forked from zhixuhao/unet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet.py
189 lines (141 loc) · 8.79 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import numpy as np
from keras.models import *
from keras.layers import Input, merge, Conv2D, MaxPooling2D, UpSampling2D, Dropout, Cropping2D
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras
from data import *
class myUnet(object):
def __init__(self, img_rows = 512, img_cols = 512):
self.img_rows = img_rows
self.img_cols = img_cols
def load_data(self):
mydata = dataProcess(self.img_rows, self.img_cols)
imgs_train, imgs_mask_train = mydata.load_train_data()
imgs_test = mydata.load_test_data()
return imgs_train, imgs_mask_train, imgs_test
def get_unet(self):
inputs = Input((self.img_rows, self.img_cols,1))
'''
unet with crop(because padding = valid)
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(inputs)
print "conv1 shape:",conv1.shape
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv1)
print "conv1 shape:",conv1.shape
crop1 = Cropping2D(cropping=((90,90),(90,90)))(conv1)
print "crop1 shape:",crop1.shape
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
print "pool1 shape:",pool1.shape
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(pool1)
print "conv2 shape:",conv2.shape
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv2)
print "conv2 shape:",conv2.shape
crop2 = Cropping2D(cropping=((41,41),(41,41)))(conv2)
print "crop2 shape:",crop2.shape
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
print "pool2 shape:",pool2.shape
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(pool2)
print "conv3 shape:",conv3.shape
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv3)
print "conv3 shape:",conv3.shape
crop3 = Cropping2D(cropping=((16,17),(16,17)))(conv3)
print "crop3 shape:",crop3.shape
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
print "pool3 shape:",pool3.shape
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(pool3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
crop4 = Cropping2D(cropping=((4,4),(4,4)))(drop4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
merge6 = merge([crop4,up6], mode = 'concat', concat_axis = 3)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(merge6)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv6)
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
merge7 = merge([crop3,up7], mode = 'concat', concat_axis = 3)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(merge7)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv7)
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
merge8 = merge([crop2,up8], mode = 'concat', concat_axis = 3)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(merge8)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv8)
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
merge9 = merge([crop1,up9], mode = 'concat', concat_axis = 3)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(merge9)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv9)
conv9 = Conv2D(2, 3, activation = 'relu', padding = 'valid', kernel_initializer = 'he_normal')(conv9)
'''
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
print "conv1 shape:",conv1.shape
conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
print "conv1 shape:",conv1.shape
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
print "pool1 shape:",pool1.shape
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
print "conv2 shape:",conv2.shape
conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
print "conv2 shape:",conv2.shape
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
print "pool2 shape:",pool2.shape
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
print "conv3 shape:",conv3.shape
conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
print "conv3 shape:",conv3.shape
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
print "pool3 shape:",pool3.shape
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
merge6 = merge([drop4,up6], mode = 'concat', concat_axis = 3)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
merge7 = merge([conv3,up7], mode = 'concat', concat_axis = 3)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
merge8 = merge([conv2,up8], mode = 'concat', concat_axis = 3)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
merge9 = merge([conv1,up9], mode = 'concat', concat_axis = 3)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)
model = Model(input = inputs, output = conv10)
model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy'])
return model
def train(self):
print("loading data")
imgs_train, imgs_mask_train, imgs_test = self.load_data()
print("loading data done")
model = self.get_unet()
print("got unet")
model_checkpoint = ModelCheckpoint('unet.hdf5', monitor='loss',verbose=1, save_best_only=True)
print('Fitting model...')
model.fit(imgs_train, imgs_mask_train, batch_size=4, nb_epoch=10, verbose=1,validation_split=0.2, shuffle=True, callbacks=[model_checkpoint])
print('predict test data')
imgs_mask_test = model.predict(imgs_test, batch_size=1, verbose=1)
np.save('../results/imgs_mask_test.npy', imgs_mask_test)
def save_img(self):
print("array to image")
imgs = np.load('imgs_mask_test.npy')
for i in range(imgs.shape[0]):
img = imgs[i]
img = array_to_img(img)
img.save("../results/%d.jpg"%(i))
if __name__ == '__main__':
myunet = myUnet()
myunet.train()
myunet.save_img()