forked from melissamonk-NOAA/StockAssessment_template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Figures_from_r4ss.Rmd
376 lines (290 loc) · 15 KB
/
Figures_from_r4ss.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
---
title: "How to insert r4ss Figure"
author: "Melissa Monk"
date:
output:
pdf_document:
fig_caption: yes
highlight: haddock
includes:
in_header: header.tex
latex_engine: xelatex
---
<!--
This script contains options for including figures produced by r4ss.
Option 1: Insert a figure using R markdown syntax and the name of the figure
Option 2: Insert a figure using R makrdown syntax and the figure number
from plotInfoTable. If the figure location within plotInfoTable
changes with a new run, the figure will also change.
Option 3: Insert a series of figures from an R code chunk. I've parsed the
plotInfoTable into smaller tables by category (Bio, Sel, Catch, etc.)
This is done in Preamble.R and you can view each table in the Global
Environment. Currently these are all set up for model one (mod1). If you
have multiple models you'll just copy the code to the correct place in
the document and change mod1 to the appropriate model number.
I have set up the labels for these plots to be numbered. For example, label
fig:mod1_1_bio1_sizeatage, indicates this is a figure from model 1 (fig:mod1)
and the next number (1 in this case) is the first plot from the Bio dataframe.
You can print them all here in this document and then reference the labels
(printed by each figure) to decide which plots to include in the final document
before you copy the R code chunk to Assessment_template. To reference a figure
in the text, use the label or the plot location, either \ref(fig:mod1_1_bio1_sizeatage)
or \ref{paste0(fig:mod1_1_', Bio_mod1[1,9])} where you've replaced the 'i's' with
the correct number. The latter option is less intuitive when you're writine the
document and referecing figures.
You can also print a series of plots and if a plot has multiple pages, only the first
in the series will have the figure number and caption.
Downfall to this option: you can either add code to change the caption,
or change the caption in the plotInfoTable .csv if you don't like the
default, which will overwrite each time you run the Parse_r4ss_plotInfoTable.R
script within the 0-Run_r4ss_plots.R script, which should really be once with a
final model...
Option 4: Insert two plots where you have a page1 and page2 and want the same
caption (sort of a hack, but it works!)
You'll copy the code chunks from this file into the Assessment_template.Rmd to insert the figures.
To reference these figures in the document, use label created for each plot.
-->
```{r global_options, include=FALSE}
# Do not worry about this R code chunk (unless you need to change the
# number of models) - it's a repeat from the Preamble.R file, so you
# can recreate the dataframes used for the tables
# set global options for R code chunks: echo=FALSE (don't include source code);
# warning=FALSE (suppress R warnings); message=FALSE (suppress R messages)
# eval = TRUE is default
n_models = 1 ##CHANGE
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
options(xtable.comment=FALSE)
library(xtable) # create tables
library(ggplot2) # plotting
library(reshape2) # melt dataframes, etc
library(scales) # print percents
library(knitr)
# Load in the plotInfoTable and parse the table as an option to use for figures
for(imod in 1:n_models) {
if (imod==1) {
mod_num = 'mod1'
} else {
if (imod==2) {
mod_num = 'mod2'
} else {
mod_num = 'mod3'
}}
# Read in the plotInfoTable.csv containining the list of plots created from r4SS
plotInfoTable = read.csv(paste0('C:/StockAssessment_template/r4ss/plots_',mod_num,'/plotInfoTable_',mod_num,'_final.csv'))
# Replace the @ in A@L with AAL and the - in S-R with S_R
# And get rid of other funny characters
plotInfoTable$category = gsub('@', 'A', plotInfoTable$category)
plotInfoTable$category = gsub('-', '_', plotInfoTable$category)
plotInfoTable$caption = gsub('@', 'A', plotInfoTable$caption)
plotInfoTable$caption = gsub('-', '_', plotInfoTable$caption)
plotInfoTable$caption = gsub('<br>|<blockquote>|</i>|<i>|</blockquote>',
' ',plotInfoTable$caption)
# Change factors to strings
plotInfoTable = data.frame(lapply(plotInfoTable, as.character), stringsAsFactors=FALSE)
# Create a model-specific plotInfoTable
assign(paste0('plotInfoTable_',mod_num),plotInfoTable)
# Pull out the different categories of plots, e.g., Bio, Sel, Timeseries, etc
categories = as.vector(unique(plotInfoTable$category))
# Create a dataframe for each category - because you're running these from a
# .R file, you can view all of these dataframes in the Environment
for(icat in 1:length(categories)){
dummy_df = data.frame()
dummy_df = subset(plotInfoTable,category==categories[icat])
dummy_df = data.frame(lapply(dummy_df, as.character), stringsAsFactors=FALSE)
dummy_df$label = substr(dummy_df$basename,1, nchar(dummy_df$basename)-4)
dummy_df$filepath = paste0('./r4ss/plots_',mod_num,'/',dummy_df$basename)
assign(paste0(categories[icat],'_',mod_num),dummy_df)
}
} # end n_models
# multiple models
multi_page_fig = c('page2', 'page3', 'page4', 'page5', 'page6', 'page7')
# Tells R which columns to look in for the caption, label and path
caption_col = 2
label_col = 10
path_col = 11
```
<!--========================================================================-->
<!-- Option 1: type out the code for a figure using the filename -->
<!-- YOU CANNOT USE EXTRA SPACES OR CARRIAGE RETURNS WITHIN THR IMAGE CODE
You will have to change the directory here if you don't have the template
in C:/Assessment_template (only for running the examples)
![Summary of data sources used in the base case assessment. \label{fig:data_plot}](C:/Assessment_template/r4ss/plots_mod1/data_plot.png)
<!-- Plots have to be the same directory, or a subdirectory of the .Rmd file
Copy the below code to the Assessment_template.Rmd document to use -->
![Summary of data sources used in the base case assessment. \label{fig:data_plot}](r4ss/plots_mod1/data_plot.png)
<!--========================================================================-->
<!-- Option 2: Call a plot using the plot number from the plotInfoTable.csv -->
<!-- Here we are calling the full file path name so we don't have the same directory
issue as above. You can either use the caption provided by plotInfoTable or replace
it with your own. Both options are shown.
The danger in using the plotInfoTable to produce these figures, is that if the
figures change position in the file due to a new run, they will all shift...
![`r plotInfoTable_mod1[25,caption_col]` \label{`r paste0('fig:mod1_', plotInfoTable_mod1[25,5])`}](`r plotInfoTable_mod1[25,1]`)
![Writing my own caption. \label{`r paste0('fig:mod1_', plotInfoTable_mod1[25,5])`}](`r plotInfoTable_mod1[25,1]`)
<!--========================================================================-->
<!-- Option 3: Pull multiple figures at once from plotInfoTable using R
code chunks. I've parsed the plotInfoTable into the 14 dataframes,
one each for of the plot types, e.g., biology, selectivity
You can include about 15 plots in one loop, before LaTeX complains
about too many floats
R chunks are commented out so you can run them one by one.
<!-- Biology (Bio) r4ss plots --------------------------------------------- -->
```{r, results='asis'}
# Plot all of the bio plots
for(i in 1:dim(Bio_mod1)[1]) {
# concatenate the caption column, label columnm and the plot location into the r Markdown
# syntax so that when converted to LaTeX it'll print the plot
cat('\n![', Bio_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', Bio_mod1[i,label_col], '}](', Bio_mod1[i, path_col], ')\n', sep='')
}
```
\FloatBarrier
<!-- Selectivity (Sel) r4ss plots ----------------------------------------- -->
```{r, results='asis'}
# Plot all of the selectivity plots - only plotting a select few here
# for(i in 1:15) { #dim(Sel_mod1)[1]) {
# cat('\n![', Sel_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', Sel_mod1[i, label_col], '}](', Sel_mod1[i, path_col], ')\n', sep='')
#}
```
\FloatBarrier
<!-- Timeseries r4ss plots ------------------------------------------------ -->
```{r, results='asis'}
# Plot all of the timeseries plots
# for(i in 1:dim(Timeseries_mod1)[1]) {
# cat('\n![', Timeseries_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', Timeseries_mod1[i, label_col], '}](', Timeseries_mod1[i, path_col], ')\n', sep='')
# }
```
\FloatBarrier
<!-- Recruitment deviations (RecDev) r4ss plots --------------------------- -->
```{r, results='asis'}
# # Plot all of the timeseries plots
# for(i in 1:5) { #dim(RecDev_mod1)[1]) {
# cat('\n![', RecDev_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', RecDev_mod1[i, label_col], '}](', RecDev_mod1[i, path_col], ')\n', sep='')
# }
```
\FloatBarrier
<!-- Stock-recuitment (S_R) r4ss plots ------------------------------------ -->
```{r, results='asis'}
# Plot all of the timeseries plots
# for(i in 1:dim(S_R_mod1)[1]) {
# cat('\n![', S_R_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', S_R_mod1[i, label_col], '}](', S_R_mod1[i, path_col], ')\n', sep='')
#}
```
\FloatBarrier
<!-- Catch (Catch) r4ss plots --------------------------------------------- -->
```{r, results='asis'}
# Plot all of the timeseries plots
# for(i in 1:dim(Catch_mod1)[1]) {
# cat('\n![', Catch_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', Catch_mod1[i, label_col], '}](', Catch_mod1[i, path_col], ')\n', sep='')
# }
```
\FloatBarrier
<!-- Spawning Potential Ratio (SPR) r4ss plots ---------------------------- -->
```{r, results='asis'}
# Plot all of the timeseries plots
# for(i in 1:dim(SPR_mod1)[1]) {
# cat('\n![', SPR_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', SPR_mod1[i, label_col], '}](', SPR_mod1[i, path_col], ')\n', sep='')
# }
```
\FloatBarrier
<!-- Indices of Abundance (Index) r4ss plots ------------------------------ -->
```{r, results='asis'}
# Plot all of the timeseries plots
# for(i in 1:3) { #dim(Index_mod1)[1]) {
# cat('\n![', Index_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', Index_mod1[i, label_col], '}](', Index_mod1[i, path_col], ')\n', sep='')
# }
```
\FloatBarrier
<!-- Numbers at age/length (Numbers) r4ss plots ---------------------------- -->
```{r, results='asis'}
# Plot all of the timeseries plots
# for(i in 1:3) { #dim(Numbers_mod1)[1]) {
# cat('\n![', Numbers_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', Numbers_mod1[i, label_col], '}](', Numbers_mod1[i, pah_col], ')\n', sep='')
# }
```
\FloatBarrier
<!-- Composition (CompDat) r4ss plots -------------------------------------- -->
```{r, results='asis'}
# # Plot all of the timeseries plots
# for(i in 1:dim(CompDat_mod1)[1]) {
#
# # find matches to multi-page plots
# page_test = sapply(multi_page_fig, grepl, CompDat_mod1$label[i])
#
# # if the plot is page2+ of a series, add the extra caption
# if(TRUE %in% page_test) {
# cat('\n![](', CompDat_mod1[i, path_col], ')', sep='')
#
# cat('\\begin{center} \n
# Figure continued from previous page \n
# \\end{center}',sep='')
#
# } else {
#
# cat('\n![', CompDat_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', CompDat_mod1[i, label_col], '}](', CompDat_mod1[i, path_col], ')\n', sep='')
# } }
```
\FloatBarrier
<!-- Length Composition (LenComp) r4ss plots ------------------------------- -->
```{r, results='asis'}
# Plot all of the timeseries plots
for(i in 1:10) { #dim(LenComp_mod1)[1]) {
# find matches to multi-page plots
page_test = sapply(multi_page_fig, grepl, LenComp_mod1$label[i])
# if the plot is page2+ of a series, add the extra caption
if(TRUE %in% page_test) {
cat('\n![](', LenComp_mod1[i, path_col], ')', sep='')
cat('\\begin{center} \n
Figure continued from previous page \n
\\end{center}',sep='')
} else {
cat('\n![', LenComp_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', LenComp_mod1[i, label_col], '}](', LenComp_mod1[i, path_col], ')\n', sep='')
} }
```
\FloatBarrier
<!-- Age at Length Composition (AALComp) r4ss plots ------------------------ -->
```{r, results='asis'}
# # Plot all of the timeseries plots
# for(i in 1:10){ #dim(AALComp_mod1)[1]) {
#
# # find matches to multi-page plots
# page_test = sapply(multi_page_fig, grepl, AALComp_mod1$label[i])
#
# # if the plot is page2+ of a series, add the extra caption
# if(TRUE %in% page_test) {
# cat('\n![](', AALComp_mod1[i, path_col], ')', sep='')
#
# cat('\\begin{center} \n
# Figure continued from previous page \n
# \\end{center}',sep='')
#
# } else {
#
# cat('\n![', AALComp_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', AALComp_mod1[i, label_col], '}](', AALComp_mod1[i, path_col], ')\n', sep='')
# } }
```
\FloatBarrier
<!-- Yield (Yield) r4ss plots --------------------------------------------- -->
```{r, results='asis'}
# Plot all of the timeseries plots
# for(i in 1:dim(Yield_mod1)[1]) {
# cat('\n![', Yield_mod1[i,caption_col], ' \\label{fig:mod1_', i, '_', Yield_mod1[i, label_col], '}](', Yield_mod1[i, path_col], ')\n', sep='')
# }
```
<!--========================================================================-->
<!-- Option 4: Figures with multiple pages and one caption
This is a hack....Pretend that there are 2 pages of data_plots...
LaTeX will ignore a figure inserted via R markdown if there is not a blank
line on either side. It will not be a float and will not have a catpion.
Here, I've added the centered text "Figure continued from previous page" that
will appear as text after the caption. You can then continue on plotting.
You can see if we add another plot after this, the figure numbering continues
normally.
If you wish to to this, you will have to insert the text using the plot
names, as I have here, or using the plotInfoTable index.
-->
![1-Summary of data sources used in the base case assessment. \label{fig:data_plot}](C:/Assessment_template/r4ss/plots_mod1/data_plot.png)
![2-Summary of data sources used in the base case assessment. \label{fig:data_plot}](C:/Assessment_template/r4ss/plots_mod1/data_plot.png)
\begin{center}
Figure continued from previous page
\end{center}
![3-Summary of data sources used in the base case assessment. \label{fig:data_plot}](C:/Assessment_template/r4ss/plots_mod1/data_plot.png)