-
Notifications
You must be signed in to change notification settings - Fork 1
/
replay_buffer.py
256 lines (218 loc) · 9.05 KB
/
replay_buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import datetime
import io
import random
import traceback
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import IterableDataset
def episode_len(episode):
# subtract -1 because the dummy first transition
return next(iter(episode.values())).shape[0] - 1
def save_episode(episode, fn):
with io.BytesIO() as bs:
np.savez_compressed(bs, **episode)
bs.seek(0)
with fn.open('wb') as f:
f.write(bs.read())
def load_episode(fn):
with fn.open('rb') as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys()}
return episode
class ReplayBufferStorage:
def __init__(self, data_specs, replay_dir):
self._data_specs = data_specs
self._replay_dir = replay_dir
replay_dir.mkdir(exist_ok=True)
self._current_episode = defaultdict(list)
self._preload()
def __len__(self):
return self._num_transitions
def add(self, time_step):
for spec in self._data_specs:
value = time_step[spec.name]
if np.isscalar(value):
value = np.full(spec.shape, value, spec.dtype)
assert spec.shape == value.shape
assert spec.dtype == value.dtype
self._current_episode[spec.name].append(value)
if time_step.last():
episode = dict()
for spec in self._data_specs:
value = self._current_episode[spec.name]
episode[spec.name] = np.array(value, spec.dtype)
self._current_episode = defaultdict(list)
self._store_episode(episode)
def _preload(self):
self._num_episodes = 0
self._num_transitions = 0
for fn in self._replay_dir.glob('*.npz'):
_, _, eps_len = fn.stem.split('_')
self._num_episodes += 1
self._num_transitions += int(eps_len)
def _store_episode(self, episode):
eps_idx = self._num_episodes
eps_len = episode_len(episode)
self._num_episodes += 1
self._num_transitions += eps_len
ts = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
eps_fn = f'{ts}_{eps_idx}_{eps_len}.npz'
save_episode(episode, self._replay_dir / eps_fn)
class ReplayBuffer(IterableDataset):
def __init__(self, replay_dir, max_size, num_workers, nstep, discount,
fetch_every, save_snapshot):
self._replay_dir = replay_dir
self._size = 0
self._max_size = max_size
self._num_workers = max(1, num_workers)
self._episode_fns = []
self._episodes = dict()
self._nstep = nstep
self._discount = discount
self._fetch_every = fetch_every
self._samples_since_last_fetch = fetch_every
self._save_snapshot = save_snapshot
def _sample_episode(self):
eps_fn = random.choice(self._episode_fns)
return self._episodes[eps_fn]
def _store_episode(self, eps_fn):
try:
episode = load_episode(eps_fn)
except:
return False
eps_len = episode_len(episode)
while eps_len + self._size > self._max_size:
early_eps_fn = self._episode_fns.pop(0)
early_eps = self._episodes.pop(early_eps_fn)
self._size -= episode_len(early_eps)
early_eps_fn.unlink(missing_ok=True)
self._episode_fns.append(eps_fn)
self._episode_fns.sort()
self._episodes[eps_fn] = episode
self._size += eps_len
if not self._save_snapshot:
eps_fn.unlink(missing_ok=True)
return True
def _try_fetch(self):
if self._samples_since_last_fetch < self._fetch_every:
return
self._samples_since_last_fetch = 0
try:
worker_id = torch.utils.data.get_worker_info().id
except:
worker_id = 0
eps_fns = sorted(self._replay_dir.glob('*.npz'), reverse=True)
fetched_size = 0
for eps_fn in eps_fns:
eps_idx, eps_len = [int(x) for x in eps_fn.stem.split('_')[1:]]
if eps_idx % self._num_workers != worker_id:
continue
if eps_fn in self._episodes.keys():
break
if fetched_size + eps_len > self._max_size:
break
fetched_size += eps_len
if not self._store_episode(eps_fn):
break
def _sample(self):
try:
self._try_fetch()
except:
traceback.print_exc()
self._samples_since_last_fetch += 1
episode = self._sample_episode()
# add +1 for the first dummy transition
idx = np.random.randint(0, episode_len(episode) - self._nstep + 1) + 1
obs = episode['observation'][idx - 1]
action = episode['action'][idx]
next_obs = episode['observation'][idx + self._nstep - 1]
reward = np.zeros_like(episode['reward'][idx])
discount = np.ones_like(episode['discount'][idx])
for i in range(self._nstep):
step_reward = episode['reward'][idx + i]
reward += discount * step_reward
discount *= episode['discount'][idx + i] * self._discount
return obs, action, reward, discount, next_obs
def sample_recent_data(self, batch_size, nstep, rtg=False):
try:
self._try_fetch()
except:
traceback.print_exc()
self._samples_since_last_fetch += 1
start_index = len(self._episode_fns)
length = 0
while length < batch_size:
start_index -= 1
length += episode_len(self._episodes[self._episode_fns[start_index]])
episodes = [self._episodes[episode_fn] for episode_fn in self._episode_fns[start_index:]]
observations = np.concatenate([episode['observation'][:-nstep] for episode in episodes])
next_observations = np.concatenate([episode['observation'][nstep:] for episode in episodes])
if nstep == 1:
actions = np.concatenate([episode['action'][1:] for episode in episodes])
else:
actions = np.concatenate([episode['action'][1:-nstep+1] for episode in episodes])
rewards = []
for episode in episodes:
if rtg:
reward = self._discounted_cumsum(episode['reward'])
else:
reward = self._discounted_cumsum(episode['reward'], limit=nstep)
if nstep == 1:
rewards.append(reward[1:])
else:
rewards.append(reward[1:-nstep + 1])
rewards = np.concatenate(rewards)
discounts = np.ones((observations.shape[0], 1), dtype=np.float32) * (self._discount ** nstep)
terminals = []
for episode in episodes:
terminal = np.zeros((episode['observation'].shape[0]), dtype=np.float32)
terminal[-1] = 1
terminal = terminal[nstep:]
terminals.append(terminal)
terminals = np.concatenate(terminals).reshape((-1, 1))
obs = observations[-batch_size:]
action = actions[-batch_size:]
reward = rewards[-batch_size:]
next_obs = next_observations[-batch_size:]
discount = discounts[-batch_size:]
terminal = terminals[-batch_size:]
return obs, action, reward, discount, next_obs, terminal
def _discounted_return(self, rewards):
discounted_return = sum([(self._discount ** i) * r for i, r in enumerate(rewards)])
list_of_discounted_returns = np.ones((len(rewards),)) * discounted_return
return list_of_discounted_returns
def _discounted_cumsum(self, rewards, limit=None):
if limit is not None:
list_of_discounted_cumsums = np.array(
[sum([(self._discount ** i) * r for i, r in enumerate(rewards[t: t + limit])])
for t in range(len(rewards))])
else:
list_of_discounted_cumsums = np.array(
[sum([(self._discount ** i) * r for i, r in enumerate(rewards[t:])])
for t in range(len(rewards))])
return list_of_discounted_cumsums
def __iter__(self):
while True:
yield self._sample()
def _worker_init_fn(worker_id):
seed = np.random.get_state()[1][0] + worker_id
np.random.seed(seed)
random.seed(seed)
def make_replay_loader(replay_dir, max_size, batch_size, num_workers,
save_snapshot, nstep, discount, fetch_every=1000):
max_size_per_worker = max_size // max(1, num_workers)
iterable = ReplayBuffer(replay_dir,
max_size_per_worker,
num_workers,
nstep,
discount,
fetch_every=fetch_every,
save_snapshot=save_snapshot)
loader = torch.utils.data.DataLoader(iterable,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
worker_init_fn=_worker_init_fn)
return loader