forked from mathieu-reymond/pareto-conditioned-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_pcn.py
310 lines (248 loc) · 10.6 KB
/
main_pcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
import numpy as np
class ScaleRewardEnv(gym.RewardWrapper):
def __init__(self, env, min_=0., scale=1.):
gym.RewardWrapper.__init__(self, env)
self.min = min_
self.scale = scale
def reward(self, reward):
return (reward - self.min)/self.scale
class CHWEnv(gym.ObservationWrapper):
def observation(self, observation):
# from whc to chw
return np.moveaxis(observation, [1, 0, 2], [2, 1, 0])
class GrayscaleEnv(gym.ObservationWrapper):
"""
Expects a state-image, in CHW, with 3 channels: in RGB
If the state is in WHC, use the CHWEnv wrapper first
"""
def observation(self, state):
# RGB to grayscale
r, g, b = state[0], state[1], state[2]
state = 0.2989 * r + 0.5870 * g + 0.1140 * b
# rescale to (84, 84)
state = cv2.resize(state, (84, 84), interpolation=cv2.INTER_AREA)
# normalize state
state /= 255.
# add channel dim
state = np.expand_dims(state, 0)
return state
class HistoryEnv(gym.Wrapper):
def __init__(self, env, size=4):
"""Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
"""
gym.Wrapper.__init__(self, env)
self.size = size
# will be set in _convert
self._state = None
# history stacks observations on dim 0
low = np.repeat(self.observation_space.low, self.size, axis=0)
high = np.repeat(self.observation_space.high, self.size, axis=0)
self.observation_space = gym.spaces.Box(low, high)
def reset(self, **kwargs):
""" Do no-op action for a number of steps in [1, noop_max]."""
state = self.env.reset(**kwargs)
# add history dimension
s = np.expand_dims(state, 0)
# fill history with current state
self._state = np.repeat(s, self.size, axis=0)
return np.concatenate(self._state, axis=0)
def step(self, ac):
state, r, d, i = self.env.step(ac)
# shift history
self._state = np.roll(self._state, -1, axis=0)
# add state to history
self._state[-1] = state
return np.concatenate(self._state, axis=0), r, d, i
class FrameObservationEnv(gym.ObservationWrapper):
def observation(self, observation):
# ignore observation, render frame and use that instead
observation = env.render()
return observation
class MinecartWrapper(gym.ObservationWrapper):
def observation(self, s):
state = np.append(s['position'], [s['speed'], s['orientation'], *s['content']])
return state
class DSTModel(nn.Module):
def __init__(self, nA, scaling_factor, n_hidden=64):
super(DSTModel, self).__init__()
self.scaling_factor = scaling_factor
self.s_emb = nn.Sequential(nn.Linear(110, 64),
nn.Sigmoid())
self.c_emb = nn.Sequential(nn.Linear(3, 64),
nn.Sigmoid())
self.fc = nn.Sequential(nn.Linear(64, nA),
nn.LogSoftmax(1))
def forward(self, state, desired_return, desired_horizon):
c = torch.cat((desired_return, desired_horizon), dim=-1)
# commands are scaled by a fixed factor
c = c*self.scaling_factor
# convert state index to one-hot encoding for Deep Sea Treasure
state = F.one_hot(state.long(), num_classes=110).to(state.device).float()
s = self.s_emb(state)
c = self.c_emb(c)
# element-wise multiplication of state-embedding and command
log_prob = self.fc(s*c)
return log_prob
class WalkroomModel(nn.Module):
def __init__(self, nS, nA, nO, scaling_factor, n_hidden=64):
super(WalkroomModel, self).__init__()
self.nS = nS
self.scaling_factor = scaling_factor
self.s_emb = nn.Sequential(nn.Linear(nS, 64),
nn.Sigmoid())
self.c_emb = nn.Sequential(nn.Linear(nO+1, 64),
nn.Sigmoid())
self.fc = nn.Sequential(nn.Linear(64, nA),
nn.LogSoftmax(1))
def forward(self, state, desired_return, desired_horizon):
c = torch.cat((desired_return, desired_horizon), dim=-1)
# commands are scaled by a fixed factor
c = c*self.scaling_factor
state = state.float()
s = self.s_emb(state)
c = self.c_emb(c)
# element-wise multiplication of state-embedding and command
log_prob = self.fc(s*c)
return log_prob
class IndexObservation(gym.ObservationWrapper):
def __init__(self, env):
super(IndexObservation, self).__init__(env)
self.sizes = (self.env.size,)*self.env.dimensions
def observation(self, obs):
obs = np.ravel_multi_index(obs, self.sizes)
return obs
class MinecartModel(nn.Module):
def __init__(self, nA, scaling_factor, n_hidden=64):
super(MinecartModel, self).__init__()
self.scaling_factor = scaling_factor
self.s_emb = nn.Sequential(nn.Linear(6, 64),
nn.Sigmoid())
self.c_emb = nn.Sequential(nn.Linear(4, 64),
nn.Sigmoid())
self.fc = nn.Sequential(nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, nA),
nn.LogSoftmax(1))
def forward(self, state, desired_return, desired_horizon):
c = torch.cat((desired_return, desired_horizon), dim=-1)
# commands are scaled by a fixed factor
c = c*self.scaling_factor
s = self.s_emb(state.float())
c = self.c_emb(c)
# element-wise multiplication of state-embedding and command
log_prob = self.fc(s*c)
return log_prob
class SumoModel(nn.Module):
def __init__(self, nA, scaling_factor, n_hidden=64):
super(SumoModel, self).__init__()
self.scaling_factor = scaling_factor
self.s_emb = nn.Sequential(
nn.Conv2d(4, 32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU(),
nn.Flatten(),
nn.Linear(3136, 64),
nn.Sigmoid()
)
self.c_emb = nn.Sequential(nn.Linear(3, 64),
nn.Sigmoid())
self.fc = nn.Sequential(nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, nA),
nn.LogSoftmax(1))
def forward(self, state, desired_return, desired_horizon):
c = torch.cat((desired_return, desired_horizon), dim=-1)
# commands are scaled by a fixed factor
c = c*self.scaling_factor
s = self.s_emb(state.float())
c = self.c_emb(c)
# element-wise multiplication of state-embedding and command
log_prob = self.fc(s*c)
return log_prob
if __name__ == '__main__':
import envs
import torch
from gym.wrappers import TimeLimit
import argparse
from pcn.pcn import train
from datetime import datetime
import uuid
import os
from main_mones import MultiOneHotEnv
parser = argparse.ArgumentParser(description='PCN')
parser.add_argument('--env', required=True, type=str, help='dst, minecart, sumo, walkroom2...walkroom9')
parser.add_argument('--model', default=None, type=str, help='load model')
args = parser.parse_args()
device = 'cpu'
if args.env == 'dst':
env = gym.make('DeepSeaTreasure-v0')
env = TimeLimit(env, 200)
nA = 4
max_treasure = np.amax(list(env.unwrapped._treasures().values()))
ref_point = np.array([0, -200.])
scaling_factor = torch.tensor([[0.1, 0.1, 0.01]]).to(device)
max_return = np.array([max_treasure, -1.])
model = DSTModel(nA, scaling_factor).to(device)
lr, total_steps, batch_size, n_model_updates, n_er_episodes, max_size = 1e-2, 1e5, 256, 10, 50, 200
elif args.env.startswith('walkroom'):
nO = int(args.env[len('walkroom'):])
env = gym.make(f'Walkroom{nO}D-v0')
env = MultiOneHotEnv(env)
env = TimeLimit(env, 200)
nA = nO*2
ref_point = np.ones(nO)*-env.size
scaling_factor = torch.tensor([[0.1]*nO+[0.01]]).to(device)
max_return = np.zeros(nO)
model = WalkroomModel(env.size*nO, nA, nO, scaling_factor)
avg_ep_steps = 18 if nO <= 5 else 9
lr, total_steps, batch_size, n_model_updates, n_er_episodes, max_size = 1e-2, 100*nO*(300+100*nO), 256, 10, 50, 10*nO**3
elif args.env == 'minecart':
env = gym.make('MinecartDeterministic-v0')
env = TimeLimit(env, 1000)
nA = 6
ref_point = np.array([0, 0, -200.])
scaling_factor = torch.tensor([[1, 1, 0.1, 0.1]]).to(device)
max_return = np.array([1.5, 1.5, -0.])
model = MinecartModel(nA, scaling_factor).to(device)
lr, total_steps, batch_size, n_model_updates, n_er_episodes, max_size = 1e-3, 1e7, 256, 50, 20, 50
elif args.env == 'sumo':
q_range = 10
env = gym.make('CrossroadSumo-v0')
env = TimeLimit(env, max_episode_steps=100)
env = FrameObservationEnv(env)
env = CHWEnv(env)
env = GrayscaleEnv(env)
env = HistoryEnv(env, size=4)
env = ScaleRewardEnv(env, min_=np.array([1.2, -0.9]), scale=90/q_range)
nA = 2
ref_point = np.array([-2.0, -2.0])*q_range
scaling_factor = torch.tensor([[1, 1, 0.01]]).to(device)
max_return = np.array([1.5, 1.5])*q_range
model = SumoModel(nA, scaling_factor).to(device)
lr, total_steps, batch_size, n_model_updates, n_er_episodes, max_size = 1e-3, 2e6, 1024, 50, 50, 50
env.nA = nA
if args.model is not None:
model = torch.load(args.model, map_location=device).to(device)
model.scaling_factor = model.scaling_factor.to(device)
logdir = f'{os.getenv("LOGDIR", "/tmp")}/pcn/pcn/{args.env}/lr_{lr}/totalsteps_{total_steps}/batch_size_{batch_size}/n_model_updates_{n_model_updates}/n_er_episodes_{n_er_episodes}/max_size_{max_size}/'
logdir += datetime.now().strftime('%Y-%m-%d_%H-%M-%S_') + str(uuid.uuid4())[:4] + '/'
train(env,
model,
learning_rate=lr,
batch_size=batch_size,
total_steps=total_steps,
n_model_updates=n_model_updates,
n_er_episodes=n_er_episodes,
max_size=max_size,
max_return=max_return,
ref_point=ref_point,
logdir=logdir)