-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_table_discovery.py
262 lines (213 loc) · 9.29 KB
/
run_table_discovery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import logging
import os
import faiss
import shutil
import sys
import json
import time
from tqdm import tqdm
import pandas as pd
import copy
import argparse
from sql_metadata import Parser
from typing import Any, Dict, List, Optional
import psycopg2
from pymongo import MongoClient
from llama_index.core import StorageContext, Settings, Document, VectorStoreIndex, load_index_from_storage
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.schema import TextNode
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.llms.openai import OpenAI
import os
import openai
import pprint
from sqlalchemy import create_engine
from llama_index.core import SQLDatabase, Settings, VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core.objects import SQLTableNodeMapping, ObjectIndex, SQLTableSchema
from llama_index.core.query_engine import NLSQLTableQueryEngine
from llama_index.core.indices.struct_store import SQLTableRetrieverQueryEngine
import sys
sys.path.append('.')
from tasks.common import trace_langfuse
from tasks.kilt_utils import normalize_answer
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
def get_abstract(paragraphs: List[str]) -> str:
res = []
for p in paragraphs: # paragraphs[0] is the title
if p.startswith('Section::::') or p.startswith('BULLET::::'):
break
res.append(p)
return '\n'.join(res).strip()
def get_table_index(emb_model, index_type="default"):
assert index_type == "default"
if emb_model.startswith('text-embedding'):
Settings.embed_model = OpenAIEmbedding(model=emb_model, embed_batch_size=1000)
else:
Settings.embed_model = HuggingFaceEmbedding(emb_model)
persist_dir = os.path.join("indices", 'table_' + index_type + '_' + emb_model.replace('/', '--'))
user = os.environ.get('PGUSER')
db = 'nba'
conn_str = f'postgresql+psycopg://{user}@localhost/{db}'
schema = 'nba_wikisql'
engine = create_engine(conn_str)
sql_database = SQLDatabase(engine, schema=schema)
table_node_mapping = SQLTableNodeMapping(sql_database)
if not (os.path.exists(persist_dir) and os.listdir(persist_dir)):
t0 = time.time()
# connect the db
connection = psycopg2.connect(f"host=localhost dbname=nba port=5432 user={user}")
cursor = connection.cursor()
# select query for table meta data
cursor.execute("SELECT id, page_title, section_title, caption FROM metadata.nba_context")
query_result = cursor.fetchall()
# create df_meta
df_meta = pd.DataFrame(query_result, columns=['id', 'page_title', 'section_title', 'caption'])
df_meta = df_meta.set_index('id')
df_meta.loc[['1-11734041-2']].to_json(orient='records').strip('[,]')
# Execute the SQL query to fetch the whole table list
cursor.execute(
"SELECT table_name FROM information_schema.tables WHERE table_schema ='nba_wikisql' ORDER BY table_name;")
id_list = cursor.fetchall()
id_list = [id[0][2:].replace('_', '-') for id in id_list] # change table name to 1-10015132-1
cursor.close()
context_str_dict = {id: df_meta.loc[[id]].to_json(orient='records').strip('[,]') for id in id_list}
print(f'Fetched {len(context_str_dict)} table contexts')
table_schema_objs = [
SQLTableSchema(table_name='t_' + id.replace('-', '_'), context_str=context_str_dict[id])
for id in id_list
]
obj_index = ObjectIndex.from_objects(
table_schema_objs,
table_node_mapping,
VectorStoreIndex,
show_progress=True,
)
# persist to disk (no path provided will persist to the default path ./storage)
obj_index.persist(persist_dir)
print(f"Index created in {time.time() - t0:.2f} seconds")
t0 = time.time()
index = ObjectIndex.from_persist_dir(persist_dir, table_node_mapping)
print(f"Index loaded in {time.time() - t0:.2f} seconds")
return index, engine, sql_database
def get_table_query_engine(
llm, retriever, table_top_k,
):
Settings.llm = OpenAI(temperature=0, model=llm)
if retriever.lower() == "bm25":
raise NotImplementedError()
else:
obj_index, engine, sql_database = get_table_index(emb_model=retriever)
object_retriever = obj_index.as_retriever(similarity_top_k=table_top_k)
query_engine = SQLTableRetrieverQueryEngine(
sql_database, object_retriever, verbose=False
)
return query_engine, object_retriever
def parse_columns(sql_query: str) -> List[str]:
try:
return Parser(sql_query).columns
except Exception as e:
return []
def parse_tables(sql_query: str) -> List[str]:
try:
return Parser(sql_query).tables
except Exception as e:
return []
@trace_langfuse(name="table_discovery")
def get_responses(engine, table_retriever, dataset) -> List[dict]:
all_response = []
for d in dataset:
d = copy.deepcopy(d)
response = engine.query(d["question"])
retrieved_tables = table_retriever.retrieve(d["question"])
table_names = [table.table_name for table in retrieved_tables]
d['model_response'] = str(response)
d['model_provenance'] = {
'tables': {
'retrieved': table_names,
'sql': response.metadata['sql_query'].replace("\n", " "),
'sql_columns': parse_columns(response.metadata['sql_query']),
'sql_tables': parse_tables(response.metadata['sql_query']),
}
}
all_response.append(d)
return all_response
def precision_at_k(retrieved: list[str], relevant: list[str], k: int) -> float:
return len(set(retrieved[:k]) & set(relevant)) / k
def recall_at_k(retrieved: list[str], relevant: list[str], k: int) -> float:
return len(set(retrieved[:k]) & set(relevant)) / len(relevant)
def r_precision(retrieved: list[str], relevant: list[str]) -> float:
return precision_at_k(retrieved, relevant, len(relevant)) if relevant else 0.0
def evaluate(all_response: List[dict]) -> dict:
res = {
'metrics': {},
'responses': []
}
ks = [1, 2, 3, 5, 10, 20]
# max_k = max(ks)
# assert max_k <= all(max_k <= len(d['model_provenance']['spans']) for d in all_response)
for d in all_response:
d = copy.deepcopy(d)
# Compute accuracy
d['metric_accuracy'] = float(normalize_answer(d["answer"]) in normalize_answer(d["model_response"]))
# Compute retrieval metrics
retrieved = [s[4:] for s in d['model_provenance']['tables']['retrieved']] # "t_1_24856332_4" -> "24856332-4"
relevant = [d['provenance_table']['table'][4:]]
d['metric_r_precision'] = r_precision(retrieved, relevant)
for k in ks:
d[f'metric_precision@{k}'] = precision_at_k(retrieved, relevant, k)
for k in ks:
d[f'metric_recall@{k}'] = recall_at_k(retrieved, relevant, k)
res['responses'].append(d)
metrics = ['accuracy', 'r_precision'] + [f'precision@{k}' for k in ks] + [f'recall@{k}' for k in ks]
for metric in metrics:
res['metrics'][metric] = sum(d[f'metric_{metric}'] for d in res['responses']) / len(res['responses'])
return res
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--inputs', default=["benchmark/q_table.json"], nargs="+")
parser.add_argument('--output_dir', default='outputs/test_table_discovery/')
parser.add_argument('--overwrite', action="store_true")
# parameters for mode=doc
parser.add_argument('--llm', default="gpt-3.5-turbo")
parser.add_argument('--table_top_k', default=20, type=int)
parser.add_argument('--retriever', default="BAAI/bge-base-en-v1.5")
args = parser.parse_args()
print(args)
print()
if args.overwrite and os.path.exists(args.output_dir):
shutil.rmtree(args.output_dir)
os.makedirs(args.output_dir, exist_ok=True)
response_output_path = os.path.join(args.output_dir, "responses.json")
if not os.path.exists(response_output_path):
# Get query engine
engine, table_retriever = get_table_query_engine(
llm=args.llm,
retriever=args.retriever,
table_top_k=args.table_top_k,
)
# Load dataset
dataset = []
for path in args.inputs:
with open(path) as f:
dataset += json.load(f)
# Run queries
all_response = get_responses(engine, table_retriever, dataset)
with open(response_output_path, "w") as f:
json.dump(all_response, f, indent=2)
print(f'Responses saved to {response_output_path}')
with open(response_output_path) as f:
all_response = json.load(f)
print(f'Loaded {len(all_response)} responses from {response_output_path}')
# Evaluate and save metrics
result = evaluate(all_response)
for k, v in result['metrics'].items():
print(f"{k}: {v:.4f}")
result_output_path = os.path.join(args.output_dir, "result.json")
with open(result_output_path, "w") as f:
json.dump(result, f, indent=2)
print(f'Results saved to {result_output_path}')
if __name__ == "__main__":
main()