXomLyGh4UNCnFZ02uQqNh9oZj41vBLKq5jt2VhRfofYN6sL001gGwyvueD+SyI+wH7GCawde6W4EXEoK65cQvqNUN8et6//Fxuv7CQtuEMQD4JnAQ84SiSSjh7/MoAtSzSZ1rQujO+e5R0RXPogvbaC5CSwi0QwD7H0qk7gXV/hgNPAQTf5AlKR0XvUeMap6/DZrx/C9DgTJgL7In2nLZVdP0As0Sm19Sx3bDLXxrrgnPcrknATv/oke/wrMu7pUObwf+eVTZx7Nur200+zZRpTgFO3s0Q/sovpZrH9gGJja0swoBFlpsw2IC+r+Q0fG4tqSBYjg1VUiHPqpVrXk+/Spkp4N4xOzuWW25CiBaCGLT/+OEPK6vOwkHmlSrtxtecVguP2iJ1Ha/8rrTOjDVmuuWWW3XKK88J7pzElYjUAlAGViV/7T8nFccZXdEIIpt/qZMVOcXisMIhQjrWOd/rXKMvTvN2KZsJsQ+WcDEHK+cRx2QvExEVgTZxp6NWk81nFOE+LJjPkAkX6PhPeOiZcRQvAZYR/etixYsk/whUYX0zQs0wfw1G4V0XwLKL2QGn6eJIAutTWNYVqbzJMg4lOfLxr+eJ0nGITyQjQw4T4qMQ3Akm5F8FuT3oSLphq28eRbk96ES0YYtFXcW5PehYtB8ka+zIL8PVWA27BVxlvT3IUIX9lY4S/r7DBrHHYdnSX8fWi9sPtFZ0t+H1gubhXlW9Peh9cLGvZ0V/X1ovbBa51nh34frqxlWCzkrRcah9cJqg+c16b0bd9muOGBsMvUDwKquQv2+6om+Ys0b2RdAqmKC+GgBnMJggwkJRO1QtFiorUYj9HNm895ApgYQlAUovhw21mSIXYBYe6k2Fk+7+V2AJRsisxzAz5DDIP3mYwEPhwRPiNyyCSpMrYDCRIHbXGkW+EkTc7le+uESrYMcgG6QLzU8uWa9gkn+bZmP86/lMWeeEAImtooNn2yc5PQf0rUPCQHKQKilt+gO1jg9Hy6vlAx2ed6vp34x9HZb8SlASBDVzluKV1UM7q6M241CLRbrX+xpl4cevw6XC/ZW21avF4o/v7IEglq1Kpxn2RfKWHK7twDclp3NL8fb87pcHoQMwCAoRbCujFr0EJs0bakaWA18LnUV0jdpECsrf543Mnppc601wR/ujZCeSdMuCv6kL0J6sGqbkGFYvGWTkONZSRwrypJz/M1RpGDLaEIFvVjDHwb3LCMUjzvYmujX6zbpjC+4GEct59c50bXsAciAkmkl6yWLQr5JBG/CEdFpwCo+c9SX58OePas9kNjdNPeJ41pPCmvKnuc7yUidPFK1WU2dEqILi0mR8w7cbg++MHySRItKC8QVxzLtpKE0YqmN2IHIBv4cKBIoN7xqD3INEYpjQfFgBAY+XHdRoYeCwiusPbfWYZ3P1/v3aTkvOHgZUU0o/nTiSrlGQx+dCay1niTQMtPtycgy6K0D19zr/Wttx4O6IVka+SRqxzqxl9qmtwLfg+RvwCT1eovX9+f3rp45KiP0lwL2T9R6xSBlj/fNtQIzMQbWnxtpQxE0vRkB1OBYZpGAJKPz9agobt1So5fbcHvsX03rFIA4I8lS8W3y9qJaVwDk4/DcUXFnpjV5xNsBOTf4FLrOIdvOi2RJX+LArytOYlCIdoXFVM7L8X7t0b6gvEH2SEqjL+SJ25Fs6dzz8r4jAdVtnijPFHheTuRhDQp4YFfeEiem94oR/MWel8uJvKF2GIu6nRd8uLUko5bHb5bLSF9AvFT8aspCup6K4BEtFuusizI6OgfC/FjXz3m53wnDhnQIp2HTYvLQnYskjkd4DZuasybmrMPzJbHP8Wn1NqHZuNq9oE6qDypNwIa+J7pCfCpIdElCEE0Yijgd3h7X0+vZ90A5ZOJZNn48S0oYKIjpILMO2UuWDUHqSOtAtA7pb5Y/QpO0VDhpd0BYlIDZFJ1nMzigIM4u5Fu1ZouGQFbJxr6voubDgzyRQk/ErqM0OC4hErSA4uYVDyyk0fc5Rdf85OYd1WjktfEkKVH3Yuy7WYejga/L8sxR9Oi7HbJlWZqbLOJ+ws+NTFg2h/+cSrcStQNhKTxkH8+RrwKlYP0f5cuwX5xD4Ig7CIVyAGM8xKKyqyALo0mpCNtlaSioU8oYVIoYiGeB815thQ8Ap/RN6cwtvmUj+IJsb+DMM8BCHyBzMEDSzAT5gqJijcqwd2h62vdEOkpccy2ixZNSwmjiFW1XPk/2ejlcejGWyLHnOEvncng9E5VmR/VAhcu4bXchzAjtMVbnI/9bZ6omKDV5/3WCt8qM9QOUv4DanxsfUJ1QUF3BUtgobMoHNqCuQ7uFGPTqAtr4FR2LrdV7FC3ldkN5WMAaKEk02AQGUozFxtwA1aDUFgvFEmXlB/jv1+HyXP5ZoeC35UnoAdGhzubZd9gOA1ImeSqr3VUQzzNEl8mG5awjoxVHFCNUmUCyMN7l+qQ1EZAeGyCcHZJIFTCfKMGSKkW594XgvRL5lVl4MsXoLnFj7aiJENLN27VxPDFJW5Jc1qW31iHaxze1hqiGSH0eqt/EpGDjvfnYmtWVv0LyCYabuJI6S+Qh6KAm6kvNwlervE7SnUIYltr8HewEN4K6vxTDNluZm795Mua3IjK3jaqQ29gZIO8X1FYtyr0R82j23s/COhyByCA3rPulGd9Bm5EbBShmWYs3C3ufj9f7PrsBhRQBZQ6E5hnWSZKlDqKFSN3vKplbIlneAGNv1xwQJik2ErbIo2YTLuINrqDxRNxOV3YyUDY6pLywwOkm8NdK0N2T2D4iXFisUzJLJB4NtELY2yAP3WFyBoUSQnJnhcxraimwLkFtb1enBRRFX5eUB8qgCaicJiiDVKqyrrREkPAIRZcUpCUqSEvU0A/SA4UDldWDGz3UpSwg81bClSTFVlkcWjWUUDLgPLeQQ2Xr74j6DqQlgss8QCkjuVVDAOpnBaVKNfSDW0Jp9rK5fnw8cC14IVs+HqXZGyEPpZQB8d2iSBJ+teJYNGSuTgpMl41BAxI5oWS3kqBV8WyY11QOhtzfuGwHaHBsVE+RsdAjF9U04IOJyvD79fX5dZkfxCNhUfIHGyF0vc2XNdcBayLNWPYN3EmIc0B0soNzMw0kCU6ooLhmE1DXoSTBqQ2mk3zR+urpwMpg6x5nBy7xv+s9lBgpfqYgYuznb72xjqWva+Tc7vMjVaPA4QpII+YD+ho5+WmomNabxacdXZP+ijcLwlQEf8P8THkphOCyvVM2Gi9uk98On/MfcD0UAs2aJKugP8J6qBwAz3O8F9ZF9VBcNesqSMLGEBYqc8ATHSdBOwSrhZUH4zgAC4FQ7IrNwRMLYQJFKVCsO6+OnT8ofxdyarOIdh6fM9uwAKRL8lw2UcBjPhLwApl+/DK4P1cas329MISe8MEjqVbyDoBvf7dmsz/T0G4mikW8H5p17yYBHcxeo28fDU6MOwQ7tm2dNaHZXLA4PCrDl13MjJ9QMRX27i/j9y4g38Ydy2mw6VYBPcYfjzRMxzIUFBGP44EkJqGYG8di17e3+38ezm/pjL4ej6fXgzwHituWbAjHKiZeONfn/XrD7lU5oRuP3QBYwn/2XopEzGtsxnkSlRwUO/NQojBE/jCI44+n+XA/XjEQhniR+ZAFNJ6SK0tUTYJVtpCMrs6EMCXJxrYnQbki13E+k42CIvslq7klEali0X5tIA8Ze7zE4T2/u0TlPlm2xzS8r3pKgTXPPwtgXiTWPQdi+uMRfzLr703jH1/zTF4hyvgZrch17HOhM9g6hwx7UqXxt3hKE04uiZL8WTdzO3z3BIjwmSUmW0W83jpYl5wwW8BfCYjnXTr3qC45YfaA/0dRSX16kalt9xgLr97me6oKtawvCChq0XFsUJYwv1s3oqadTSlQdoJko7aaynG7E9CjNDvPX21fhwshdBcoJoF1A92+vh/JF3P6TkcwUioC8qgLfn6wiG64bwszNcSRvMzTIWVU/sYYZvuTdKVR9NV9JgRQQkFZZSEtuPICuHrAyRiAxYXnroBHSWQ+a4VDjIW2vCq64id+y3QAoh3AruJDgfsJ2K4AT4oPBbAIm1i3p7NsSQyqnwowJjYGbV/EFRUmrbkKUK7LCPiBlYOoAkphqyoPyRgCqLkkpP0DoZQAQqnYDSpzAtMokFEqzVt66fH3ub/IXvRsVOE2uiNCIBHsZZUG9vKHJRrOntTbcDaBGMX3CvDIDWe066NoIzS2MhRsbPgqKJHs7cOGULrWYG1deycaerEejgIWlAUxKeK+FCvF8CyiueRfdSNmn0GAYmHY0EYkpJNCgCJQWGcNktLJIUDco6z7fwTCT6hIqGH5wTfcHc8RWr3g9eaTpDc5zNttr1PeqEZSeq8XsQqM1t0mpvd+kY3PH7EDn8SEbHXDRu3dTq/POObwRIR2DoW88HBzHr0rS41yt4FmEOgI1VS9B2pwae9qxqM6qlvoCtAbV6oUvTkBgOwZ3E+aNyvSFyrMRNkmXW9M2paN+Cky9r7N1i8MnMSWP5mSHGwr6nZKTMUYTdUjbGVdsPUvkIXoqzcmwA0+QZHqyYGDpnJYSqgfHvVfiBox4OMFv7YBkmkLFKoOPnnwV3vgNgX3jZLgeYMKKooPvSjvg4BKuo2+MNVjCdUnQlXABJSjjbYB8DeDkueAMdfz52p+gB2ypNvwZ1PfEXiaQuVcF1sZb6CRlZA7KoFCUfI0V7ms3un6wku0dWfqrWggb3aCmIXgoqq9YjaKcMfmV22i9rHdrTo9fpRd7V+BAkF4ZpR1+CfBR1V7w20MyI63bpIUzKTrMNcRpP8a0BWBdFxt3koIuQKfpxyox+u3Eh8hqvY83guP5R+Mpgfkgx4cUKfvfRRMq6BstXIcDx9UKZCchCcQwUCOVy6rmMf8SaEkFMDBv4rTmizzsZzoM7QB36XGECNgxzFl0FeDz5h1CFUhnffa7gLwYXseGIuSHveP3s9BADA/L48VuR9Hu6GgajbIO8p6zh8fRMNRraKkoaBAYP2OmxgSh4YoHASvuMH4HUGO8Mj8h5z2wdtJpGjH+fH4PJzPSOHxbVRuvAD5Iw/LIKgMXnW8VhulPI735fZcO7f72KN9zCteUcKvaOnveE0sTp3mAfbrr/l+TMw9J/wikJYVxuNPr/g3NCcehaKEgbIVh/86PJ9kNCo7yt9h97lMQrEvyCxoNAvs6QFSOsvBIBF/fpDuakCblmVf2oSUvMTd70Fs9WyaXJSzC7aWyHPFTmYeubOFA4JzBZvkd8tcbbfleCAexxaK5X1OZfjuJpatRsKXf4pvLx6ZNEK2ja8dINl5LNb7LeLK1H8avFNhrEf+Rh7nzeN3DkOLbnM92Ac97n2DEm8EG02yjcbHakC5YkCpPngJv/M1zsWHNIvIbVQr/Gp8nU5kLiWaS+51xmvvfe+0NvjncGdyKeYdbfH3+U5z0UMbGyIli21FIffn3DnVEQLEhkDuHQbNaVo5bmpmgKkaeqgGRTAQqAepAVsiwZZAIKrdoaSBTyyCeH//8fuM2VNat6epVDgWPlSt29XF4yC9oT6Xr+ZfqHgt4ATx4eGRJ/gEJQ+hJpGQBkBqiEtUQLYLxUyFgREGIuAsxCo6IPqBCkjCNwWWoeQ1aP9QL0KELWqxWgRygkK+8PRSQOFECX9TG3ABYzVUpzJgnVqwKywY3m6jkAMLxwNHCQDeErjs1VQtUgUxnApSmVQTtApEoVAKQingngcGUAXarNLAQm+Ahd6yOth9Ps5LVPgfX4f36y8Ss6ewN5479UpZJMLnhuAudmSvxjYqRy4DVAPdCGAnA++MPbXuqfzfvHuugNBxPsYgD6fWbHDo8GIzRfPox1rxe/lJAjMtQrQVG7ZThDznGzYYFApuY625OPyUr5O9HoG80nxo3Sbi83RNRZ+IZzwg165gEflNDoUm21A4NbEJyZuAFO13J7xCUYxAYrg7pYqJVyMNckWxWHyxA5BA5jRM2OkyGH8/DN8omhk2v6GG8qUIKXyzIYcCm9IwDAUMrRDJ+/zv8zlOB4ZFxYS2iAXYysKp6ln9LQtMIPzhdPq8X183ciIh3cGwcWObnFUIkYFONVaNyjLS/iNBCPEKb/V/x6IHWUIHS/FIo5tYxoSs+2DVCymy/OpIAw+XS4mxIqZ+qw0rwZaXylLeDscfaxgF2XGIuYgNXswyCpUZdoO3vhkNaGzYGI8Hi78VmjJUiMKMli9coPxqWcVdo81zIeBK626ApE4D/DNhcGCtMlcwjbx8dFSx6e5ZwHz5jEfEzp+D2HABYwZ6/Hg/AsDPxtvUL/i53K8XukJVCxtsZaYDC4LupOG5bkEMXWt4KSiwHOd6/CKXx3WFNum7lGgh84fuakP0wkxaiFdDdsnEOoKwqJ2h6BHtC18imorpUbIFdMwINn1ps5AS9ErfEEL1WKAyy+h5D31AoB7rtywSdpBBfAR0xbMZf1nAY34+Kfugsq0LAcwDu1XoY4PVs9AC42CZLcRuYbuwbon7hq0TqD+uu/a8USMR5LKUqJBO9fcpPbgR/vu13OdHZkvqJEALFFSuDIu0F2QAmZHt05jqLTTVBnLVTxoU+PHAkpvc5qKENFvw8rkAVtFgqtYH2lGBEfgMEdyy4EHCz2g0q0MU6jxRYhzbi4ZpmV3ANav42IT713K5xrvpRXmuW6ot/shajl/7aLb2FK2eTA/11kR1iAsB5BJQli9xJpdPCgoXgrGv+CJO9UlS4c89joLCNPgjap+b3p4qvAWUxjFZRYjEkD1nk4A9ZRpSgAyvjib1Ca+Clshb1/gJUz+4WhzS1e0ARSJ9PWMgwzHVwqqftjmEApcC0A/pYOaAIhmc9AIi7YSDwMGNw8FDhOMWbBCgBOkEQQRQ50+qrUApBCBAiU8JYQ3SAXICtZ+lB2wkCACyNsLjrdbvFqkH/SArXGk2wixPCClq0KxAdjd1Sy63hoCCsoXK8FZ9EfNzTtWFyLnrEHU66/Bl0iMNysJgV+Tj8DHvylQqi5z7m04Ficesgf84/Jxfj/m+izdyuLoBO56mpaiWIV9XhdTUD8CN7Sre5ytnia8Xe4DFC8EhcYNAejNgqhC7IoCARABIFjcIVNyFfnCDxQ1SN5yHQzNsQb4VfosbBApNQkkjBa2gN8QNUi84C2CfA+Yet0XeAKE1VOJUW4im3Arfb/FR0A84GBQUs1SGzX1aZybZbskCvrw/rx8LiepAtRP4+lOroJwC9fNwemEF0yL2Hz6AfhVSUpmQdom2r2PNyMfxThIr2nxi9v7Iw1KgPPrpiPo12ib8U9fhhzVonwgRSAg7EVGXubwf7t/0OheowKTSLI5QEASCswiUV+v5V59H7/wwHnnrAYWOlw2EPrEWc5VJAyyEQOkqjvVWtwK4mJX2RHTsDV8kvV/Ph4WUnEGJWI5fJFnCzpYTqBKT5DmxiwAcs4RCcnl7koQcOZSWCSdIPIGBNmpzXdTweQn1rCVQJUhgH5Nwgki9VTDYiBkgitKzqXuPNbmL0I47ZLoYCMth07SyFFLIFLnSbROSw944q5R/iBSNpECUKRvukKTEw+jy2udloqzzwNIeRQnb6bqcD5hi2KKsbM06QJKU5Zno8vcmakDZd2KwGbGM5MGminpAKXCCBT2TrNe5+zRoNwlWR8IS+s8SkKTBuzkejl/z+84kxIg5im7mo7NXcec1hb6TvyUQVZSyrHUIYnq1pgTir1KWrdMFUgg4jQim4vjRu/laTgQXtIgMD7h5JgjFAl+o4iuwVdGPU9R2z/tgUIvIfkGRn0DNn+CLxeBK276EVgpDqnAAdXYCS2GqmUFKjDb4PvIAVfHlWZXj2P11YtodtPHk6CYMG7IeoJw9RMUrpcB7yxKvJvDj0gvdbWGZetQ7A7rxZlBC1PIEkcwKdFRImZKejfxZHwEw3O4xgEBJ1tPWFdQ9DRAEJlhAPQrsDRcClYISLJFBGn8lUUG4Iieb+ZCG3l+P5+tM9ipSAHkbaX7S8BXTJjY7SDPUA33peX2lkKx9ZJX16KphPZdRBKNpodIbAZZxgGU8QdARrDDF1ztZv+j5dbi848PNolBKzTqv0vgE+DySO2YtvoyhH4+4Lz3rQUFyEhz4tpyI19YjpknPkihkUXzSLSpLOdxd+ywagWh2+MTBODjFU1FcMrSeGilZx3Mc3vNEelSFg+UOTqNTqkXncGpDj6pl7CDWZ9qMeYilmYBMUFWbPx5OoLSxYYXJN/AHVQDxobD5Xj0ng0OcIDyxYBp7P1wea5bY8bt7RCJdi3XA9SX1z0ik4rC8FqvEZb9C2v3NV69Po79vnRMW09SAr2SawF0GaIUYaf8JaHo8aU6/amvkmYrfWPhQMRuIsXL1CvT1TvUVbQ01hgu4kgUEWgkxwScLGBJkU0u4T6UHNAnCzhRAqwD6CgdIlIOsIgBAhYfv9eA4DoBOBUCnAlhsoDdJeFIpwJaR8DcFtqCCsRqC3AxkiFmw+yyc6Q6C3AALkx5SsLZUaqiEF89+mGVQZtrq1UDXV6UoNQGKBcTAUC5dQQqQ0hDGZiCp3rIuhLh+6vmLb2GBcotHSh2JmozLAEVDA6g2QWE+8GopvuxxjpxLAdMp2AtfL7h0/EaWyevFq7Boy+0qRQmBaogKNno9i6DkEn5CQBsPhnztyk045FDkDx9KfSImi6J1+KOhR3wSRyPmEx4Q+KKlxNsDRfJ1jh9fcS11S9Eidy4/GkX2Bxx0wlKRp3EHHE8dAipAxmshcSixlRDddWCjPNPI1+peJ5FzLiAmLJb4IAlIj3073AqTyvcO+heq5clRhvWMPr5eifaW3gPtZoEKm3GPbjSY7H0OAvcpXy2cA4Tmimfx2biwO25DdNSw9FBRRNy/l+vyILjHNpqf43VspmRAgxHcJln3UvKT0moJCKLfArPrB/5R/pmjtUGhLd2CbXzGdB4dFwmpv9Mo3Ja3Hn98nyjHgGopGPUGAdQbTfHMTlXcriRmvAKQN55/F5uEfgCqReFw/PRcDre4l4gFgKo1CzaoYR2ceK5IWdE2KX4AWF4/4hVFxlqU4KXZEO/H9UTenLRoM/AexjSyd8oiFJB/6ESkcLgfvxa8rz3iSvX8MR3N5h5df/vwkkf2b4c966JuDTZTvSWueg99dQWCDiUgHE9sHkMgcZZq45EHwnsIupEONDtfXaZKeACToBarYmvOJNfV8rEcu+oTipVUfHhXj1zMo/xoMAyk4R0JRUonIB2hyzxezpCUxVeMqOrYTOk9845qt+7mWeWZ+7KIHoUPwiX4jdiMZzl8sEoAk8zPcZSWKLXwA20yNt6DGrHF26W300Js/OYNmWpz2GrgOAvrXICxD3QgEyTEKAgR81tNGzb4+HG75qSSDuetR1WLAktIkGTMv/e1pzyq0hV4red5OP74yowuVNuxKJqMpxZeYZPd4afb48vwyx0Gd2iEdcsPaXjDaZWRKLWjao/PcBSsykPpfeCnxUsMm4m6Dn7UNJTzzk9qW847YXgveoq8IVUd20wH/uCKd8+POd4CWO3FNQf4ybvvcKL23hKD1/56wy8beXYrz5rebELecRUl0RKmrXeZt6viQAoGtQwIvL4UBy4/qY6DglUVX3Ixjd5XGG0pLdiE0T6BZDzcETkVjxx3OB87JUQsirXid/9fMUjGh8M0rfxrQSe8ajOf9Ha1Q0Sm4i381wXIwA6n5/J87WaqjfpWLHnC4xWtuY/T6/p6pJoy+Gch9lkNJ7YezPstqRc0PA+lnBuWOiSNjrfiYz2pBFo5KFlX8ju9lSCxBEQSzlLrVwnz7xXMuV7Ic7TqDk+QuZNCnkUiKayq1NkH6NqrATsaMCo+JbzW+UmZ4XgRtukP4BxWbB3AuiHQL2oPYsvG9z9+QYQCG9zd2kE8Rdrj1zynN5zo+uPr/bjezy9MmmERH51i9fvn4ZMkK6DC2QGod0IAFBTSUQW7lgtlOeULa7WomuVkaraurZiqq0EwUABETIAbT0CNNUFCsoIwXfAkSr+F5LJIFDzljsWrBeSrcFdtEwCsxRYcOUFUsNKb4QKPwFIswiN0eLxa9aJqmK6+tgAxnZAKLCGcOj4E4N0OUG6WXDF+9ef8fF9yDg5RkNrakJbNpswi9r49VCRcWfbI2IUGoiy/us8hPUQCrM46jP//wq5oOXEcCP7LPd+DR7Js637l6h4SIAlbbEw5EEKq9t9PMqilkd3kLZVdDY6xpZme7p4YcVtt6WrshEfYLCGnT0oI9qonbDiVtxlaf8elbwu/SKdgR0PNiuLq/cdlejoe9bFiyzOhHVJDCL0ZDPUSSS+YGHR9DGxuLWAwmDZYPo4gXs4albxr1PlCYdh5+4swbHSn0p4cqolvaPdxTclUIoNtZkJjFFlLM8sfuqmKF8AtTnWUuJ88trtSWzNFLe5R16VxTp2E3AfnHuR3eH5qtLkEIlt0se68SB5qOUlqUHVITwfcqACR1qCfgKFRliQUPbiHmeLOqb6tTvEAKFKQ1q+OpFBqHmp8mFyRKh3coCrins7eLJav3QZtZfvDN7vA6Es2kIG8NI8Io8Nl7gHPn5d5u1nIjZSoHYkSfU/f9uEvW7Q4Sui8hUYLs9Gs4ydMDBi3jZcoAYx8AV3VFVu753c+xFB/lTKzoIsOP4rylPSFpten/e/ddz2J15SGnZbPYAxlzuEmfQl3oXpoRNn4W94dyUFqLVD59lnu65EDfC37X2reRQhCz2YEWWmiqYkN1tAWyWlUr40a3uT5LjZGx/2uXdIwOjU4wNLmXYgw7VQq0JZCki4BGmCGCkpagROwNdSkOsS/nnahhtOe3b2y0ePOD8Xy8biwPujLwlgc3yRHoosXUXPsPFWznsaXw/h0WvwdUaGkmqT8En5VtnO2TJpcIn12+CFRXrpUEPaJvoJUHO5J6CXAJdW3QIiREwnGRgrM+AVsRXhViUmG32LhbmWhtYIKTHowYXpwbKCIkgGfi5mXksWSPnVJBLl/eFXST7hSI9AQGPwOVxpSM6DRiIIC2sCOysA7ywDmNj3EjX3WTMA7GDMYwkMBtiSA+ybdIStI3gXsGAwFtwZrLcyObM7Q85wHzH3HMWIxaSEUKvztWrV7UbxoXtamxRQSV9AGVRQjziGaTs6iMh1G4SwUYUWY8/G4GqZRYR7cksodPNTbanIkBpa2lLp9GtfcJcLOV56MDWUYn8KpuJKkKsqPoRYZYfXqMO223O3AC3OpWuoSF6BPNX5+x0CBkiZ1jkyT36Lck4QIGANjjaeeA+WFRpR4QbJvS3GBS6YBPTTsUDJIMwAIcVmYmefJdrgYvsGy4dyuvG/YnzwoKZLyNWnzzFvQ6Ryas4IR7gZ+bhb0N0s5IPrKVl9ZV/oAZdJh9qvLzuMu+8sBxIIXX7gK/l48nPSjakMqPgxBxsP4el04k3irKK283BnXLKFFSoDP8HEpefmKVlF5EAy0H3oKpdJhBcNQzrqcZnYaV4p2UQ1ey8VdYfXbtNv9+qizAa9srMAIMByAVaF+76bX6itVbn9C298zZzlirrqyKSXoCXRrE8iEg9Wl33Tp6O4gaElbSZ/+aUhH5ZCARt9gp8oacaCkHpgP8gdB39ukzSFkYMBIYGQCN41wKIPLi+xnSKCm+KRWF5+RWOQZeayB+Nz1Tr/LUiEHa0gHlWaHTKLLWUi2fgf7FzisGZDLDNn3u8GWk/XlPpergBDx/1owSDI7zvGjO335z7Ps8f31efyq0ltlrcFL0RRo1aHDKPdIsMt5XZeicfaeUTsW2q68SIshDwv7j5JNmPRUmHLep2OnT/FhAgq3Ut8A3s8+ICBQYI6BIFXGqy0Y0RHuMtJsHNkYbyZIT8MjjOQaj7XP7i8AxzOILj4f8kiQodJwSIU6kMb7BmkxnH8GyclAOnNMdgTxSG2h7mvx/1qMH2n5tn7/cuDFoUto5Qb5oMrLUb6u31UI5TPEt+dCwKFxKJVBwtMFL75QaWgOWQiM9dlRPoVWKGeiiLRCuFKyO54dzzHGj6ovopAOx5HCO+9vxQRa0Vlpqy8EUOdMW5JZXSoYkeJk72DIUQWll2ngRWlT+WtgBBKeVIpbTddNfNCm0xL6KC6n4zj7dH3dnZ4mxV9pS7GSSxtGn9JojyGFUNeYBsaDNg9SAdNq4NXJ7fN1+lI22AYOw89LN/tpUxGYStW1A+KQGm+wIhSIdQ2UOOHqsXkgb/npEvbvC7+y8Bha9Rg+vv/3AmtznW37qi1DuXI5Sr1QkZYUwDiSRsXhp8t1bhguU9u27I+4dPP6tCl6GOE0eTxUghkMZEoGDt/hxtKXqwbPRQ2B83xTCAsXnpRqKaohn85GCyKg5QK2df1Zq2Q6mCbm4ZbTpD/bckFy7Lu91G23sjynm9h6x65XHbue9vxuq6/xcVmpNEvaa09d/87vVaemLTU5d++N9XWn/fduxSbQK/MXQ80AYoSP60c1mMqo6gt96Qf3fn9aGeM+lLdfPBXynt+rllu59eBhuF8EN/Sdw/ygLFbeH9Scr4rEtMXKCpTW2efjNmSZocqOZJSn9+3HnNBsxt3Ly34Tx7ZXPmNl08ZyE4Nb2PoVH8pjXwbaeD9PGshqVLnuaLF7/thtx/PzIfJzNrMDYzw29xVjyCtcy1CX1BDtbb/d7t5n7UVtQFzi6A1luUTR6XP8rjWwVn7PD1be+iSL9MWWbUaXUogOP6R6EXJLjLQbUk9ySFUunPJ8i5QlzwUEU0Ey/ITMwGBEg4HWwCLxsUj5UYdL7/DTgNIgVYrheUjxhoSiC+oVyQWLz5hgh59QGgiqVgBOxjY4orAW3FfjUDh0yR8uVMHIcFBM9CAXDRlth44Crm22SVV6+Njs7JotO+G3BjzdNoDlwIJrszlmi5+A2WPsh+0ofTs8QUl0UTfLRU3pDUk8PX0+1ftbIpMAL/jayypaEx6cMt3hlM4FqC6ioHE+D2utLCv1EdbSPeS29Gkzjdok0SlPJe6HfFuvvSdcyfkVXu7MTqOVbWyvJJLUkudGeb7Nv9K4mrJxomnGbf1tkcrTi/1+oLqW2zb7dJjv2ub8HNsJesst/ggq81rbrF2J6PTwORRKdIlBZopmxSt0vSLt0LIc6xekQKcSBg6axpdu//6iOuS2PC9abBWO0gLTm1sluo3KRjlhA8sX11FCSD3SFv4OhkCVAkFJJujuM6clumobymNcBhRf3Cb6c4wz5XTNW+SsXSq4O8rxjLLhWr7QlcMGhRMPITm+pQFV8adKLVrlIMaisLClhMU6SnqOEVaS984rliaVYVze9qfdghvaqXnxlqpvLvutnvDRltAURhCJp5L+y37abZfmBOFJVvJ8SqK7jJM2GivJd1Q9Ma+C1VrdFy1bszQBm0PEwqtyJBDNtny0esVuR5P4Hy2+zzWqZY8iSvn18AZEBVrVdFI8z0drv6qvSxH8HMVGI31t6RxeEs9Sb2KAixlSNhEkksDIBcmRWJiaeKRTLd3I45Wcq7yjTHpaCvnElZ/Vyk6tpC9bWFlNXFQc7pYWTJdpr8H+TqkEW9p+nxe+7sbfu9OkvrJWvSgU8K1MR9WIx54+Il91UjeoY2Ggwvxr9XG9+jh2nF2fpq0eBamHdNFPW9iJKIdES0+v7+oylRssfem/I7E1pbwrlt9Kpu/WQZv//v7ruD/uZmDun3//+/Pnf2n1D7Ox7QoA"; \ No newline at end of file diff --git a/docs/javascript/api/classes/AnnotationBase.html b/docs/javascript/api/classes/AnnotationBase.html index 1005c070c..f6ecca7a5 100644 --- a/docs/javascript/api/classes/AnnotationBase.html +++ b/docs/javascript/api/classes/AnnotationBase.html @@ -1,4 +1,4 @@ -
Id of this annotation's parent dimstyle +
Type of annotation
+Id of this annotation's parent dimstyle If this annotation has overrides to dimstyle properties, those overrides will be represented in the DimensionStyle returned by DimensionStyle(ParentStyle)
-Returns true if the Brep.TryConvertBrep function will be successful for this object
-true if object can be accurately modified with "squishy" transformations like +
Returns true if the Brep.TryConvertBrep function will be successful for this object
+true if object can be accurately modified with "squishy" transformations like projections, shears, and non-uniform scaling.
-Tests an object to see if it is valid.
-...
-Useful for switch statements that need to differentiate between +
Tests an object to see if it is valid.
+...
+Useful for switch statements that need to differentiate between basic object types like points, curves, surfaces, and so on.
-Text stripped of RTF formatting information
-Text stripped of RTF formatting information and with field expressions intact
-Plane that this annotation lies on
-Text including additional RTF formatting information
-Is text wrapping on
-Gets the amount of user strings.
-An object of the same type as this, with the same properties and behavior.
+Text stripped of RTF formatting information
+Text stripped of RTF formatting information and with field expressions intact
+Plane that this annotation lies on
+Text including additional RTF formatting information
+Is text wrapping on
+Gets the amount of user strings.
+An object of the same type as this, with the same properties and behavior.
Constructs a deep (full) copy of this object.
-If true, a physically accurate bounding box will be computed. +
If true, a physically accurate bounding box will be computed. If not, a bounding box estimate will be computed. For some geometry types there is no difference between the estimate and the accurate bounding box. Estimated bounding boxes can be computed much (much) faster than accurate (or "tight") bounding boxes. @@ -56,41 +56,41 @@
The bounding box of the geometry in world coordinates or BoundingBox.Empty if not bounding box could be found.
Bounding box solver. Gets the world axis aligned bounding box for the geometry.
-false if object cannot be converted to a deformable object. true if object was already deformable or was converted into a deformable object.
If possible, converts the object into a form that can be accurately modified with "squishy" transformations like projections, shears, an non-uniform scaling.
-Angle of rotation in radians.
+Angle of rotation in radians.
Direction of the axis of rotation.
Point on the axis of rotation.
true if geometry successfully rotated.
Rotates the object about the specified axis. A positive rotation angle results in a counter-clockwise rotation about the axis (right hand rule).
-The uniform scaling factor.
+id used to retrieve this string.
+Transformation to apply to geometry.
+Transformation to apply to geometry.
true if geometry successfully transformed.
Transforms the geometry. If the input Transform has a SimilarityType of OrientationReversing, you may want to consider flipping the transformed geometry after calling this function when it makes sense. For example, you may want to call Flip() on a Brep after transforming it.
-A moving vector.
+Static
decodeA json formatted object in the following format (values are orientative):
+Static
decodeA json formatted object in the following format (values are orientative):
{
version: 10000,
archive3dm: 60,
opennurbs: -1877964208,
data: 'encoded 3dm object data'
}
Decodes a Rhino Object
-Generated using TypeDoc
Generated using TypeDoc
Gets or sets the sweep -or subtended- angle (in Degrees) for this arc segment.
-Gets or sets the angle domain (in Radians) of this arc.
-Gets or sets the sweep -or subtended- angle (in Radians) for this arc segment.
-Gets or sets the center point for this arc.
-Gets the circumference of the circle that is coincident with this arc.
-Gets or sets the Diameter of this arc.
-Gets or sets the end angle (in Radians) for this arc segment.
-Gets or sets the end angle (in Degrees) for this arc segment.
-Gets the end point of the arc.
-Gets a value indicating whether or not this arc is a complete circle.
-Gets a value indicating whether or not this arc is valid. +
Gets or sets the sweep -or subtended- angle (in Degrees) for this arc segment.
+Gets or sets the angle domain (in Radians) of this arc.
+Gets or sets the sweep -or subtended- angle (in Radians) for this arc segment.
+Gets or sets the center point for this arc.
+Gets the circumference of the circle that is coincident with this arc.
+Gets or sets the Diameter of this arc.
+Gets or sets the end angle (in Radians) for this arc segment.
+Gets or sets the end angle (in Degrees) for this arc segment.
+Gets the end point of the arc.
+Gets a value indicating whether or not this arc is a complete circle.
+Gets a value indicating whether or not this arc is valid. Detail: Radius>0 and 0<AngleRadians()<=2*Math.Pi.
-Gets the length of the arc. (Length = Radius * (subtended angle in radians)).
-Gets the mid-point of the arc.
-Gets or sets the plane in which this arc lies.
-Gets or sets the radius of this arc.
-Gets or sets the start angle (in Radians) for this arc segment.
-Gets or sets the start angle (in Degrees) for this arc segment.
-Gets the start point of the arc.
-Bounding box of arc.
+Gets the length of the arc. (Length = Radius * (subtended angle in radians)).
+Gets the mid-point of the arc.
+Gets or sets the plane in which this arc lies.
+Gets or sets the radius of this arc.
+Gets or sets the start angle (in Radians) for this arc segment.
+Gets or sets the start angle (in Degrees) for this arc segment.
+Gets the start point of the arc.
+Bounding box of arc.
Computes the 3D axis aligned bounding box for this arc.
-Point to get close to.
+Point to get close to.
Parameter (in radians) of the point on the arc that is closest to the test point. If testPoint is the center of the arc, then the starting point of the arc is (arc.Domain()[0]) returned. If no parameter could be found, RhinoMath.UnsetValue is returned.
Gets parameter on the arc closest to a test point.
-Point to get close to.
+Point to get close to.
The point on the arc that is closest to testPoint. If testPoint is the center of the arc, then the starting point of the arc is returned. UnsetPoint on failure.
Computes the point on an arc that is closest to a test point.
-Arc parameter to evaluate.
+Parameter of tangent to evaluate.
+A nurbs curve representation of this arc or null if no such representation could be made.
+A nurbs curve representation of this arc or null if no such representation could be made.
Initializes a nurbs curve representation of this arc. This amounts to the same as calling NurbsCurve.CreateFromArc().
-Transformations to apply. +
Transformations to apply. Note that arcs cannot handle non-euclidean transformations.
true on success, false on failure.
Transforms the arc using a Transformation matrix.
-0 < domain[1] - domain[0] <= 2.0 * RhinoMath.Pi.
+Static
createStart point of arc.
+Static
createStart point of arc.
Point on arc interior.
End point of arc.
Initializes a new arc through three points. If the points are coincident or co-linear, this will result in an Invalid arc.
-Generated using TypeDoc
Generated using TypeDoc
Gets the angles of this arc in degrees.
-Gets the angles of this arc in radians.
-Gets the maximum algebraic degree of any span +
Gets the angles of this arc in radians.
+Gets the maximum algebraic degree of any span or a good estimate if curve spans are not algebraic.
-Gets the dimension of the object. +
Gets the dimension of the object. The dimension is typically three. For parameter space trimming curves the dimension is two. In rare cases the dimension can be one or greater than three.
-Gets or sets the domain of the curve.
-Returns true if the Brep.TryConvertBrep function will be successful for this object
-Gets a value indicating whether or not this curve is a closed curve.
-Gets a value indicating whether or not this curve can be represented by a complete circle.
-true if object can be accurately modified with "squishy" transformations like +
Gets or sets the domain of the curve.
+Returns true if the Brep.TryConvertBrep function will be successful for this object
+Gets a value indicating whether or not this curve is a closed curve.
+Gets a value indicating whether or not this curve can be represented by a complete circle.
+true if object can be accurately modified with "squishy" transformations like projections, shears, and non-uniform scaling.
-Gets a value indicating whether or not this curve is considered to be Periodic.
-Tests an object to see if it is valid.
-...
-Useful for switch statements that need to differentiate between +
Gets a value indicating whether or not this curve is considered to be Periodic.
+Tests an object to see if it is valid.
+...
+Useful for switch statements that need to differentiate between basic object types like points, curves, surfaces, and so on.
-Evaluates point at the end of the curve.
-Evaluates point at the start of the curve.
-Gets the radius of this ArcCurve.
-Gets the number of non-empty smooth (c-infinity) spans in the curve.
-Evaluate unit tangent vector at the end of the curve.
-Evaluates the unit tangent vector at the start of the curve.
-Gets the amount of user strings.
-Curve parameter of new start/end point. The returned curves domain will start at t.
+Evaluates point at the end of the curve.
+Evaluates point at the start of the curve.
+Gets the radius of this ArcCurve.
+Gets the number of non-empty smooth (c-infinity) spans in the curve.
+Evaluate unit tangent vector at the end of the curve.
+Evaluates the unit tangent vector at the start of the curve.
+Gets the amount of user strings.
+The desired dimension.
+The desired dimension.
true if the curve's dimension was already desiredDimension or if the curve's dimension was successfully changed to desiredDimension; otherwise false.
Changes the dimension of a curve.
-The orientation of this curve with respect to world XY plane.
+The orientation of this curve with respect to world XY plane.
Determines the orientation (counterclockwise or clockwise) of a closed, planar curve in the world XY plane. Only works with simple (no self intersections) closed, planar curves.
-The plane in which to solve the orientation.
+The plane in which to solve the orientation.
The orientation of this curve with respect to world XY plane.
Determines the orientation (counterclockwise or clockwise) of a closed, planar curve in a given plane. Only works with simple (no self intersections) closed, planar curves.
-Evaluation parameter.
+Curve parameter to evaluate.
+Curve parameter to evaluate.
Number of derivatives to evaluate, must be at least 0.
An array of vectors that represents all the derivatives starting at zero.
Evaluate the derivatives at the specified curve parameter.
-Curve parameter to evaluate.
+Curve parameter to evaluate.
Number of derivatives to evaluate, must be at least 0.
Side of parameter to evaluate. If the parameter is at a kink, it makes a big difference whether the evaluation is from below or above.
An array of vectors that represents all the derivatives starting at zero.
Evaluate the derivatives at the specified curve parameter.
-An object of the same type as this, with the same properties and behavior.
+An object of the same type as this, with the same properties and behavior.
Constructs a deep (full) copy of this object.
-Evaluation parameter.
+If true, a physically accurate bounding box will be computed. +
If true, a physically accurate bounding box will be computed. If not, a bounding box estimate will be computed. For some geometry types there is no difference between the estimate and the accurate bounding box. Estimated bounding boxes can be computed much (much) faster than accurate (or "tight") bounding boxes. @@ -136,102 +136,102 @@
The bounding box of the geometry in world coordinates or BoundingBox.Empty if not bounding box could be found.
Bounding box solver. Gets the world axis aligned bounding box for the geometry.
-true if this curve can be represented as a polyline; otherwise, false.
Several types of Curve can have the form of a polyline including a degree 1 NurbsCurve, a PolylineCurve, and a PolyCurve all of whose segments are some form of polyline. IsPolyline tests a curve to see if it can be represented as a polyline.
-false if object cannot be converted to a deformable object. true if object was already deformable or was converted into a deformable object.
If possible, converts the object into a form that can be accurately modified with "squishy" transformations like projections, shears, an non-uniform scaling.
-Angle of rotation in radians.
+Angle of rotation in radians.
Direction of the axis of rotation.
Point on the axis of rotation.
true if geometry successfully rotated.
Rotates the object about the specified axis. A positive rotation angle results in a counter-clockwise rotation about the axis (right hand rule).
-The uniform scaling factor.
+New end point of curve.
+New start point of curve.
+id used to retrieve this string.
+Parameter to split the curve at in the interval returned by Domain().
+Evaluation parameter.
+NURBS representation of the curve on success, null on failure.
+NURBS representation of the curve on success, null on failure.
Constructs a NURBS curve representation of this curve.
-The NURBS representation for this portion of the curve is returned.
+The NURBS representation for this portion of the curve is returned.
NURBS representation of the curve on success, null on failure.
Constructs a NURBS curve representation of this curve.
-Transformation to apply to geometry.
+Transformation to apply to geometry.
true if geometry successfully transformed.
Transforms the geometry. If the input Transform has a SimilarityType of OrientationReversing, you may want to consider flipping the transformed geometry after calling this function when it makes sense. For example, you may want to call Flip() on a Brep after transforming it.
-A moving vector.
+Start of the trimming interval. Portions of the curve before curve(t0) are removed.
+Start of the trimming interval. Portions of the curve before curve(t0) are removed.
End of the trimming interval. Portions of the curve after curve(t1) are removed.
Trimmed portion of this curve is successful, null on failure.
Removes portions of the curve outside the specified interval.
-[boolean, Polyline] (boolean) true if this curve can be represented as a polyline; otherwise, false. (Polyline) If true is returned, then the polyline form is returned here.
Several types of Curve can have the form of a polyline @@ -239,25 +239,25 @@ and a PolyCurve all of whose segments are some form of polyline. IsPolyline tests a curve to see if it can be represented as a polyline.
-Static
createControl points as an array of arrays containing three numbers or a Point3dList.
+Static
createControl points as an array of arrays containing three numbers or a Point3dList.
Degree of curve. The number of control points must be at least degree+1.
Constructs a curve from a set of control-point locations.
-Static
createAn original arc.
+Static
createStatic
createAn original arc.
+Static
createStatic
createThe original circle.
+Static
createStatic
createThe original circle.
+Static
createThe original circle.
A new Domain.T0 value.
A new Domain.T1 value.
Initializes a new instance, copying copying the shape of a Circle and specifying the needed parametrization of the arc. Circle will not be newly cut at these parameterizations.
-Static
decodeA json formatted object in the following format (values are orientative):
+Static
decodeA json formatted object in the following format (values are orientative):
{
version: 10000,
archive3dm: 60,
opennurbs: -1877964208,
data: 'encoded 3dm object data'
}
Decodes a Rhino Object
-Generated using TypeDoc
Generated using TypeDoc
Static
decodeStatic
encodeStatic
writeGenerated using TypeDoc
Static
encodeStatic
writeGenerated using TypeDoc
Generated using TypeDoc
Generated using TypeDoc
Number of control vertices in this curve
-Dimension of Bezier
-Gets a value indicating whether or not the curve is rational. +
Dimension of Bezier
+Gets a value indicating whether or not the curve is rational. Rational curves have control-points with custom weights.
-Tests an object to see if it is valid.
-Tests an object to see if it is valid.
+Evaluation parameter.
+parameter must satisfy 0 < t < 1
+Evaluation parameter.
+NURBS representation of the curve on success, null on failure.
+NURBS representation of the curve on success, null on failure.
Constructs a NURBS curve representation of this curve.
-Generated using TypeDoc
Generated using TypeDoc
Generated using TypeDoc
Tests an object to see if it is valid.
+...
+Gets the amount of user strings.
+Static
decodeA json formatted object in the following format (values are orientative):
+{
version: 10000,
archive3dm: 60,
opennurbs: -1877964208,
data: 'encoded 3dm object data'
}
+
+Decodes a Rhino Object
+Generated using TypeDoc
Point containing all the minimum coordinates.
Point containing all the maximum coordinates.
Constructs a new bounding box from two corner points.
-Lower extreme for box X size.
+Lower extreme for box X size.
Lower extreme for box Y size.
Lower extreme for box Z size.
Upper extreme for box X size.
Upper extreme for box Y size.
Upper extreme for box Z size.
Constructs a bounding box from numeric extremes.
-Gets the area of this BoundingBox.
-Gets the point in the center of the bounding box.
-Gets the diagonal vector of this BoundingBox. +
Gets the area of this BoundingBox.
+Gets the point in the center of the bounding box.
+Gets the diagonal vector of this BoundingBox. The diagonal connects the Min and Max points.
-Gets a value that indicates whether or not this bounding box is valid. +
Gets a value that indicates whether or not this bounding box is valid. Empty boxes are not valid, and neither are boxes with unset points.
-Gets or sets the point in the maximal corner.
-Gets or sets the point in the minimal corner.
-Gets the volume of this BoundingBox.
-Sample point.
+Gets or sets the point in the maximal corner.
+Gets or sets the point in the minimal corner.
+Gets the volume of this BoundingBox.
+Point to test.
+Amount (in model units) to inflate this box in all directions.
+Amount (in model units) to inflate this box in the x direction.
+Amount (in model units) to inflate this box in the x direction.
Amount (in model units) to inflate this box in the y direction.
Amount (in model units) to inflate this box in the z direction.
Inflate the box with custom amounts in all directions. Inflating with negative amounts may result in decreasing boxes. InValid boxes can not be inflated.
-Distances <= tolerance will be considered to be zero. If tolerance +
Distances <= tolerance will be considered to be zero. If tolerance is negative (default), then a scale invariant tolerance is used.
0 = box is not degenerate 1 = box is a rectangle (degenerate in one direction). @@ -60,18 +60,18 @@ 3 = box is a point (degenerate in three directions) 4 = box is not valid.
Determines whether a bounding box is degenerate (flat) in one or more directions.
-A transform.
+A transform.
true if this operation is successful; otherwise false.
Updates this bounding box to be the smallest axis aligned bounding box that contains the transformed result of its 8 original corner points.
-Static
decodeA js object with the following format:
+Static
decodeA js object with the following format:
{
Min: { X: <number>, Y: <number>, Z: <number> },
Max: { X: <number>, Y: <number>, Z: <number> }
}
Decodes a json object to a BoundingBox
-Static
unionBox to include in this union.
+Static
unionBox to include in this union.
Updates this BoundingBox to represent the union of itself and another box.
-Generated using TypeDoc
Generated using TypeDoc
Gets the total surface area of this box.
-Gets the point that is in the center of the box.
-Gets the validity of this Box. Boxes are invalid when the base plane or any of +
Gets the point that is in the center of the box.
+Gets the validity of this Box. Boxes are invalid when the base plane or any of the dimension intervals are invalid or decreasing.
-Gets the total volume of this box.
-Sample point.
+Gets the total volume of this box.
+Unitized parameter (between 0 and 1 is inside the box) along box X direction.
+Unitized parameter (between 0 and 1 is inside the box) along box X direction.
Unitized parameter (between 0 and 1 is inside the box) along box Y direction.
Unitized parameter (between 0 and 1 is inside the box) along box Z direction.
The point at (x,y,z).
Evaluates the box volume at the given unitized parameters. The box has idealized side length of 1x1x1.
-Transformation matrix to apply to this Box.
+Transformation matrix to apply to this Box.
true if the Box was successfully transformed, false if otherwise.
Transforms this Box using a Transformation matrix. If the Transform does not preserve Similarity, the dimensions of the resulting box cannot be trusted.
-Generated using TypeDoc
Generated using TypeDoc
Returns true if the Brep.TryConvertBrep function will be successful for this object
-true if object can be accurately modified with "squishy" transformations like +
true if object can be accurately modified with "squishy" transformations like projections, shears, and non-uniform scaling.
-Gets a value indicating whether or not the Brep is manifold. +
Gets a value indicating whether or not the Brep is manifold. Non-Manifold breps have at least one edge that is shared among three or more faces.
-Determines whether this brep is a solid, or a closed oriented manifold.
-Returns true if the Brep has a single face and that face is geometrically the same +
Determines whether this brep is a solid, or a closed oriented manifold.
+Returns true if the Brep has a single face and that face is geometrically the same as the underlying surface. I.e., the face has trivial trimming. In this case, the surface is the first face surface. The flag Brep.Faces[0].OrientationIsReversed records the correspondence between the surface's natural parametric orientation and the orientation of the Brep.trivial trimming here means that there is only one loop curve in the brep and that loop curve is the same as the underlying surface boundary.
-Tests an object to see if it is valid.
-...
-Useful for switch statements that need to differentiate between +
Tests an object to see if it is valid.
+...
+Useful for switch statements that need to differentiate between basic object types like points, curves, surfaces, and so on.
-Gets the amount of user strings.
-An object of the same type as this, with the same properties and behavior.
+Gets the amount of user strings.
+An object of the same type as this, with the same properties and behavior.
Constructs a deep (full) copy of this object.
-Gets the brep edges list accessor.
-Gets the brep faces list accessor.
-If true, a physically accurate bounding box will be computed. +
Gets the brep edges list accessor.
+Gets the brep faces list accessor.
+If true, a physically accurate bounding box will be computed. If not, a bounding box estimate will be computed. For some geometry types there is no difference between the estimate and the accurate bounding box. Estimated bounding boxes can be computed much (much) faster than accurate (or "tight") bounding boxes. @@ -69,47 +69,47 @@
The bounding box of the geometry in world coordinates or BoundingBox.Empty if not bounding box could be found.
Bounding box solver. Gets the world axis aligned bounding box for the geometry.
-false if object cannot be converted to a deformable object. true if object was already deformable or was converted into a deformable object.
If possible, converts the object into a form that can be accurately modified with "squishy" transformations like projections, shears, an non-uniform scaling.
-Angle of rotation in radians.
+Angle of rotation in radians.
Direction of the axis of rotation.
Point on the axis of rotation.
true if geometry successfully rotated.
Rotates the object about the specified axis. A positive rotation angle results in a counter-clockwise rotation about the axis (right hand rule).
-The uniform scaling factor.
+id used to retrieve this string.
+Parametric surfaces used by faces
-Transformation to apply to geometry.
+Parametric surfaces used by faces
+Transformation to apply to geometry.
true if geometry successfully transformed.
Transforms the geometry. If the input Transform has a SimilarityType of OrientationReversing, you may want to consider flipping the transformed geometry after calling this function when it makes sense. For example, you may want to call Flip() on a Brep after transforming it.
-A moving vector.
+Gets the brep vertices list accessor.
-Static
CreateConstructs new brep that matches an aligned box.
+Gets the brep vertices list accessor.
+Static
CreateStatic
createConstructs new brep that matches a bounding box.
+Static
createConstructs new brep that matches a bounding box.
A bounding box to use for creation.
A new brep; or null on failure.
-Static
createA cone value.
+Static
createA cone value.
if true the base of the cone should be capped.
A Brep if successful, null on error.
Constructs a Brep representation of the cone with a single @@ -117,7 +117,7 @@ and vertices at the base and apex ends of this seam edge. The optional cap is a single face with one circular edge starting and ending at the base vertex.
-Static
createcylinder.IsFinite() must be true.
+Static
createcylinder.IsFinite() must be true.
if true end at cylinder.m_height[0] should be capped.
if true end at cylinder.m_height[1] should be capped.
A Brep representation of the cylinder with a single face for the cylinder, @@ -125,11 +125,11 @@ seam edge. The optional bottom/top caps are single faces with one circular edge starting and ending at the bottom/top vertex.
Constructs a Brep definition of a cylinder.
-Static
createif true, triangles in the mesh will be represented by trimmed planes in +
Static
createif true, triangles in the mesh will be represented by trimmed planes in the brep. If false, triangles in the mesh will be represented by untrimmed singular bilinear NURBS surfaces in the brep.
Create a brep representation of a mesh
-Static
createThe surface of revolution.
+Static
createThe surface of revolution.
if true, the start of the revolute is not on the axis of revolution, and the surface of revolution is closed, then a circular cap will be added to close of the hole at the start of the revolute.
@@ -138,27 +138,27 @@ added to close of the hole at the end of the revolute.A Brep if successful, null on error.
Constructs a brep form of a surface of revolution.
-Static
createThe input sphere provides the orienting plane and radius.
+Static
createStatic
createA surface to convert.
+Static
createA surface to convert.
Resulting brep or null on failure.
Constructs a Brep from a surface. The resulting Brep has an outer boundary made from four trims. The trims are ordered so that they run along the south, east, north, and then west side of the surface's parameter space.
-Static
createThe input sphere provides the orienting plane and radius.
+Static
createStatic
createPlane that will be trimmed.
+Static
createStatic
decodeA json formatted object in the following format (values are orientative):
+Static
decodeA json formatted object in the following format (values are orientative):
{
version: 10000,
archive3dm: 60,
opennurbs: -1877964208,
data: 'encoded 3dm object data'
}
Decodes a Rhino Object
-Static
tryGeometry to convert, not all types of GeometryBase can be represented by BReps.
+Static
tryGeometry to convert, not all types of GeometryBase can be represented by BReps.
Brep if a brep form could be created or null if this is not possible. If geometry was of type Brep to begin with, the same object is returned, i.e. it is not duplicated.
Attempts to convert a generic Geometry object into a Brep.
-Generated using TypeDoc
Generated using TypeDoc
Gets the maximum algebraic degree of any span or a good estimate if curve spans are not algebraic.
-Gets the dimension of the object. +
Gets the dimension of the object. The dimension is typically three. For parameter space trimming curves the dimension is two. In rare cases the dimension can be one or greater than three.
-Gets or sets the domain of the curve.
-Returns true if the Brep.TryConvertBrep function will be successful for this object
-Gets a value indicating whether or not this curve is a closed curve.
-true if object can be accurately modified with "squishy" transformations like +
Gets or sets the domain of the curve.
+Returns true if the Brep.TryConvertBrep function will be successful for this object
+Gets a value indicating whether or not this curve is a closed curve.
+true if object can be accurately modified with "squishy" transformations like projections, shears, and non-uniform scaling.
-Gets a value indicating whether or not this curve is considered to be Periodic.
-Tests an object to see if it is valid.
-...
-Useful for switch statements that need to differentiate between +
Gets a value indicating whether or not this curve is considered to be Periodic.
+Tests an object to see if it is valid.
+...
+Useful for switch statements that need to differentiate between basic object types like points, curves, surfaces, and so on.
-Evaluates point at the end of the curve.
-Evaluates point at the start of the curve.
-True if "this" is a curve is reversed from the "real" curve geometry
-Gets the number of non-empty smooth (c-infinity) spans in the curve.
-Evaluate unit tangent vector at the end of the curve.
-Evaluates the unit tangent vector at the start of the curve.
-Gets the amount of user strings.
-Curve parameter of new start/end point. The returned curves domain will start at t.
+Evaluates point at the end of the curve.
+Evaluates point at the start of the curve.
+True if "this" is a curve is reversed from the "real" curve geometry
+Gets the number of non-empty smooth (c-infinity) spans in the curve.
+Evaluate unit tangent vector at the end of the curve.
+Evaluates the unit tangent vector at the start of the curve.
+Gets the amount of user strings.
+The desired dimension.
+The desired dimension.
true if the curve's dimension was already desiredDimension or if the curve's dimension was successfully changed to desiredDimension; otherwise false.
Changes the dimension of a curve.
-The orientation of this curve with respect to world XY plane.
+The orientation of this curve with respect to world XY plane.
Determines the orientation (counterclockwise or clockwise) of a closed, planar curve in the world XY plane. Only works with simple (no self intersections) closed, planar curves.
-The plane in which to solve the orientation.
+The plane in which to solve the orientation.
The orientation of this curve with respect to world XY plane.
Determines the orientation (counterclockwise or clockwise) of a closed, planar curve in a given plane. Only works with simple (no self intersections) closed, planar curves.
-Evaluation parameter.
+Curve parameter to evaluate.
+Curve parameter to evaluate.
Number of derivatives to evaluate, must be at least 0.
An array of vectors that represents all the derivatives starting at zero.
Evaluate the derivatives at the specified curve parameter.
-Curve parameter to evaluate.
+Curve parameter to evaluate.
Number of derivatives to evaluate, must be at least 0.
Side of parameter to evaluate. If the parameter is at a kink, it makes a big difference whether the evaluation is from below or above.
An array of vectors that represents all the derivatives starting at zero.
Evaluate the derivatives at the specified curve parameter.
-An object of the same type as this, with the same properties and behavior.
+An object of the same type as this, with the same properties and behavior.
Constructs a deep (full) copy of this object.
-Evaluation parameter.
+If true, a physically accurate bounding box will be computed. +
If true, a physically accurate bounding box will be computed. If not, a bounding box estimate will be computed. For some geometry types there is no difference between the estimate and the accurate bounding box. Estimated bounding boxes can be computed much (much) faster than accurate (or "tight") bounding boxes. @@ -124,102 +124,102 @@
The bounding box of the geometry in world coordinates or BoundingBox.Empty if not bounding box could be found.
Bounding box solver. Gets the world axis aligned bounding box for the geometry.
-true if this curve can be represented as a polyline; otherwise, false.
Several types of Curve can have the form of a polyline including a degree 1 NurbsCurve, a PolylineCurve, and a PolyCurve all of whose segments are some form of polyline. IsPolyline tests a curve to see if it can be represented as a polyline.
-false if object cannot be converted to a deformable object. true if object was already deformable or was converted into a deformable object.
If possible, converts the object into a form that can be accurately modified with "squishy" transformations like projections, shears, an non-uniform scaling.
-Angle of rotation in radians.
+Angle of rotation in radians.
Direction of the axis of rotation.
Point on the axis of rotation.
true if geometry successfully rotated.
Rotates the object about the specified axis. A positive rotation angle results in a counter-clockwise rotation about the axis (right hand rule).
-The uniform scaling factor.
+New end point of curve.
+New start point of curve.
+id used to retrieve this string.
+Parameter to split the curve at in the interval returned by Domain().
+Evaluation parameter.
+NURBS representation of the curve on success, null on failure.
+NURBS representation of the curve on success, null on failure.
Constructs a NURBS curve representation of this curve.
-The NURBS representation for this portion of the curve is returned.
+The NURBS representation for this portion of the curve is returned.
NURBS representation of the curve on success, null on failure.
Constructs a NURBS curve representation of this curve.
-Transformation to apply to geometry.
+
Type of annotation
-