-
Notifications
You must be signed in to change notification settings - Fork 97
/
paligemma.py
91 lines (75 loc) · 2.88 KB
/
paligemma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from datasets import load_dataset
import torch
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, Trainer, TrainingArguments, BitsAndBytesConfig
from peft import get_peft_model, LoraConfig
import os
USE_LORA = False
USE_QLORA = False
FREEZE_VISION = False
ds = load_dataset('merve/vqav2-small', split="validation")
ds = ds.train_test_split(test_size=0.5)["train"]
model_id = "google/paligemma2-3b-pt-448"
processor = PaliGemmaProcessor.from_pretrained(model_id)
device = "cuda" if torch.cuda.is_available() else "cpu"
image_token = processor.tokenizer.convert_tokens_to_ids("<image>")
def collate_fn(examples):
texts = ["<image>answer en " + example["question"] for example in examples]
labels= [example['multiple_choice_answer'] for example in examples]
images = [example["image"].convert("RGB") for example in examples]
tokens = processor(text=texts, images=images, suffix=labels,
return_tensors="pt", padding="longest")
tokens = tokens.to(torch.bfloat16).to(device)
return tokens
if USE_LORA or USE_QLORA:
lora_config = LoraConfig(
r=8,
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
task_type="CAUSAL_LM",
)
if USE_QLORA:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_type=torch.bfloat16
)
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, device_map="auto",
quantization_config=bnb_config if USE_QLORA else None,
torch_dtype=torch.bfloat16)
model = get_peft_model(model, lora_config)
model = model.to(device)
model.print_trainable_parameters()
else:
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, device_map="auto").to(device)
model = model.to(device)
if FREEZE_VISION:
for param in model.vision_tower.parameters():
param.requires_grad = False
for param in model.multi_modal_projector.parameters():
param.requires_grad = False
args=TrainingArguments(
num_train_epochs=3,
remove_unused_columns=False,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=2,
learning_rate=2e-5,
weight_decay=1e-6,
adam_beta2=0.999,
logging_steps=100,
optim="adamw_hf",
save_strategy="steps",
save_steps=1000,
save_total_limit=1,
push_to_hub=True
output_dir="paligemma_vqav2",
bf16=True,
report_to=["tensorboard"],
dataloader_pin_memory=False
)
trainer = Trainer(
model=model,
train_dataset=ds ,
data_collator=collate_fn,
args=args
)
trainer.train()