-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathredis_ako.py
159 lines (127 loc) · 6.43 KB
/
redis_ako.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import sys
import time
import numpy as np
import tensorflow as tf
from tflearn.data_utils import to_categorical
from tflearn.datasets import cifar10
import redis_ako_config
from redis_ako_cluster import build_cluster
from redis_ako_model import build_model
from redis_ako_queue import GradientExchange
# Application parameters
job_name = sys.argv[1]
nID = int(sys.argv[2])
# Execute in local machine
cfg = redis_ako_config.Config(job_name=job_name, nID=nID)
# Make a cluster, create queues, and build a model
cluster, server, workers, term_cmd = build_cluster(cfg)
params = build_model(cfg)
# Data loading
(x_image, Y), (X_test, Y_test) = cifar10.load_data()
y_test_vector = to_categorical(Y_test, 10)
y_vector = to_categorical(Y, 10)
y_features = to_categorical(np.arange(10), 10)
print "Image data: cifar10_asynch.load_data (50000)"
# Each nodes executes the following codes
with tf.Session("grpc://" + workers[nID]) as mySess:
mySess.run(tf.global_variables_initializer())
myQueue = GradientExchange(mySess, cfg)
# Ensure all workers launch redis server and load data
myQueue.send_ready()
myQueue.check_all_ready()
myQueue.receive_go_sign()
if cfg.synchronous_training:
if nID == 0:
myQueue.set_pongs()
# Model Training
accuracies = list()
elapsed_time = 0.0
iteration = -1
flag_stop_training = False
# Train
for i in range(cfg.training_epochs):
print "*** epoch %d ***" % (i + 1)
for j in range(cfg.num_batches):
if (j % cfg.num_workers) == nID:
start_time = time.time()
iteration += 1
idxfrom = j * cfg.batch_size
idxto = idxfrom + cfg.batch_size
# Calculate gradients
_grads = mySess.run(params["gradient"],
feed_dict={params["data"]["x"]: x_image[idxfrom:idxto],
params["data"]["y"]: y_vector[idxfrom:idxto],
params["keep_prob"]: 0.5})
myQueue.enqueue(_grads, iteration)
if myQueue.get_stop() == "True":
flag_stop_training = True
break
if cfg.synchronous_training:
myQueue.receive_pong()
total_grads = myQueue.get_others_grads()
for w in range(len(cfg.weights)):
total_grads[w] = np.add(total_grads[w], _grads[w][0])
_ = mySess.run(params["optimizer"],
feed_dict={params["new_g"]["W_conv1"]: total_grads[cfg.weights["W_conv1"]["wid"]],
params["new_g"]["b_conv1"]: total_grads[cfg.weights["b_conv1"]["wid"]],
params["new_g"]["W_conv2"]: total_grads[cfg.weights["W_conv2"]["wid"]],
params["new_g"]["b_conv2"]: total_grads[cfg.weights["b_conv2"]["wid"]],
params["new_g"]["W_conv3"]: total_grads[cfg.weights["W_conv3"]["wid"]],
params["new_g"]["b_conv3"]: total_grads[cfg.weights["b_conv3"]["wid"]],
params["new_g"]["W_fc1"]: total_grads[cfg.weights["W_fc1"]["wid"]],
params["new_g"]["b_fc1"]: total_grads[cfg.weights["b_fc1"]["wid"]],
params["new_g"]["W_fc2"]: total_grads[cfg.weights["W_fc2"]["wid"]],
params["new_g"]["b_fc2"]: total_grads[cfg.weights["b_fc2"]["wid"]]})
_loss = mySess.run(params["loss"],
feed_dict={params["data"]["x"]: x_image[idxfrom:idxto],
params["data"]["y"]: y_vector[idxfrom:idxto],
params["keep_prob"]: 0.5})
print "[Node ID: %d] iter: %d, loss: %f, batch %d - %d" % \
(nID, iteration, _loss, idxfrom, idxto)
if cfg.testing:
if iteration == cfg.testing_iteration:
break
elapsed_time += (time.time() - start_time)
if cfg.train_until_fixed_accuracy:
if iteration % cfg.iteration_to_check_accuracy == 0:
test_accuracy = mySess.run(params["accuracy"],
feed_dict={params["data"]["x"]: X_test,
params["data"]["y"]: y_test_vector,
params["keep_prob"]: 1.0})
accuracies.append(test_accuracy)
print "[epoch %d][iter %d] Execution Time: %d seconds" % ((i+1), iteration, elapsed_time)
print "[epoch %d][iter %d] Test Accuracy %g" % ((i+1), iteration, test_accuracy)
if test_accuracy >= cfg.target_accuracy:
flag_stop_training = True
myQueue.set_stop()
break
if elapsed_time >= cfg.stop_time:
flag_stop_training = True
myQueue.set_stop()
break
else:
if myQueue.get_stop() == "True":
flag_stop_training = True
break
if cfg.testing is False:
test_accuracy = mySess.run(params["accuracy"],
feed_dict={params["data"]["x"]: X_test,
params["data"]["y"]: y_test_vector,
params["keep_prob"]: 1.0})
accuracies.append(test_accuracy)
print "[epoch %d][iter %d] Execution Time: %d seconds" % ((i+1), iteration, elapsed_time)
print "[epoch %d][iter %d] Test Accuracy %g" % ((i+1), iteration, test_accuracy)
print "Total Test Accuracy"
print accuracies
if flag_stop_training:
break
# Terminate all threads
myQueue.terminate_threads()
# Ensure everybody finishes their tasks
myQueue.send_ready()
myQueue.check_all_ready()
myQueue.receive_go_sign()
# Stop redis-server
os.system(term_cmd)
print "Terminating server" + str(nID)