forked from pmsosa/CS291K
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_cnn.py
85 lines (66 loc) · 4.04 KB
/
lstm_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import tensorflow as tf
import numpy as np
from IPython import embed
class LSTM_CNN(object):
def __init__(self, sequence_length, num_classes, vocab_size, embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0,num_hidden=100):
# PLACEHOLDERS
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x") # X - The Data
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y") # Y - The Lables
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") # Dropout
l2_loss = tf.constant(0.0) # Keeping track of l2 regularization loss
#1. EMBEDDING LAYER ################################################################
with tf.device('/cpu:0'), tf.name_scope("embedding"):
self.W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),name="W")
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
#self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
#2. LSTM LAYER ######################################################################
self.lstm_cell = tf.contrib.rnn.LSTMCell(32,state_is_tuple=True)
#self.h_drop_exp = tf.expand_dims(self.h_drop,-1)
self.lstm_out,self.lstm_state = tf.nn.dynamic_rnn(self.lstm_cell,self.embedded_chars,dtype=tf.float32)
#embed()
self.lstm_out_expanded = tf.expand_dims(self.lstm_out, -1)
#2. CONVOLUTION LAYER + MAXPOOLING LAYER (per filter) ###############################
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# CONVOLUTION LAYER
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(self.lstm_out_expanded, W,strides=[1, 1, 1, 1],padding="VALID",name="conv")
# NON-LINEARITY
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# MAXPOOLING
pooled = tf.nn.max_pool(h, ksize=[1, sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool")
pooled_outputs.append(pooled)
# COMBINING POOLED FEATURES
num_filters_total = num_filters * len(filter_sizes)
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
# #3. DROPOUT LAYER ###################################################################
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
W = tf.get_variable(
"W",
shape=[num_filters_total, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
# CalculateMean cross-entropy loss
with tf.name_scope("loss"):
losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
print "(!!) LOADED LSTM-CNN! :)"
#embed()
# 1. Embed --> LSTM
# 2. LSTM --> CNN
# 3. CNN --> Pooling/Output