From 17f31c34a72f614196b081c5b05c8ece59c2dba8 Mon Sep 17 00:00:00 2001
From: Thierry Arnoux <5831830+tirix@users.noreply.github.com>
Date: Fri, 17 Jan 2025 00:50:58 +0100
Subject: [PATCH 01/12] Constructible numbers - initial idea
---
constr.mm | 139 ++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 139 insertions(+)
create mode 100644 constr.mm
diff --git a/constr.mm b/constr.mm
new file mode 100644
index 0000000000..99c2145416
--- /dev/null
+++ b/constr.mm
@@ -0,0 +1,139 @@
+$[ set.mm $]
+
+$(
+#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
+ Contructible numbers
+#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
+ This section defines the set of constructible points as complex numbers which
+ can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking
+ intersections of circles and lines.
+
+ We initially define two sets:
+
+ - geometrically, by recursively adding the intersection points : this is
+ ` Constr ` .
+ - algebraically, by using field extensions : this is ` ConstrAlg ` .
+
+
+ We then proceed by showing that those two sets are equal.
+
+ This construction is useful for proving the impossibility of doubling the
+ cube ( ~ imp2cube ), and of angle trisection ( ~ imp3ang )
+$)
+
+
+$(
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+ Degree of a field extension
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+$)
+
+ ${
+ fldextdgirred.b $e |- B = ( Base ` F ) $.
+ fldextdgirred.0 $e |- .0. = ( 0g ` F ) $.
+ fldextdgirred.d $e |- D = ( deg1 ` F ) $.
+ fldextdgirred.o $e |- O = ( eval1 ` F ) $.
+ fldextdgirred.m $e |- M = ( Poly1 ` F ) $.
+ fldextdgirred.k $e |- K = ( F |`s E ) $.
+ fldextdgirred.l $e |- L = ( F |`s ( F fldGen ( E u. { Z } ) ) ) $.
+ fldextdgirred.f $e |- ( ph -> F e. Field ) $.
+ fldextdgirred.e $e |- ( ph -> E e. ( SubDRing ` F ) ) $.
+ fldextdgirred.p $e |- ( ph -> P e. ( Base ` M ) ) $.
+ fldextdgirred.1 $e |- ( ph -> P e. ( Irred ` M ) ) $.
+ fldextdgirred.z $e |- ( ph -> Z e. ( B \ E ) ) $.
+ fldextdgirred.2 $e |- ( ph -> ( ( O ` P ) ` Z ) = .0. ) $.
+ $( If ` Z ` is the root of an irreducible polynomial ` P ` over a field
+ ` K ` , then the degree of the field extension ` [ K [ Z ] : K ] ` is
+ the degree of the polynomial ` P ` . $)
+ fldextdgirred $p |- ( ph -> ( L [:] K ) = ( D ` P ) ) $= ? $.
+ $}
+
+
+$(
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+ Quadratic field extensions
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+$)
+
+ $c /FldExt2 $.
+
+ $( Extend class notation with the quadratic field extension relation. $)
+ cfldext2 $a class /FldExt2 $.
+
+ ${
+ $d e f $.
+ $( Define the quadratic field extension relation. Quadratic field
+ extensions are field extensions of degree 2. $)
+ df-fldext2 $a |- /FldExt2 = { <. e , f >. | ( e /FldExt f /\ ( e [:] f ) = 2 ) } $.
+ $}
+
+
+$(
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+ Chain
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+$)
+
+ $c Chain $.
+
+ $( Extend class notation with the (finite) chain builder function. $)
+ cchn $a class Chain $.
+
+ ${
+ $d r c n $.
+ $( Define the (finite) chain builder function. A chain is defined to be a
+ sequence of objects, whereas each object is in a given relation with the
+ next one. $)
+ df-chn $a |- Chain = ( r e. _V |-> { c e. Word dom r |
+ A. n e. ( dom c \ { 0 } ) ( c ` ( n - 1 ) ) r ( c ` n ) } ) $.
+ $}
+
+
+$(
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+ Constructible points
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+$)
+
+ $c Constr $.
+
+ $( Extend class notation with the set of geometrically constructible points. $)
+ cconstr $a class Constr $.
+
+ $( Define the set of geometrically constructible points, by recursively adding
+ the line-line, line-circle and circle-circle intersections constructions
+ using points in a previous iteration. $)
+ df-constr $a |- Constr = ( rec ( ( s e. _V |-> { x e. CC |
+ ( ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ -. ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) = 0 )
+ \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) )
+ \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s E. t e. RR ( -. a = d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) )
+ } ) , { 0 , 1 } ) " _om ) $.
+
+ ${
+ constrtow2.b $e |- B = ( Base ` F ) $.
+ constrtow2.q $e |- Q = ( CCfld |`s QQ ) $.
+ constrtow2.a $e |- ( ph -> A e. Constr ) $.
+ constrtow2.f $e |- ( ph -> F e. Field ) $.
+ constrtow2.1 $e |- ( ph -> A e. B ) $.
+ $( If an algebraically constructible point ` A ` is in a field ` F ` , then
+ there is a tower of quadratic field extensions from ` QQ ` to ` F ` . $)
+ constrtow2 $p |- ( ph -> E. t e. ( Chain ` `' /FldExt2 ) ( ( t ` 0 ) = Q
+ /\ ( lastS ` t ) = F ) ) $= ? $.
+ $}
+
+
+$(
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+ Impossible constuctions
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+$)
+
+ $( Impossibility of doubling the cube. This is expressed by stating that the
+ cubic root of 2, which is the side length of a cube of volume ` 2 ` , is
+ not constructible. $)
+ imp2cube $p |- -. ( 2 ^c ( 1 / 3 ) ) e. Constr $= ? $.
+
+ $( Impossibility of trisecting angles. This is expressed by stating that the
+ cosine of an angle of ` ( _pi / 9 ) ` which would be the third of the
+ constructible angle ` ( _pi / 3 ) ` , is not constructible. $)
+ imp3ang $p |- -. ( cos ` ( _pi / 9 ) ) e. Constr $= ? $.
From 10cf3961d72a0f78587dd9030adccf71d30265c5 Mon Sep 17 00:00:00 2001
From: tirix <5831830+tirix@users.noreply.github.com>
Date: Fri, 17 Jan 2025 07:40:23 +0100
Subject: [PATCH 02/12] Update constr.mm
Co-authored-by: icecream17
---
constr.mm | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/constr.mm b/constr.mm
index 99c2145416..11f694de99 100644
--- a/constr.mm
+++ b/constr.mm
@@ -2,7 +2,7 @@
$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
- Contructible numbers
+ Constructible numbers
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
This section defines the set of constructible points as complex numbers which
can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking
From 7ac6a8d65e2ba0e4d477dba1b4a7c979bbba323a Mon Sep 17 00:00:00 2001
From: tirix <5831830+tirix@users.noreply.github.com>
Date: Fri, 17 Jan 2025 07:40:40 +0100
Subject: [PATCH 03/12] Update constr.mm
Co-authored-by: icecream17
---
constr.mm | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/constr.mm b/constr.mm
index 11f694de99..b1cbc4fcff 100644
--- a/constr.mm
+++ b/constr.mm
@@ -124,7 +124,7 @@ can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking
$(
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
- Impossible constuctions
+ Impossible constructions
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
$)
From 12f03dc74855aad0171d0bf39d4e002f378576ef Mon Sep 17 00:00:00 2001
From: tirix <5831830+tirix@users.noreply.github.com>
Date: Fri, 17 Jan 2025 07:41:23 +0100
Subject: [PATCH 04/12] Update constr.mm
Co-authored-by: icecream17
---
constr.mm | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/constr.mm b/constr.mm
index b1cbc4fcff..eb9f9969de 100644
--- a/constr.mm
+++ b/constr.mm
@@ -136,4 +136,4 @@ can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking
$( Impossibility of trisecting angles. This is expressed by stating that the
cosine of an angle of ` ( _pi / 9 ) ` which would be the third of the
constructible angle ` ( _pi / 3 ) ` , is not constructible. $)
- imp3ang $p |- -. ( cos ` ( _pi / 9 ) ) e. Constr $= ? $.
+ imp3ang $p |- -. ( cos ` ( _pi / 9 ) ) e. Constr $= ? $.
From 30a91c9738a02d710d7517ae40b6cd102b19b172 Mon Sep 17 00:00:00 2001
From: tirix <5831830+tirix@users.noreply.github.com>
Date: Fri, 17 Jan 2025 07:45:15 +0100
Subject: [PATCH 05/12] Update constr.mm
Co-authored-by: icecream17
---
constr.mm | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/constr.mm b/constr.mm
index eb9f9969de..f482eb891c 100644
--- a/constr.mm
+++ b/constr.mm
@@ -104,8 +104,8 @@ can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking
the line-line, line-circle and circle-circle intersections constructions
using points in a previous iteration. $)
df-constr $a |- Constr = ( rec ( ( s e. _V |-> { x e. CC |
- ( ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ -. ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) = 0 )
- \/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) ) )
+ ( E. a e. s E. b e. s E. c e. s E. d e. s E. t e. RR E. r e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ x = ( c + ( r x. ( d - c ) ) ) /\ -. ( Im ` ( ( * ` ( b - a ) ) x. ( d - c ) ) ) = 0 )
+ \/ E. a e. s E. b e. s E. c e. s E. e e. s E. f e. s E. t e. RR ( x = ( a + ( t x. ( b - a ) ) ) /\ ( abs ` ( x - c ) ) = ( abs ` ( e - f ) ) )
\/ E. a e. s E. b e. s E. c e. s E. d e. s E. e e. s E. f e. s E. t e. RR ( -. a = d /\ ( abs ` ( x - a ) ) = ( abs ` ( b - c ) ) /\ ( abs ` ( x - d ) ) = ( abs ` ( e - f ) ) ) )
} ) , { 0 , 1 } ) " _om ) $.
From de56b25ac1527ac5f9321d526fe29e44d1cd56ee Mon Sep 17 00:00:00 2001
From: tirix <5831830+tirix@users.noreply.github.com>
Date: Sat, 18 Jan 2025 20:11:36 +0100
Subject: [PATCH 06/12] Update constr.mm
Co-authored-by: icecream17
---
constr.mm | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/constr.mm b/constr.mm
index f482eb891c..84c16b2ba5 100644
--- a/constr.mm
+++ b/constr.mm
@@ -32,7 +32,7 @@ can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking
fldextdgirred.b $e |- B = ( Base ` F ) $.
fldextdgirred.0 $e |- .0. = ( 0g ` F ) $.
fldextdgirred.d $e |- D = ( deg1 ` F ) $.
- fldextdgirred.o $e |- O = ( eval1 ` F ) $.
+ fldextdgirred.o $e |- O = ( F evalSub1 E ) $.
fldextdgirred.m $e |- M = ( Poly1 ` F ) $.
fldextdgirred.k $e |- K = ( F |`s E ) $.
fldextdgirred.l $e |- L = ( F |`s ( F fldGen ( E u. { Z } ) ) ) $.
From fb17c8c5be5f3a6e534f0d3bd3965f7fc07bf008 Mon Sep 17 00:00:00 2001
From: tirix <5831830+tirix@users.noreply.github.com>
Date: Sun, 19 Jan 2025 02:27:05 +0100
Subject: [PATCH 07/12] Fix domain of polynomial
Co-authored-by: icecream17
---
constr.mm | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/constr.mm b/constr.mm
index 84c16b2ba5..d2f3bb0243 100644
--- a/constr.mm
+++ b/constr.mm
@@ -38,7 +38,7 @@ can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking
fldextdgirred.l $e |- L = ( F |`s ( F fldGen ( E u. { Z } ) ) ) $.
fldextdgirred.f $e |- ( ph -> F e. Field ) $.
fldextdgirred.e $e |- ( ph -> E e. ( SubDRing ` F ) ) $.
- fldextdgirred.p $e |- ( ph -> P e. ( Base ` M ) ) $.
+ fldextdgirred.p $e |- ( ph -> P e. dom O ) $.
fldextdgirred.1 $e |- ( ph -> P e. ( Irred ` M ) ) $.
fldextdgirred.z $e |- ( ph -> Z e. ( B \ E ) ) $.
fldextdgirred.2 $e |- ( ph -> ( ( O ` P ) ` Z ) = .0. ) $.
From 3bb90739eb12d914098b17f295ac4aeee1c7ea91 Mon Sep 17 00:00:00 2001
From: Thierry Arnoux <5831830+tirix@users.noreply.github.com>
Date: Sun, 19 Jan 2025 02:29:28 +0100
Subject: [PATCH 08/12] Indentation
---
constr.mm | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/constr.mm b/constr.mm
index 99c2145416..ca66898cb7 100644
--- a/constr.mm
+++ b/constr.mm
@@ -136,4 +136,4 @@ can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking
$( Impossibility of trisecting angles. This is expressed by stating that the
cosine of an angle of ` ( _pi / 9 ) ` which would be the third of the
constructible angle ` ( _pi / 3 ) ` , is not constructible. $)
- imp3ang $p |- -. ( cos ` ( _pi / 9 ) ) e. Constr $= ? $.
+ imp3ang $p |- -. ( cos ` ( _pi / 9 ) ) e. Constr $= ? $.
From 78fccb94aa4e94bd741c8b0f7d5aa1db277ac37c Mon Sep 17 00:00:00 2001
From: Thierry Arnoux <5831830+tirix@users.noreply.github.com>
Date: Sun, 26 Jan 2025 15:17:32 +0100
Subject: [PATCH 09/12] Minimal polynomials
---
changes-set.txt | 9 +
constr.mm | 5 +
set.mm | 678 ++++++++++++++++++++++++++++++++++++++----------
3 files changed, 560 insertions(+), 132 deletions(-)
diff --git a/changes-set.txt b/changes-set.txt
index 0bbce40ec4..45673a61da 100644
--- a/changes-set.txt
+++ b/changes-set.txt
@@ -87,6 +87,15 @@ make a github issue.)
DONE:
Date Old New Notes
+26-Jan-25 an2anr [same] Moved from PM's mathbox to main set.mm
+26-Jan-25 ismhmd [same] Moved from SN's mathbox to main set.mm
+26-Jan-25 ringcld [same] Moved from SN's mathbox to main set.mm
+26-Jan-25 ablcmnd [same] Moved from SN's mathbox to main set.mm
+26-Jan-25 ringabld [same] Moved from SN's mathbox to main set.mm
+26-Jan-25 ringcmnd [same] Moved from SN's mathbox to main set.mm
+26-Jan-25 pwsexpg [same] Moved from SN's mathbox to main set.mm
+26-Jan-25 drnginvrcld [same] Moved from SN's mathbox to main set.mm
+26-Jan-25 pwspjmhmmgpd [same] Moved from SN's mathbox to main set.mm
15-Jan-25 eqfunressuc [same] Moved from SF's mathbox to main set.mm
15-Jan-25 eqfunresadj [same] Moved from SF's mathbox to main set.mm
15-Jan-25 sotr3 [same] Moved from SF's mathbox to main set.mm
diff --git a/constr.mm b/constr.mm
index d2f3bb0243..cdc52d6bad 100644
--- a/constr.mm
+++ b/constr.mm
@@ -21,6 +21,11 @@ can be drawn starting from two points (we take ` 0 ` and ` 1 ` ), and taking
cube ( ~ imp2cube ), and of angle trisection ( ~ imp3ang )
$)
+ $( All algebraic numbers admit a minimal polynomial. $)
+ $( minplyeu $p |- ( ph -> E! p e. ( Monic1p ` E ) A. q e. ( Monic1p ` E ) ( -> p = q ) ) $)
+
+ $( Use infval $)
+ $( minplyf $)
$(
-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
diff --git a/set.mm b/set.mm
index 96a6ed3d39..fbb6970229 100644
--- a/set.mm
+++ b/set.mm
@@ -5769,6 +5769,12 @@ use disjunction (although this is not required since definitions are
( wa anbi2d biancomd ) ADBFCDABCDEGH $.
$}
+ $( Double commutation in conjunction. (Contributed by Peter Mazsa,
+ 27-Jun-2019.) $)
+ an2anr $p |- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) <->
+ ( ( ps /\ ph ) /\ ( th /\ ch ) ) ) $=
+ ( wa ancom anbi12i ) ABEBAECDEDCEABFCDFG $.
+
$( Theorem *4.38 of [WhiteheadRussell] p. 118. (Contributed by NM,
3-Jan-2005.) $)
pm4.38 $p |- ( ( ( ph <-> ch ) /\ ( ps <-> th ) ) ->
@@ -227334,6 +227340,27 @@ everywhere defined internal operation (see ~ mndcl ), whose operation is
SJKXEIVOVTVGWEWIWRWTWAWBWCWD $.
$}
+ ${
+ $d ph x y $. $d B x y $. $d F x y $. $d S x y $. $d T x y $.
+ ismhmd.b $e |- B = ( Base ` S ) $.
+ ismhmd.c $e |- C = ( Base ` T ) $.
+ ismhmd.p $e |- .+ = ( +g ` S ) $.
+ ismhmd.q $e |- .+^ = ( +g ` T ) $.
+ ismhmd.0 $e |- .0. = ( 0g ` S ) $.
+ ismhmd.z $e |- Z = ( 0g ` T ) $.
+ ismhmd.s $e |- ( ph -> S e. Mnd ) $.
+ ismhmd.t $e |- ( ph -> T e. Mnd ) $.
+ ismhmd.f $e |- ( ph -> F : B --> C ) $.
+ ismhmd.a $e |- ( ( ph /\ ( x e. B /\ y e. B ) ) ->
+ ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) $.
+ ismhmd.h $e |- ( ph -> ( F ` .0. ) = Z ) $.
+ $( Deduction version of ~ ismhm . (Contributed by SN, 27-Jul-2024.) $)
+ ismhmd $p |- ( ph -> F e. ( S MndHom T ) ) $=
+ ( cmnd wcel wf cv cfv wceq wral w3a cmhm ralrimivva 3jca ismhm syl21anbrc
+ co ) AHUDUEIUDUEDEJUFZBUGZCUGZFUQJUHUSJUHUTJUHGUQUIZCDUJBDUJZKJUHLUIZUKJH
+ IULUQUESTAURVBVCUAAVABCDDUBUMUCUNBCDEFGHIJLKMNOPQRUOUP $.
+ $}
+
${
$d f s t x y B $. $d x y F $. $d x y S $. $d x y T $.
$( Reverse closure of a monoid homomorphism. (Contributed by Mario
@@ -243514,6 +243541,14 @@ an extension of the previous (inserting an element and its inverse at
ablcmn $p |- ( G e. Abel -> G e. CMnd ) $=
( cabl wcel cgrp ccmn isabl simprbi ) ABCADCAECAFG $.
+ ${
+ ablcmnd.1 $e |- ( ph -> G e. Abel ) $.
+ $( An Abelian group is a commutative monoid. (Contributed by SN,
+ 1-Jun-2024.) $)
+ ablcmnd $p |- ( ph -> G e. CMnd ) $=
+ ( cabl wcel ccmn ablcmn syl ) ABDEBFECBGH $.
+ $}
+
${
$d g x y B $. $d g x y G $. $d g .+ $.
iscmn.b $e |- B = ( Base ` G ) $.
@@ -252005,6 +252040,18 @@ the additive structure must be abelian (see ~ ringcom ), care must be
HFUCDEUEUHGUDUAUB $.
$}
+ ${
+ ringcld.b $e |- B = ( Base ` R ) $.
+ ringcld.t $e |- .x. = ( .r ` R ) $.
+ ringcld.r $e |- ( ph -> R e. Ring ) $.
+ ringcld.x $e |- ( ph -> X e. B ) $.
+ ringcld.y $e |- ( ph -> Y e. B ) $.
+ $( Closure of the multiplication operation of a ring. (Contributed by SN,
+ 29-Jul-2024.) $)
+ ringcld $p |- ( ph -> ( X .x. Y ) e. B ) $=
+ ( crg wcel co ringcl syl3anc ) ACLMEBMFBMEFDNBMIJKBCDEFGHOP $.
+ $}
+
${
ringdi.b $e |- B = ( Base ` R ) $.
ringdi.p $e |- .+ = ( +g ` R ) $.
@@ -252187,6 +252234,17 @@ the additive structure must be abelian (see ~ ringcom ), care must be
ringcmn $p |- ( R e. Ring -> R e. CMnd ) $=
( crg wcel cabl ccmn ringabl ablcmn syl ) ABCADCAECAFAGH $.
+ ${
+ ringabld.1 $e |- ( ph -> R e. Ring ) $.
+ $( A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.) $)
+ ringabld $p |- ( ph -> R e. Abel ) $=
+ ( crg wcel cabl ringabl syl ) ABDEBFECBGH $.
+
+ $( A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.) $)
+ ringcmnd $p |- ( ph -> R e. CMnd ) $=
+ ( ringabld ablcmnd ) ABABCDE $.
+ $}
+
${
$d u v w x y B $. $d u v w x y K $. $d u v w x y ph $. $d u v w x y L $.
ringpropd.1 $e |- ( ph -> B = ( Base ` K ) ) $.
@@ -252920,6 +252978,65 @@ the additive structure must be abelian (see ~ ringcom ), care must be
FWQWTXBWBWFHWLULXDVCWFLWOULXNVCVTSTWAWC $.
$}
+ ${
+ $d A a b x $. $d B a b x $. $d M a b $. $d R x $. $d T a b $.
+ $d Y x $. $d ph a b x $.
+ pwspjmhmmgpd.y $e |- Y = ( R ^s I ) $.
+ pwspjmhmmgpd.b $e |- B = ( Base ` Y ) $.
+ pwspjmhmmgpd.m $e |- M = ( mulGrp ` Y ) $.
+ pwspjmhmmgpd.t $e |- T = ( mulGrp ` R ) $.
+ pwspjmhmmgpd.r $e |- ( ph -> R e. Ring ) $.
+ pwspjmhmmgpd.i $e |- ( ph -> I e. V ) $.
+ pwspjmhmmgpd.a $e |- ( ph -> A e. I ) $.
+ $( The projection given by ~ pwspjmhm is also a monoid homomorphism between
+ the respective multiplicative groups. (Contributed by SN,
+ 30-Jul-2024.) $)
+ pwspjmhmmgpd $p |- ( ph -> ( x e. B |-> ( x ` A ) ) e. ( M MndHom T ) ) $=
+ ( cfv wcel wceq va vb cbs cmulr cv cmpt cur mgpbas mgpplusg ringidval crg
+ eqid cmnd pwsring syl2anc ringmgp syl wa adantr pwselbas ffvelcdmd fmpttd
+ simpr co cof simprl simprr pwsmulrval fveq1d ffnd inidm eqidd ofval eqtrd
+ mpidan ringcl syl3an1 3expb fveq1 fvex fvmpt oveq12d 3eqtr4d csn ringidcl
+ cxp 3syl pws1 fvconst2 3eqtr2d ismhmd ) AUAUBDEUCRZJUDRZEUDRZHFBDCBUEZRZU
+ FZJUGRZEUGRZDJHMLUHWLEFNWLULZUHJWMHMWMULZUIEWNFNWNULZUIJWRHMWRULZUJEWSFNW
+ SULZUJAJUKSZHUMSAEUKSZGISZXEOPEGIJKUNUOZJHMUPUQAXFFUMSOEFNUPUQABDWPWLAWOD
+ SZURZGWLCWOXJWLEGDUKWOJIKWTLAXFXIOUSAXGXIPUSAXIVCUTACGSZXIQUSVAVBAUAUEZDS
+ ZUBUEZDSZURZURZCXLXNWMVDZRZCXLRZCXNRZWNVDZXRWQRZXLWQRZXNWQRZWNVDXQXSCXLXN
+ WNVEVDZRZYBXQCXRYFXQDEWMWNXLXNGUKIJKLAXFXPOUSZAXGXPPUSZAXMXOVFZAXMXOVGZXB
+ XAVHVIAXPXKYGYBTQXQGGXTYAWNGXLXNIICXQGWLXLXQWLEGDUKXLJIKWTLYHYIYJUTVJXQGW
+ LXNXQWLEGDUKXNJIKWTLYHYIYKUTVJYIYIGVKXQXKURZXTVLYLYAVLVMVOVNXQXRDSZYCXSTA
+ XMXOYMAXEXMXOYMXHDJWMXLXNLXAVPVQVRBXRWPXSDWQCWOXRVSWQULZCXRVTWAUQXQYDXTYE
+ YAWNXQXMYDXTTYJBXLWPXTDWQCWOXLVSYNCXLVTWAUQXQXOYEYATYKBXNWPYADWQCWOXNVSYN
+ CXNVTWAUQWBWCAWRWQRZCWRRZCGWSWDWFZRZWSAXEWRDSYOYPTXHDJWRLXCWEBWRWPYPDWQCW
+ OWRVSYNCWRVTWAWGACYQWRAXFXGYQWRTOPEWSGIJKXDWHUOVIAXKYRWSTQGWSCEUGVTWIUQWJ
+ WK $.
+ $}
+
+ ${
+ $d A x $. $d B x $. $d N x $. $d R x $. $d X x $. $d Y x $.
+ $d .xb x $. $d ph x $.
+ pwsexpg.y $e |- Y = ( R ^s I ) $.
+ pwsexpg.b $e |- B = ( Base ` Y ) $.
+ pwsexpg.m $e |- M = ( mulGrp ` Y ) $.
+ pwsexpg.t $e |- T = ( mulGrp ` R ) $.
+ pwsexpg.s $e |- .xb = ( .g ` M ) $.
+ pwsexpg.g $e |- .x. = ( .g ` T ) $.
+ pwsexpg.r $e |- ( ph -> R e. Ring ) $.
+ pwsexpg.i $e |- ( ph -> I e. V ) $.
+ pwsexpg.n $e |- ( ph -> N e. NN0 ) $.
+ pwsexpg.x $e |- ( ph -> X e. B ) $.
+ pwsexpg.a $e |- ( ph -> A e. I ) $.
+ $( Value of a group exponentiation in a structure power. Compare
+ ~ pwsmulg . (Contributed by SN, 30-Jul-2024.) $)
+ pwsexpg $p |- ( ph -> ( ( N .xb X ) ` A ) = ( N .x. ( X ` A ) ) ) $=
+ ( vx cfv cmpt cmhm wcel cn0 wceq pwspjmhmmgpd mgpbas mhmmulg syl3anc cmnd
+ co crg pwsring syl2anc ringmgp syl mulgnn0cl fveq1 eqid fvex fvmpt oveq2d
+ cv 3eqtr3d ) AJLEUQZUECBUEVIZUFZUGZUFZJLVNUFZGUQZBVKUFZJBLUFZGUQAVNIFUHUQ
+ UIJUJUIZLCUIZVOVQUKAUEBCDFHIKMNOPQTUAUDULUBUCCEGVNIFJLCMIPOUMZRSUNUOAVKCU
+ IZVOVRUKAIUPUIZVTWAWCAMURUIZWDADURUIHKUIWETUADHKMNUSUTMIPVAVBUBUCCEIJLWBR
+ VCUOUEVKVMVRCVNBVLVKVDVNVEZBVKVFVGVBAVPVSJGAWAVPVSUKUCUELVMVSCVNBVLLVDWFB
+ LVFVGVBVHVJ $.
+ $}
+
${
$d p q u v .+ $. $d a b p q u v w x y z ph $. $d a b p q u v w x y z U $.
$d p q u x .1. $. $d p q u v w B $. $d a b p q u x y z F $. $d p q R $.
@@ -254983,6 +255100,14 @@ nonzero elements form a group under multiplication (from which it
ex 3imtr3d 3impib simprd ) BIJZDAJZDEKZLDCMZAJZUJEKZUGUHUIUKULNZUGDBOMZJZ
UJUNJZUHUINUMUGBPJZUOUPQBRUQUOUPBUNCDUNSZHUAUCUBABUNDEFURGTABUNUJEFURGTUD
UEUF $.
+
+ drnginvrcld.r $e |- ( ph -> R e. DivRing ) $.
+ drnginvrcld.x $e |- ( ph -> X e. B ) $.
+ drnginvrcld.1 $e |- ( ph -> X =/= .0. ) $.
+ $( Closure of the multiplicative inverse in a division ring. ( ~ reccld
+ analog). (Contributed by SN, 14-Aug-2024.) $)
+ drnginvrcld $p |- ( ph -> ( I ` X ) e. B ) $=
+ ( cdr wcel wne cfv drnginvrcl syl3anc ) ACMNEBNEFOEDPBNJKLBCDEFGHIQR $.
$}
${
@@ -452531,9 +452656,15 @@ orthogonal vectors (i.e. whose inner product is 0) is the sum of the
htmldef "[:]" as "[:]";
althtmldef "[:]" as "[:]";
latexdef "[:]" as "[:]";
-htmldef "fldGen" as "fldGen";
- althtmldef "fldGen" as "fldGen";
- latexdef "fldGen" as "\mathrm{fldGen}";
+htmldef "fldGen" as " fldGen ";
+ althtmldef "fldGen" as " fldGen";
+ latexdef "fldGen" as "\mathbin{\operatorname{fldGen}}";
+htmldef "AlgNb" as " AlgNb ";
+ althtmldef "AlgNb" as " AlgNb ";
+ latexdef "AlgNb" as "\mathbin{\operatorname{AlgNb}}";
+htmldef "minPoly" as " minPoly ";
+ althtmldef "minPoly" as " minPoly ";
+ latexdef "minPoly" as "\mathbin{\operatorname{minPoly}}";
htmldef "repr" as "repr";
althtmldef "repr" as "repr";
@@ -474241,6 +474372,13 @@ and the expression ( x e. A /\ x e. B ) ` .
( wo w3o df-3or sylbir olcs ) ABFZCDKCFABCGDABCHEIJ $.
$}
+ $( Associative law for four conjunctions with a triple conjunction.
+ (Contributed by Thierry Arnoux, 21-Jan-2025.) $)
+ 13an22anass $p |- ( ( ph /\ ( ps /\ ch /\ th ) ) <-> ( ( ph /\ ps ) /\ ( ch
+ /\ th ) ) ) $=
+ ( wa w3a an2anr an4 bitri an43 3bitr2ri 3an4anass ancom ) ABECDEEZBCEDAEEZB
+ CDFZAEAPEOCBEADEEZACEDBEEZNBCDAGRCAEBDEEQACDBGCABDHIACDBJKBCDALPAMK $.
+
$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
@@ -491040,7 +491178,7 @@ such that every prime ideal contains a prime element (this is a
fply1.3 $e |- P = ( Base ` ( Poly1 ` R ) ) $.
fply1.4 $e |- ( ph -> F : ( NN0 ^m 1o ) --> B ) $.
fply1.5 $e |- ( ph -> F finSupp .0. ) $.
- $( Conditions for a function to be an univariate polynomial. (Contributed
+ $( Conditions for a function to be a univariate polynomial. (Contributed
by Thierry Arnoux, 19-Aug-2023.) $)
fply1 $p |- ( ph -> F e. P ) $=
( vf c1o co cfv wcel cfn cn0 cmap eqid cmps cbs cfsupp wbr ccnv cima crab
@@ -491072,6 +491210,282 @@ such that every prime ideal contains a prime element (this is a
PZVEAVQWCWEKMBDECGHJIUQTURUTVFVEAFGBUDVAVB $.
$}
+ ${
+ evls1scafv.q $e |- Q = ( S evalSub1 R ) $.
+ evls1scafv.w $e |- W = ( Poly1 ` U ) $.
+ evls1scafv.u $e |- U = ( S |`s R ) $.
+ evls1scafv.b $e |- B = ( Base ` S ) $.
+ evls1scafv.a $e |- A = ( algSc ` W ) $.
+ evls1scafv.s $e |- ( ph -> S e. CRing ) $.
+ evls1scafv.r $e |- ( ph -> R e. ( SubRing ` S ) ) $.
+ evls1scafv.x $e |- ( ph -> X e. R ) $.
+ evls1scafv.1 $e |- ( ph -> C e. B ) $.
+ $( Value of the univariate polynomial evaluation for a scalars.
+ (Contributed by Thierry Arnoux, 21-Jan-2025.) $)
+ evls1scafv $p |- ( ph -> ( ( Q ` ( A ` X ) ) ` C ) = X ) $=
+ ( cfv csn cxp evls1sca fveq1d wcel wceq fvconst2g syl2anc eqtrd ) ADJBTET
+ ZTDCJUAUBZTZJADUJUKABCEFGHIJKLMNOPQRUCUDAJFUEDCUEULJUFRSCJDFUGUHUI $.
+ $}
+
+ ${
+ evls1expd.q $e |- Q = ( S evalSub1 R ) $.
+ evls1expd.k $e |- K = ( Base ` S ) $.
+ evls1expd.w $e |- W = ( Poly1 ` U ) $.
+ evls1expd.u $e |- U = ( S |`s R ) $.
+ evls1expd.b $e |- B = ( Base ` W ) $.
+ evls1expd.s $e |- ( ph -> S e. CRing ) $.
+ evls1expd.r $e |- ( ph -> R e. ( SubRing ` S ) ) $.
+ evls1expd.1 $e |- ./\ = ( .g ` ( mulGrp ` W ) ) $.
+ evls1expd.2 $e |- .^ = ( .g ` ( mulGrp ` S ) ) $.
+ evls1expd.n $e |- ( ph -> N e. NN0 ) $.
+ evls1expd.m $e |- ( ph -> M e. B ) $.
+ evls1expd.c $e |- ( ph -> C e. K ) $.
+ $( Univariate polynomial evaluation builder for an exponential. See also
+ ~ evl1expd . (Contributed by Thierry Arnoux, 24-Jan-2025.) $)
+ evls1expd $p |- ( ph
+ -> ( ( Q ` ( N ./\ M ) ) ` C ) = ( N .^ ( ( Q ` M ) ` C ) ) ) $=
+ ( co cfv cpws cmgp cmg eqid evls1pw fveq1d cbs cvv crngringd wcel a1i crh
+ fvexi wf ccrg csubrg evls1rhm syl2anc rhmf syl ffvelcdmd pwsexpg eqtrd )
+ ACLJKUFDUGZUGCLJDUGZFIUHUFZUIUGZUJUGZUFZUGLCVLUGHUFACVKVPABDEFGKMUIUGZILM
+ JNQPVQUKORUASTUCUDULUMACVMUNUGZFVOFUIUGZHIVNLUOVLVMVMUKZVRUKZVNUKVSUKVOUK
+ UBAFSUPIUOUQAIFUNOUTURUCABVRJDADMVMUSUFUQZBVRDVAAFVBUQEFVCUGUQWBSTIDEFVMG
+ MNOVTQPVDVEBVRMVMDRWAVFVGUDVHUEVIVJ $.
+ $}
+
+ ${
+ evls1varpwval.q $e |- Q = ( S evalSub1 R ) $.
+ evls1varpwval.u $e |- U = ( S |`s R ) $.
+ evls1varpwval.w $e |- W = ( Poly1 ` U ) $.
+ evls1varpwval.x $e |- X = ( var1 ` U ) $.
+ evls1varpwval.b $e |- B = ( Base ` S ) $.
+ evls1varpwval.e $e |- ./\ = ( .g ` ( mulGrp ` W ) ) $.
+ evls1varpwval.f $e |- .^ = ( .g ` ( mulGrp ` S ) ) $.
+ evls1varpwval.s $e |- ( ph -> S e. CRing ) $.
+ evls1varpwval.r $e |- ( ph -> R e. ( SubRing ` S ) ) $.
+ evls1varpwval.n $e |- ( ph -> N e. NN0 ) $.
+ evls1varpwval.c $e |- ( ph -> C e. B ) $.
+ $( Univariate polynomial evaluation for subrings maps the exponentiation of
+ a variable to the exponentiation of the evaluated variable. See
+ ~ evl1varpwval . (Contributed by Thierry Arnoux, 24-Jan-2025.) $)
+ evls1varpwval $p |- ( ph -> ( ( Q ` ( N ./\ X ) ) ` C ) = ( N .^ C ) )
+ $=
+ ( co cfv cbs eqid csubrg wcel crg subrgring vr1cl 3syl evls1expd cid cres
+ evls1var fveq1d wceq fvresi syl eqtrd oveq2d ) ACJLIUDDUEUEJCLDUEZUEZHUDJ
+ CHUDAKUFUEZCDEFGHBLIJKMQONVFUGZTUARSUBAEFUHUEUIGUJUILVFUIUAEFGNUKVFKGLPOV
+ GULUMUCUNAVECJHAVECUOBUPZUEZCACVDVHABDEFGLMPNQTUAUQURACBUIVICUSUCBCUTVAVB
+ VCVB $.
+ $}
+
+ ${
+ ressply1evl.q $e |- Q = ( S evalSub1 R ) $.
+ ressply1evl.k $e |- K = ( Base ` S ) $.
+ ressply1evl.w $e |- W = ( Poly1 ` U ) $.
+ ressply1evl.u $e |- U = ( S |`s R ) $.
+ ressply1evl.b $e |- B = ( Base ` W ) $.
+
+ ${
+ $d .x. k $. $d .x. x $. $d A i j k $. $d A x $. $d B k $.
+ $d K k x $. $d M k $. $d Q k x $. $d S k $. $d S x $. $d U i j k $.
+ $d U x $. $d W i j k $. $d W x $. $d i j k ph $. $d ph x $.
+ evls1fpws.s $e |- ( ph -> S e. CRing ) $.
+ evls1fpws.r $e |- ( ph -> R e. ( SubRing ` S ) ) $.
+ evls1fpws.y $e |- ( ph -> M e. B ) $.
+ evls1fpws.1 $e |- .x. = ( .r ` S ) $.
+ evls1fpws.2 $e |- .^ = ( .g ` ( mulGrp ` S ) ) $.
+ evls1fpws.a $e |- A = ( coe1 ` M ) $.
+ $( Evaluation of a univariate subring polynomial as a function in a power
+ series. (Contributed by Thierry Arnoux, 23-Jan-2025.) $)
+ evls1fpws $p |- ( ph -> ( Q ` M ) = ( x e. K
+ |-> ( S gsum ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ x ) ) ) ) ) ) $=
+ ( vj vi cfv cn0 cv cv1 cmgp cmg co cvsca cmpt cgsu crg wcel wceq csubrg
+ subrgring syl eqid ply1coe syl2anc fveq2d cpws c0g wa csca cbs ply1lmod
+ clmod adantr coe1fvalcl sylan ply1sca eleqtrd cmnd ply1ring simpr vr1cl
+ ringmgp mgpbas mulgnn0cl syl3anc lmodvscl ssidd cvv fvexd fveq2 oveq12d
+ oveq1 clt wbr wral wrex coe1ae0 ad3antrrr eqtrd oveq1d ad4ant13 lmod0vs
+ wi ex imim2d ralimdva reximdva mpd mptnn0fsuppd evls1gsumadd cascl ccrg
+ cmulr crh evls1rhm wf ffvelcdmd rhmmul casa subrgcrng ply1assa asclmul1
+ asclf cof fvexi a1i rhmf pwsmulrval pwselbas ffnd inidm ad2antrr simplr
+ wss mpteq2dva nn0ex csupp cfsupp ressbas2 eleqtrrd evls1varpwval offval
+ subrgss evls1scafv 3eqtr3d oveq2d crngringd sseldd ringcld 3impa 3com23
+ ringcmnd 3expb wfun cfn mptexd coe1sfi fsuppimpd cdif csn cxp wfn coe1f
+ funmpt fvdifsupp subrg0 eqtr4d eldifad ringlz fconstmpt eqtr4di cmnmndd
+ pws0g suppss2 suppssfifsupp syl32anc pwsgsum 3eqtrd ) AMEUHNJUIJUJZCUHZ
+ UWAIUKUHZNULUHZUMUHZUNZNUOUHZUNZUPUQUNZEUHZBLGJUIUWBUWABUJZKUNZHUNZUPUQ
+ UNUPZAMUWIEAIURUSZMDUSZMUWIUTAFGVAUHUSZUWOUAFGIRVBVCZUBCDNIUWGJUWEMUWDU
+ WCQUWCVDZSUWGVDZUWDVDZUWEVDZUEVEVFVGAUWJGLVHUNZJUIUWHEUHZUPZUQUNUXCJUIB
+ LUWMUPZUPZUQUNUWNAJDUXCEFGILUINUWHNVIUHZOPQUXHVDZRUXCVDZSTUAAUWAUIUSZVJ
+ ZNVNUSZUWBNVKUHZVLUHZUSZUWFDUSZUWHDUSAUXMUXKAUWOUXMUWRNIQVMVCZVOUXLUWBI
+ VLUHZUXOAUWPUXKUWBUXSUSUBCDNIMUXSUWAUESQUXSVDZVPVQZAUXSUXOUTUXKAIUXNVLA
+ UWOIUXNUTZUWRNIURQVRVCZVGVOVSZUXLUWDVTUSZUXKUWCDUSZUXQUXLNURUSZUYEAUYGU
+ XKAUWOUYGUWRNIQWAVCZVONUWDUXAWDZVCAUXKWBUXLUWOUYFAUWOUXKUWRVODNIUWCUWSQ
+ SWCZVCDUWEUWDUWAUWCDNUWDUXASWEZUXBWFWGZUWBUWGUXNUXODNUWFSUXNVDZUWTUXOVD
+ ZWHWGZAUIWIAUFDUWHUFUJZCUHZUYPUWCUWEUNZUWGUNZJWJUXHUGANVIWKUYOUWAUYPUTU
+ WBUYQUWFUYRUWGUWAUYPCWLUWAUYPUWCUWEWNWMAUGUJZUYPWOWPZUYQIVIUHZUTZXEZUFU
+ IWQZUGUIWRZVUAUYSUXHUTZXEZUFUIWQZUGUIWRAUWPVUFUBCDNIUFMVUBUGUESQVUBVDZW
+ SVCAVUEVUIUGUIAUYTUIUSZVJZVUDVUHUFUIVULUYPUIUSZVJZVUCVUGVUAVUNVUCVUGVUN
+ VUCVJZUYSUXNVIUHZUYRUWGUNZUXHVUOUYQVUPUYRUWGVUOUYQVUBVUPVUNVUCWBVUOIUXN
+ VIAUYBVUKVUMVUCUYCWTVGXAXBVUOUXMUYRDUSZVUQUXHUTAUXMVUKVUMVUCUXRWTAVUMVU
+ RVUKVUCAVUMVJUYEVUMUYFVURAUYEVUMAUYGUYEUYHUYIVCVOAVUMWBAUYFVUMAUWOUYFUW
+ RUYJVCVODUWEUWDUYPUWCUYKUXBWFWGXCUWGUXNVUPDNUYRUXHSUYMUWTVUPVDUXIXDVFXA
+ XFXGXHXIXJXKXLAUXEUXGUXCUQAJUIUXDUXFUXLUWBNXMUHZUHZUWFNXOUHZUNZEUHZVUTE
+ UHZUWFEUHZUXCXOUHZUNZUXDUXFUXLENUXCXPUNUSZVUTDUSUXQVVCVVGUTAVVHUXKAGXNU
+ SZUWQVVHTUALEFGUXCINOPUXJRQXQVFVOZUXLUXODUWBVUSAUXODVUSXRUXKAVUSDUXNUXO
+ NVUSVDZUYMUYHUXRUYNSYEVOUYDXSZUYLVUTUWFNUXCVVAVVFEDSVVAVDZVVFVDZXTWGUXL
+ VVBUWHEUXLNYAUSZUXPUXQVVBUWHUTAVVOUXKAIXNUSZVVOAVVIUWQVVPTUAFGIRYBVFNIQ
+ YCVCVOUYDUYLVUSUWBUWGVVAUXNUXODNUWFVVKUYMUYNSVVMUWTYDWGVGUXLVVGVVDVVEHY
+ FUNUXFUXLUXCVLUHZGVVFHVVDVVELXNWJUXCUXJVVQVDZAVVIUXKTVOZLWJUSZUXLLGVLPY
+ GZYHZUXLDVVQVUTEUXLVVHDVVQEXRVVJDVVQNUXCESVVRYIVCZVVLXSZUXLDVVQUWFEVWCU
+ YLXSZUCVVNYJUXLBLLUWBUWLHLVVDVVEWJWJUXLLLVVDUXLLGLVVQXNVVDUXCWJUXJPVVRV
+ VSVWBVWDYKYLUXLLLVVEUXLLGLVVQXNVVEUXCWJUXJPVVRVVSVWBVWEYKYLVWBVWBLYMUXL
+ UWKLUSZVJZVUSLUWKEFGINUWBOQRPVVKAVVIUXKVWFTYNZAUWQUXKVWFUAYNZUXLUWBFUSV
+ WFUXLUWBUXSFUYAAFUXSUTZUXKAFLYPZVWJAUWQVWKUAFLGPUUEZVCFLIGRPUUAVCVOUUBZ
+ VOUXLVWFWBZUUFVWGLUWKEFGIKUWEUWANUWCORQUWSPUXBUDVWHVWIAUXKVWFYOZVWNUUCU
+ UDXAUUGYQUUHABJLGUWMLUIWJWJUXCUXCVIUHZUXJPVWPVDVVTAVWAYHZUIWJUSZAYRYHZA
+ GAGTUUIZUUNZAVWFUXKUWMLUSZAUXKVWFVXBAUXKVWFVXBVWGLGHUWBUWLPUCAGURUSZUXK
+ VWFVWTYNUXLUWBLUSVWFUXLFLUWBUXLUWQVWKAUWQUXKUAVOVWLVCVWMUUJVOVWGGULUHZV
+ TUSZUXKVWFUWLLUSZAVXEUXKVWFAVXCVXEVWTGVXDVXDVDZWDZVCYNVWOVWNLKVXDUWAUWK
+ LGVXDVXGPWEUDWFZWGUUKUULUUMUUOAUXGWJUSUXGUUPZVWPWJUSCVUBYSUNZUUQUSUXGVW
+ PYSUNVXKYPUXGVWPYTWPAJUIUXFWJVWSUURVXJAJUIUXFUVFYHAUXCVIWKACVUBAUWPCVUB
+ YTWPUBCDNIMVUBUESQVUJUUSVCUUTAUIUXFJWJVXKVWPAUWAUIVXKUVAUSZVJZUXFLGVIUH
+ ZUVBUVCZVWPVXMUXFBLVXNUPVXOVXMBLUWMVXNVXMVWFVJZUWMVXNUWLHUNZVXNVXPUWBVX
+ NUWLHVXMUWBVXNUTVWFVXMUWBVUBVXNVXMUICWJWJUWAVUBACUIUVDVXLAUIUXSCAUWPUIU
+ XSCXRUBCDNIMUXSUESQUXTUVEVCYLVOVWRVXMYRYHVXMIVIWKAVXLWBUVGAVXNVUBUTZVXL
+ AUWQVXRUAFGIVXNRVXNVDZUVHVCVOUVIVOXBVXPVXCVXFVXQVXNUTAVXCVXLVWFVWTYNZVX
+ PVXEUXKVWFVXFVXPVXCVXEVXTVXHVCVXPUWAUIVXKAVXLVWFYOUVJVXMVWFWBVXIWGLGHUW
+ LVXNPUCVXSUVKVFXAYQBLVXNUVLUVMAVXOVWPUTZVXLAGVTUSVVTVYAAGVXAUVNVWQGLWJU
+ XCVXNUXJVXSUVOVFVOXAVWSUVPVXKUXGWJWJVWPUVQUVRUVSUVTXA $.
+ $}
+
+ ${
+ $d B k m x $. $d E k m $. $d E k x $. $d K f x $. $d K k $.
+ $d K y $. $d Q k m $. $d Q k x $. $d R f x $. $d S f g x $.
+ $d S k $. $d U f x $. $d U k $. $d W k $. $d W x $. $d k m ph $.
+ $d k ph x $.
+ ressply1evl.e $e |- E = ( eval1 ` S ) $.
+ ressply1evl.s $e |- ( ph -> S e. CRing ) $.
+ ressply1evl.r $e |- ( ph -> R e. ( SubRing ` S ) ) $.
+ $( Evaluation of a univariate subring polynomial is the same as the
+ evaluation in the bigger ring. (Contributed by Thierry Arnoux,
+ 23-Jan-2025.) $)
+ ressply1evl $p |- ( ph -> Q = ( E |` B ) ) $=
+ ( cfv wcel eqid vm vx vk cres wceq cv wral wa cn0 cco1 cmgp cmg co cmpt
+ cmulr cgsu cress cpl1 cbs evl1fval1 adantr csubrg crg crngringd subrgid
+ ccrg syl cps1 ressply1bas2 inss2 eqsstrdi ressid fveq2d sseqtrrd sselda
+ cin evls1fpws simpr eqtr4d ralrimiva wfn wss cpws crh evl1rhm rhmf 3syl
+ wb wf ffnd evls1rhm syl2anc fvreseq1 syl21anc mpbird eqcomd ) AGBUDZCAW
+ QCUEZUAUFZGRZWSCRZUEZUABUGZAXBUABAWSBSZUHZWTUBHEUCUIUCUFZWSUJRZRXFUBUFE
+ UKRULRZUMEUORZUMUNUPUMUNXAXEUBXGEHUQUMZURRZUSRZGHEXIXJUCXHHWSXKHGEOKUTK
+ XKTXJTXLTAEVFSZXDPVAZAHEVBRZSZXDAEVCSXPAEPVDHEKVEVGVAABXLWSABEURRZUSRZX
+ LABFVHRZUSRZXRVPXRABXTEXQDIFXRXSXQTZMLNQXSTXTTXRTZVIXTXRVJVKZAXKXQUSAXJ
+ EURAXMXJEUEPHEVFKVLVGVMVMVNVOXITZXHTZXGTZVQXEUBXGBCDEXIFUCXHHWSIJKLMNXN
+ ADXOSZXDQVAAXDVRYDYEYFVQVSVTAGXRWACBWABXRWBWRXCWHAXREHWCUMZUSRZGAXMGXQY
+ HWDUMSXRYIGWIPHXQEYHGOYAYHTZKWEXRYIXQYHGYBYITZWFWGWJABYICACIYHWDUMSZBYI
+ CWIAXMYGYLPQHCDEYHFIJKYJMLWKWLBYIIYHCNYKWFVGWJYCUAXRBGCWMWNWOWP $.
+ $}
+
+ ${
+ evls1muld.1 $e |- .X. = ( .r ` W ) $.
+ evls1muld.2 $e |- .x. = ( .r ` S ) $.
+ evls1muld.s $e |- ( ph -> S e. CRing ) $.
+ evls1muld.r $e |- ( ph -> R e. ( SubRing ` S ) ) $.
+ evls1muld.m $e |- ( ph -> M e. B ) $.
+ evls1muld.n $e |- ( ph -> N e. B ) $.
+ evls1muld.c $e |- ( ph -> C e. K ) $.
+ $( Univariate polynomial evaluation of a product of polynomials.
+ (Contributed by Thierry Arnoux, 24-Jan-2025.) $)
+ evls1muld $p |- ( ph -> ( ( Q ` ( M .X. N ) ) ` C )
+ = ( ( ( Q ` M ) ` C ) .x. ( ( Q ` N ) ` C ) ) ) $=
+ ( co ce1 cfv cpl1 cmulr cress wcel wceq eqid ressply1mul syl12anc oveqi
+ id cvv cbs fvexi ressmulr 3eqtr4g fveq2d fveq1d cres ressply1evl csubrg
+ crg subrgring ply1ring 3syl ringcld fvresd eqtr2d cps1 cin ressply1bas2
+ ax-mp inss2 eqsstrdi sseldd jca evl1muld simprd 3eqtr3d ) ACKLHUFZFUGUH
+ ZUHZUHCKLFUIUHZUJUHZUFZWHUHZUHZCWGDUHZUHCKDUHZUHZCLDUHZUHZGUFZACWIWMAWG
+ WLWHAKLMUJUHZUFZKLWJBUKUFZUJUHZUFZWGWLAAKBULLBULXBXEUMAURUCUDABXCFWJEMI
+ KLWJUNZQPRUBXCUNZUOUPHXAKLSUQWKXDKLBUSULWKXDUMBMUTRVABWJXCWKUSXGWKUNZVB
+ VSUQVCVDVEACWIWOAWOWGWHBVFZUHWIAWGDXIABDEFIWHJMNOPQRWHUNZUAUBVGZVEAWGBW
+ HABMHKLRSAEFVHUHULIVIULMVIULUBEFIQVJMIPVKVLUCUDVMVNVOVEAWLWJUTUHZULWNWT
+ UMAJWJFWKGXLKLWHWQWSCXJXFOXLUNZUAUEAKXLULCKWHUHZUHWQUMABXLKABIVPUHZUTUH
+ ZXLVQXLABXPFWJEMIXLXOXFQPRUBXOUNXPUNXMVRXPXLVTWAZUCWBACXNWPAWPKXIUHXNAK
+ DXIXKVEAKBWHUCVNVOVEWCALXLULCLWHUHZUHWSUMABXLLXQUDWBACXRWRAWRLXIUHXRALD
+ XIXKVEALBWHUDVNVOVEWCXHTWDWEWF $.
+ $}
+ $}
+
+ ${
+ $d H f $. $d H h $. $d R f h $. $d h m $.
+ ressdeg1.h $e |- H = ( R |`s T ) $.
+ ressdeg1.d $e |- D = ( deg1 ` R ) $.
+ ressdeg1.u $e |- U = ( Poly1 ` H ) $.
+ ressdeg1.b $e |- B = ( Base ` U ) $.
+ ressdeg1.p $e |- ( ph -> P e. B ) $.
+ ressdeg1.t $e |- ( ph -> T e. ( SubRing ` R ) ) $.
+ $( The degree of a univariate polynomial in a structure restriction.
+ (Contributed by Thierry Arnoux, 20-Jan-2025.) $)
+ ressdeg1 $p |- ( ph -> ( D ` P ) = ( ( deg1 ` H ) ` P ) ) $=
+ ( cfv csupp cxr clt wcel eqid cco1 co csup cdg1 csubrg wceq subrg0 oveq2d
+ c0g syl supeq1d cpl1 cbs cps1 ressply1bas2 eleqtrd elin2d deg1val 3eqtr4d
+ cin ) ADUAOZEUIOZPUBZQRUCZVAHUIOZPUBZQRUCZDCOZDHUDOZOZAQVCVFRAVBVEVAPAFEU
+ EOSVBVEUFNFEHVBIVBTZUGUJUHUKADEULOZUMOZSVHVDUFAHUNOZUMOZVMDADBVOVMUTMABVO
+ EVLFGHVMVNVLTZIKLNVNTVOTVMTZUOUPUQVAVMCVLEDVBJVPVQVKVATZURUJADBSVJVGUFMVA
+ BVIGHDVEVITKLVETVRURUJUS $.
+ $}
+
+ ${
+ ply1ascl0.w $e |- W = ( Poly1 ` R ) $.
+ ply1ascl0.a $e |- A = ( algSc ` W ) $.
+ ply1ascl0.o $e |- O = ( 0g ` R ) $.
+ ply1ascl0.1 $e |- .0. = ( 0g ` W ) $.
+ ply1ascl0.r $e |- ( ph -> R e. Ring ) $.
+ $( The zero scalar as a polynomial. (Contributed by Thierry Arnoux,
+ 20-Jan-2025.) $)
+ ply1ascl0 $p |- ( ph -> ( A ` O ) = .0. ) $=
+ ( cascl cfv c0g csca crg wcel syl fveq2d eqid wceq ply1sca clmod ply1lmod
+ eqtrid ply1ring ascl0 eqtrd fveq1i 3eqtr4g ) ADELMZMZENMZDBMFAULEOMZNMZUK
+ MUMADUOUKADCNMUOIACUNNACPQZCUNUAKECPGUBRSUESAUKUNEUKTUNTAUPEUCQKECGUDRAUP
+ EPQKECGUFRUGUHDBUKHUIJUJ $.
+ $}
+
+ ${
+ ressply.1 $e |- S = ( Poly1 ` R ) $.
+ ressply.2 $e |- H = ( R |`s T ) $.
+ ressply.3 $e |- U = ( Poly1 ` H ) $.
+ ressply.4 $e |- B = ( Base ` U ) $.
+ ressply.5 $e |- ( ph -> T e. ( SubRing ` R ) ) $.
+ ${
+ ressply10g.6 $e |- Z = ( 0g ` S ) $.
+ $( A restricted polynomial algebra has the same group identity (zero
+ polynomial). (Contributed by Thierry Arnoux, 20-Jan-2025.) $)
+ ressply10g $p |- ( ph -> Z = ( 0g ` U ) ) $=
+ ( c0g cfv cascl eqid wcel syl subrg1ascl fveq1d crg subrgring ply1ascl0
+ cres csubrg wceq subrg0 csubg subrgsubg subg0cl eqeltrrd fvresd 3eqtr3d
+ 3syl fveq2d subrgrcl 3eqtr2rd ) AFOPZGOPZDQPZPZCOPZVBPHAVAFQPZPVAVBEUFZ
+ PUTVCAVAVEVFAVBVEDCEFGIVBRZJKMVERZUAUBAVEGVAFUTKVHVARUTRAECUGPSZGUCSMEC
+ GJUDTUEAVAEVBAVDVAEAVIVDVAUHMECGVDJVDRZUITZAVIECUJPSVDESMECUKECVDVJULUP
+ UMUNUOAVDVAVBVKUQAVBCVDDHIVGVJNAVICUCSMECURTUEUS $.
+ $}
+
+ ${
+ $d B p $. $d M p $. $d N p $. $d p ph $.
+ ressply1mon1p.m $e |- M = ( Monic1p ` R ) $.
+ ressply1mon1p.n $e |- N = ( Monic1p ` H ) $.
+ $( The monic polynomials of a restricted polynomial algebra.
+ (Contributed by Thierry Arnoux, 21-Jan-2025.) $)
+ ressply1mon1p $p |- ( ph -> N = ( B i^i M ) ) $=
+ ( wcel cfv wa eqid vp cin cv c0g wne cdg1 cco1 cur wceq w3a cbs ismon1p
+ anbi2i cress co ressply1bas ressbasss eqsstrdi sseld anbi1d 13an22anass
+ pm4.71d wb ressply10g neeq2d adantr simpr csubrg ressdeg1 fveq2d subrg1
+ bitr4di syl eqeq12d anbi12d pm5.32da 3anass bitr3d bitr2id elin 3bitr4g
+ eqrdv ) AUAIBHUBZAUAUCZBQZWDFUDRZUEZWDGUFRZRZWDUGRZRZGUHRZUIZUJZWEWDHQZ
+ SZWDIQWDWCQWPWEWDDUKRZQZWDDUDRZUEZWDCUFRZRZWJRZCUHRZUIZUJZSZAWNWOXFWEWQ
+ XADCXDWDHWSJWQTZWSTZXATZOXDTZULUMAWEWTXESZSZXGWNAXMWEWRSZXLSXGAWEXNXLAW
+ EWRABWQWDABDBUNUOZUKRWQABXOCDEFGJKLMNXOTZUPBWQXODXPXHUQURUSVBUTWEWRWTXE
+ VAVLAXMWEWGWMSZSWNAWEXLXQAWESZWTWGXEWMAWTWGVCWEAWSWFWDABCDEFGWSJKLMNXIV
+ DVEVFXRXCWKXDWLXRXBWIWJXRBXAWDCEFGKXJLMAWEVGAECVHRQZWENVFVIVJAXDWLUIZWE
+ AXSXTNECGXDKXKVKVMVFVNVOVPWEWGWMVQVLVRVSBWHFGWLWDIWFLMWFTWHTPWLTULWDBHV
+ TWAWB $.
+ $}
+ $}
+
${
$d P n $. $d R n $.
ply1chr.1 $e |- P = ( Poly1 ` R ) $.
@@ -492755,6 +493169,128 @@ such that every prime ideal contains a prime element (this is a
$}
+$(
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+ Algebraic numbers and Minimal polynomials
+-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-
+$)
+
+ $c AlgNb minPoly $.
+
+ $( Extend class notation with the algebraic number builder function. $)
+ calgnb $a class AlgNb $.
+
+ $( Extend class notation with the minimal polynomial builder function. $)
+ cminply $a class minPoly $.
+
+ ${
+ $( Define the minimal polynomial builder function. This definition is
+ similar to ~ df-aa . (Contributed by Thierry Arnoux, 19-Jan-2025.) $)
+ df-algnb $a |- AlgNb = ( e e. _V , f e. _V |-> U_ p e. ( dom ( e evalSub1 f
+ ) \ { ( 0g ` ( Poly1 ` e ) ) } ) ( `' ( ( e evalSub1 f ) ` p ) " { ( 0g
+ ` e ) } ) ) $.
+ $}
+
+ ${
+ $d e f p $.
+ $( Define the minimal polynomial builder function . (Contributed by
+ Thierry Arnoux, 19-Jan-2025.) $)
+ df-minply $a |- minPoly = ( e e. _V , f e. _V |-> ( x e. ( e AlgNb f ) |->
+ inf ( ( `' ( ( e evalSub1 f ) ` p ) " { ( 0g ` e ) } ) , ( Monic1p ` e )
+ , ( ( deg1 ` e ) oR < ( deg1 ` e ) ) ) ) ) $.
+ $}
+
+ ${
+ $d .0. e f $. $d E e f p $. $d F e f p $. $d O e f p $. $d Z e f p $.
+ algnbval.o $e |- O = ( E evalSub1 F ) $.
+ algnbval.z $e |- Z = ( 0g ` ( Poly1 ` E ) ) $.
+ algnbval.1 $e |- .0. = ( 0g ` E ) $.
+ algnbval.2 $e |- ( ph -> E e. Field ) $.
+ algnbval.3 $e |- ( ph -> F e. ( SubDRing ` E ) ) $.
+ $( The algebraic numbers over a field ` F ` within a field ` E ` . That
+ is, the numbers ` X ` which are roots of nonconstant polynomials
+ ` p ( X ) ` with coefficients in ` ( Base `` F ) ` . (Contributed by
+ Thierry Arnoux, 26-Jan-2025.) $)
+ algnbval $p |- ( ph -> ( E AlgNb F )
+ = U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) ) $=
+ ( ve vf cvv wcel csn cfv ces1 c0g cdif cv ccnv cima ciun calgnb co cfield
+ cdm wceq elexd csdrg wral ovexi dmex difexi fvex cnvex imaex rgenw iunexg
+ a1i sylancl cpl1 wa oveq12 eqtr4di dmeqd simpl fveq2d sneqd fveq1d cnveqd
+ difeq12d imaeq12d iuneq12d df-algnb ovmpoga syl3anc ) ABOPCOPGDUIZFQZUAZG
+ UBZDRZUCZEQZUDZUEZOPZBCUFUGWHUJABUHKUKACBULRLUKAWBOPZWGOPZGWBUMWIWJAVTWAD
+ DBCSHUNUOUPVBWKGWBWEWFWDWCDUQURUSUTGWBWGOOVAVCMNBCOOGMUBZNUBZSUGZUIZWLVDR
+ ZTRZQZUAZWCWNRZUCZWLTRZQZUDZUEWHUFOWLBUJZWMCUJZVEZGWSWBXDWGXGWOVTWRWAXGWN
+ DXGWNBCSUGDWLBWMCSVFHVGZVHXGWQFXGWQBVDRZTRFXGWPXITXGWLBVDXEXFVIZVJVJIVGVK
+ VNXGXAWEXCWFXGWTWDXGWCWNDXHVLVMXGXBEXGXBBTREXGWLBTXJVJJVGVKVOVPMNGVQVRVS
+ $.
+
+ ${
+ $d B p $. $d E p $. $d F p $. $d O p $. $d X p $. $d Z p $.
+ $d p ph $.
+ isalgnb.b $e |- B = ( Base ` E ) $.
+ $( Property for an element ` X ` of a field ` E ` to be algebraic over a
+ subfield ` F ` . (Contributed by Thierry Arnoux, 26-Jan-2025.) $)
+ isalgnb $p |- ( ph -> ( X e. ( E AlgNb F ) <-> ( X e. B
+ /\ E. p e. ( dom O \ { Z } ) ( ( O ` p ) ` X ) = .0. ) ) ) $=
+ ( co wcel cfv wa eqid calgnb wceq cdm cdif wrex ccnv cima ciun algnbval
+ cv csn eleq2d eliun bitrdi wf wfn wb cpws cbs cfield adantr fvexi cress
+ cvv a1i cpl1 crh ccrg csubrg fldcrngd csdrg cdr issdrg simp2bi evls1rhm
+ syl syl2anc rhmf simpr eldifad fdmd eleqtrd ffvelcdmd pwselbas fniniseg
+ ffn 3syl rexbidva bitrd r19.42v ) AFCDUAPZQZFBQZFIUJZERZRGUBZSZIEUCZHUK
+ ZUDZUEZWMWPIWTUESAWLFWOUFGUKUGZQZIWTUEZXAAWLFIWTXBUHZQXDAWKXEFACDEGHIJK
+ LMNUIULIFWTXBUMUNAXCWQIWTAWNWTQZSZBBWOUOWOBUPXCWQUQXGBCBCBURPZUSRZUTWOX
+ HVDXHTZOXITZACUTQXFMVABVDQXGBCUSOVBVEXGCDVCPZVFRZUSRZXIWNEAXNXIEUOZXFAE
+ XMXHVGPQZXOACVHQDCVIRQZXPACMVJADCVKRQZXQNXRCVLQXQXLVLQCDVMVNVPBEDCXHXLX
+ MJOXJXLTXMTVOVQXNXIXMXHEXNTXKVRVPZVAXGWNWRXNXGWNWRWSAXFVSVTAWRXNUBXFAXN
+ XIEXSWAVAWBWCWDBBWOWFBGFWOWEWGWHWIWMWPIWTWJUN $.
+ $}
+
+ ${
+ $d .0. p q $. $d E p q $. $d F p q $. $d O p q $. $d X p q $.
+ $d Z p q $. $d p ph q $.
+ minplyeulem.x $e |- ( ph -> X e. ( E AlgNb F ) ) $.
+ $( An algebraic number ` X ` over ` F ` is a root of some monic
+ polynomial ` p ` with coefficients in ` F ` . (Contributed by Thierry
+ Arnoux, 26-Jan-2025.) $)
+ minplyeulem $p |- ( ph -> E. p e. ( Monic1p ` E ) ( ( O ` p ) ` X ) = .0.
+ ) $=
+ ( cfv wceq wcel eqid ad2antrr syl vq cv cmn1 wrex cdm csn cdif wa cress
+ co cdg1 cco1 cinvr cpl1 cascl cmulr cbs cin csdrg csubrg issdrg simp2bi
+ cdr ressply1mon1p inss2 eqsstrdi crg cuc1p simp3bi drngringd c0g simplr
+ wne eldifad cpws crh wf ccrg fldcrngd evls1rhm syl2anc eleqtrd eldifsni
+ rhmf fdmd ad2antlr ressply10g neeqtrd drnguc1p syl3anc uc1pmon1p sseldd
+ simpr fveq2d fveq1d eqeq1d csca casa fldsdrgfld ply1assa assaring clmod
+ cfield crngringd asclf deg1nn0cl coe1fvalcl deg1ldg drnginvrcld ply1sca
+ ply1lmod cn0 ffvelcdmd calgnb isalgnb mpbid simpld evls1muld oveq2d cvv
+ fvexd pwselbas ringrz 3eqtrd rspcedvd simprd r19.29a ) AEUAUBZDOOZFPZEH
+ UBZDOZOZFPZHBUCOZUDUADUEZGUFZUGZAYHYRQZUHZYJUHZYNEYHBCUIUJZUKOZOZYHULOZ
+ OZUUBUMOZOZUUBUNOZUOOZOZYHUUIUPOZUJZDOZOZFPHUUMYOUUAUUBUCOZYOUUMUUAUUPU
+ UIUQOZYOURYOUUAUUQBBUNOZCUUIUUBYOUUPUURRZUUBRZUUIRZUUQRZUUACBUSOQZCBUTO
+ QZAUVCYSYJMSUVCBVCQZUVDUUBVCQZBCVAZVBZTZYORUUPRZVDUUQYOVEVFUUAUUBVGQZYH
+ UUBVHOZQZUUMUUPQUUAUUBAUVFYSYJAUVCUVFMUVCUVEUVDUVFUVGVITSZVJZUUAUVFYHUU
+ QQZYHUUIVKOZVMZUVMUVNUUAYHYPUUQUUAYHYPYQAYSYJVLVNAYPUUQPYSYJAUUQBBUQOZV
+ OUJZUQOZDADUUIUVTVPUJQZUUQUWADVQZABVRQZUVDUWBABLVSZAUVCUVDMUVHTZUVSDCBU
+ VTUUBUUIIUVSRZUVTRZUUTUVAVTWAZUUQUWAUUIUVTDUVBUWARZWDZTWESWBZUUAYHGUVQY
+ SYHGVMAYJYHYPGWCWFAGUVQPYSYJAUUQBUURCUUIUUBGUUSUUTUVAUVBUWFJWGSWHZUUQUV
+ LUUIUUBYHUVQUVAUVBUVQRZUVLRZWIWJUUJUVLUUCUUIUUBUULUUGUUPYHUWOUVJUVAUULR
+ ZUUJRZUUCRZUUGRZWKWAWLUUAYKUUMPZUHZYMUUOFUXAEYLUUNUXAYKUUMDUUAUWTWMWNWO
+ WPUUAUUOEUUKDOZOZYIBUPOZUJUXCFUXDUJZFUUAUUQEDCBUXDUULUUBUVSUUKYHUUIIUWG
+ UVAUUTUVBUWPUXDRZAUWDYSYJUWESUVIUUAUUIWQOZUQOZUUQUUHUUJUUAUUJUUQUXGUXHU
+ UIUWQUXGRUUAUUIWRQZUUIVGQAUXIYSYJAUUBVRQUXIAUUBABXCQZUVCUUBXCQZLMCBWSWA
+ ZVSZUUIUUBUVAWTTSUUIXATAUUIXBQZYSYJAUVKUXNAUUBUXMXDUUIUUBUVAXKTSUXHRUVB
+ XEUUAUUHUUBUQOZUXHUUAUXOUUBUUGUUFUUBVKOZUXORZUXPRZUWSUVNUUAUVPUUDXLQZUU
+ FUXOQUWLUUAUVKUVPUVRUXSUVOUWLUWMUUQUUCUUIUUBYHUVQUWRUVAUWNUVBXFWJUUEUUQ
+ UUIUUBYHUXOUUDUUERZUVBUVAUXQXGWAUUAUVKUVPUVRUUFUXPVMUVOUWLUWMUUEUUQUUCU
+ UIUUBYHUXPUVQUWRUVAUWNUVBUXRUXTXHWJXIAUXOUXHPYSYJAUUBUXGUQAUXKUUBUXGPUX
+ LUUIUUBXCUVAXJTWNSWBXMZUWLAEUVSQZYSYJAUYBYJUAYRUDZAEBCXNUJQUYBUYCUHNAUV
+ SBCDEFGUAIJKLMUWGXOXPZXQSZXRUUAYIFUXCUXDYTYJWMXSUUABVGQZUXCUVSQUXEFPAUY
+ FYSYJABUWEXDSUUAUVSUVSEUXBUUAUVSBUVSUWAXCUXBUVTXTUWHUWGUWJAUXJYSYJLSUUA
+ BUQYAUUAUUQUWAUUKDUUAUWBUWCAUWBYSYJUWISUWKTUYAXMYBUYEXMUVSBUXDUXCFUWGUX
+ FKYCWAYDYEAUYBUYCUYDYFYG $.
+ $}
+ $}
+
+
$(
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Matrices
@@ -581852,12 +582388,6 @@ A collection of theorems for commuting equalities (or
( cv cvv wcel el3v3 elvd ) ABCACFGHBDEIJ $.
$}
- $( Double commutation in conjunction. (Contributed by Peter Mazsa,
- 27-Jun-2019.) $)
- an2anr $p |- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) <->
- ( ( ps /\ ph ) /\ ( th /\ ch ) ) ) $=
- ( wa ancom anbi12i ) ABEBAECDEDCEABFCDFG $.
-
$( Multiple commutations in conjunction. (Contributed by Peter Mazsa,
7-Mar-2020.) $)
anan $p |- ( ( ( ( ph /\ ps ) /\ ch ) /\ ( ( ph /\ th ) /\ ta ) ) <->
@@ -657291,47 +657821,6 @@ D Fn ( I ... ( M - 1 ) ) /\
YPIQUAUDUOVULUPUJUMVUOYSABEJHUVDUVJFYPORUBUEUOVUNUPUKUNVUOYSWRYN $.
$}
- ${
- $d ph x y $. $d B x y $. $d F x y $. $d S x y $. $d T x y $.
- ismhmd.b $e |- B = ( Base ` S ) $.
- ismhmd.c $e |- C = ( Base ` T ) $.
- ismhmd.p $e |- .+ = ( +g ` S ) $.
- ismhmd.q $e |- .+^ = ( +g ` T ) $.
- ismhmd.0 $e |- .0. = ( 0g ` S ) $.
- ismhmd.z $e |- Z = ( 0g ` T ) $.
- ismhmd.s $e |- ( ph -> S e. Mnd ) $.
- ismhmd.t $e |- ( ph -> T e. Mnd ) $.
- ismhmd.f $e |- ( ph -> F : B --> C ) $.
- ismhmd.a $e |- ( ( ph /\ ( x e. B /\ y e. B ) ) ->
- ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) $.
- ismhmd.h $e |- ( ph -> ( F ` .0. ) = Z ) $.
- $( Deduction version of ~ ismhm . (Contributed by SN, 27-Jul-2024.) $)
- ismhmd $p |- ( ph -> F e. ( S MndHom T ) ) $=
- ( cmnd wcel wf cv cfv wceq wral w3a cmhm ralrimivva 3jca ismhm syl21anbrc
- co ) AHUDUEIUDUEDEJUFZBUGZCUGZFUQJUHUSJUHUTJUHGUQUIZCDUJBDUJZKJUHLUIZUKJH
- IULUQUESTAURVBVCUAAVABCDDUBUMUCUNBCDEFGHIJLKMNOPQRUOUP $.
- $}
-
- ${
- ablcmnd.1 $e |- ( ph -> G e. Abel ) $.
- $( An Abelian group is a commutative monoid. (Contributed by SN,
- 1-Jun-2024.) $)
- ablcmnd $p |- ( ph -> G e. CMnd ) $=
- ( cabl wcel ccmn ablcmn syl ) ABDEBFECBGH $.
- $}
-
- ${
- ringcld.b $e |- B = ( Base ` R ) $.
- ringcld.t $e |- .x. = ( .r ` R ) $.
- ringcld.r $e |- ( ph -> R e. Ring ) $.
- ringcld.x $e |- ( ph -> X e. B ) $.
- ringcld.y $e |- ( ph -> Y e. B ) $.
- $( Closure of the multiplication operation of a ring. (Contributed by SN,
- 29-Jul-2024.) $)
- ringcld $p |- ( ph -> ( X .x. Y ) e. B ) $=
- ( crg wcel co ringcl syl3anc ) ACLMEBMFBMEFDNBMIJKBCDEFGHOP $.
- $}
-
${
ringassd.b $e |- B = ( Base ` R ) $.
ringassd.t $e |- .x. = ( .r ` R ) $.
@@ -657370,17 +657859,6 @@ D Fn ( I ... ( M - 1 ) ) /\
( crg wcel co wceq ringridm syl2anc ) ACLMFBMFEDNFOJKBCDEFGHIPQ $.
$}
- ${
- ringabld.1 $e |- ( ph -> R e. Ring ) $.
- $( A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.) $)
- ringabld $p |- ( ph -> R e. Abel ) $=
- ( crg wcel cabl ringabl syl ) ABDEBFECBGH $.
-
- $( A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.) $)
- ringcmnd $p |- ( ph -> R e. CMnd ) $=
- ( ringabld ablcmnd ) ABABCDE $.
- $}
-
${
$d C a b x y $. $d F a b $. $d M a b $. $d ph a b x y $.
rncrhmcl.c $e |- C = ( N |`s ran F ) $.
@@ -657449,17 +657927,12 @@ D Fn ( I ... ( M - 1 ) ) /\
LABHBAGIJ $.
${
- drnginvrcld.b $e |- B = ( Base ` R ) $.
- drnginvrcld.0 $e |- .0. = ( 0g ` R ) $.
- drnginvrcld.i $e |- I = ( invr ` R ) $.
- drnginvrcld.r $e |- ( ph -> R e. DivRing ) $.
- drnginvrcld.x $e |- ( ph -> X e. B ) $.
- drnginvrcld.1 $e |- ( ph -> X =/= .0. ) $.
- $( Closure of the multiplicative inverse in a division ring. ( ~ reccld
- analog). (Contributed by SN, 14-Aug-2024.) $)
- drnginvrcld $p |- ( ph -> ( I ` X ) e. B ) $=
- ( cdr wcel wne cfv drnginvrcl syl3anc ) ACMNEBNEFOEDPBNJKLBCDEFGHIQR $.
-
+ drnginvrn0d.b $e |- B = ( Base ` R ) $.
+ drnginvrn0d.0 $e |- .0. = ( 0g ` R ) $.
+ drnginvrn0d.i $e |- I = ( invr ` R ) $.
+ drnginvrn0d.r $e |- ( ph -> R e. DivRing ) $.
+ drnginvrn0d.x $e |- ( ph -> X e. B ) $.
+ drnginvrn0d.1 $e |- ( ph -> X =/= .0. ) $.
$( A multiplicative inverse in a division ring is nonzero. ( ~ recne0d
analog). (Contributed by SN, 14-Aug-2024.) $)
drnginvrn0d $p |- ( ph -> ( I ` X ) =/= .0. ) $=
@@ -657686,65 +658159,6 @@ D Fn ( I ... ( M - 1 ) ) /\
JKLSTUA $.
$}
- ${
- $d A a b x $. $d B a b x $. $d M a b $. $d R x $. $d T a b $.
- $d Y x $. $d ph a b x $.
- pwspjmhmmgpd.y $e |- Y = ( R ^s I ) $.
- pwspjmhmmgpd.b $e |- B = ( Base ` Y ) $.
- pwspjmhmmgpd.m $e |- M = ( mulGrp ` Y ) $.
- pwspjmhmmgpd.t $e |- T = ( mulGrp ` R ) $.
- pwspjmhmmgpd.r $e |- ( ph -> R e. Ring ) $.
- pwspjmhmmgpd.i $e |- ( ph -> I e. V ) $.
- pwspjmhmmgpd.a $e |- ( ph -> A e. I ) $.
- $( The projection given by ~ pwspjmhm is also a monoid homomorphism between
- the respective multiplicative groups. (Contributed by SN,
- 30-Jul-2024.) $)
- pwspjmhmmgpd $p |- ( ph -> ( x e. B |-> ( x ` A ) ) e. ( M MndHom T ) ) $=
- ( cfv wcel wceq va vb cbs cmulr cv cmpt cur mgpbas mgpplusg ringidval crg
- eqid cmnd pwsring syl2anc ringmgp syl wa adantr pwselbas ffvelcdmd fmpttd
- simpr co cof simprl simprr pwsmulrval fveq1d ffnd inidm eqidd ofval eqtrd
- mpidan ringcl syl3an1 3expb fveq1 fvex fvmpt oveq12d 3eqtr4d csn ringidcl
- cxp 3syl pws1 fvconst2 3eqtr2d ismhmd ) AUAUBDEUCRZJUDRZEUDRZHFBDCBUEZRZU
- FZJUGRZEUGRZDJHMLUHWLEFNWLULZUHJWMHMWMULZUIEWNFNWNULZUIJWRHMWRULZUJEWSFNW
- SULZUJAJUKSZHUMSAEUKSZGISZXEOPEGIJKUNUOZJHMUPUQAXFFUMSOEFNUPUQABDWPWLAWOD
- SZURZGWLCWOXJWLEGDUKWOJIKWTLAXFXIOUSAXGXIPUSAXIVCUTACGSZXIQUSVAVBAUAUEZDS
- ZUBUEZDSZURZURZCXLXNWMVDZRZCXLRZCXNRZWNVDZXRWQRZXLWQRZXNWQRZWNVDXQXSCXLXN
- WNVEVDZRZYBXQCXRYFXQDEWMWNXLXNGUKIJKLAXFXPOUSZAXGXPPUSZAXMXOVFZAXMXOVGZXB
- XAVHVIAXPXKYGYBTQXQGGXTYAWNGXLXNIICXQGWLXLXQWLEGDUKXLJIKWTLYHYIYJUTVJXQGW
- LXNXQWLEGDUKXNJIKWTLYHYIYKUTVJYIYIGVKXQXKURZXTVLYLYAVLVMVOVNXQXRDSZYCXSTA
- XMXOYMAXEXMXOYMXHDJWMXLXNLXAVPVQVRBXRWPXSDWQCWOXRVSWQULZCXRVTWAUQXQYDXTYE
- YAWNXQXMYDXTTYJBXLWPXTDWQCWOXLVSYNCXLVTWAUQXQXOYEYATYKBXNWPYADWQCWOXNVSYN
- CXNVTWAUQWBWCAWRWQRZCWRRZCGWSWDWFZRZWSAXEWRDSYOYPTXHDJWRLXCWEBWRWPYPDWQCW
- OWRVSYNCWRVTWAWGACYQWRAXFXGYQWRTOPEWSGIJKXDWHUOVIAXKYRWSTQGWSCEUGVTWIUQWJ
- WK $.
- $}
-
- ${
- $d A x $. $d B x $. $d N x $. $d R x $. $d X x $. $d Y x $.
- $d .xb x $. $d ph x $.
- pwsexpg.y $e |- Y = ( R ^s I ) $.
- pwsexpg.b $e |- B = ( Base ` Y ) $.
- pwsexpg.m $e |- M = ( mulGrp ` Y ) $.
- pwsexpg.t $e |- T = ( mulGrp ` R ) $.
- pwsexpg.s $e |- .xb = ( .g ` M ) $.
- pwsexpg.g $e |- .x. = ( .g ` T ) $.
- pwsexpg.r $e |- ( ph -> R e. Ring ) $.
- pwsexpg.i $e |- ( ph -> I e. V ) $.
- pwsexpg.n $e |- ( ph -> N e. NN0 ) $.
- pwsexpg.x $e |- ( ph -> X e. B ) $.
- pwsexpg.a $e |- ( ph -> A e. I ) $.
- $( Value of a group exponentiation in a structure power. Compare
- ~ pwsmulg . (Contributed by SN, 30-Jul-2024.) $)
- pwsexpg $p |- ( ph -> ( ( N .xb X ) ` A ) = ( N .x. ( X ` A ) ) ) $=
- ( vx cfv cmpt cmhm wcel cn0 wceq pwspjmhmmgpd mgpbas mhmmulg syl3anc cmnd
- co crg pwsring syl2anc ringmgp syl mulgnn0cl fveq1 eqid fvex fvmpt oveq2d
- cv 3eqtr3d ) AJLEUQZUECBUEVIZUFZUGZUFZJLVNUFZGUQZBVKUFZJBLUFZGUQAVNIFUHUQ
- UIJUJUIZLCUIZVOVQUKAUEBCDFHIKMNOPQTUAUDULUBUCCEGVNIFJLCMIPOUMZRSUNUOAVKCU
- IZVOVRUKAIUPUIZVTWAWCAMURUIZWDADURUIHKUIWETUADHKMNUSUTMIPVAVBUBUCCEIJLWBR
- VCUOUEVKVMVRCVNBVLVKVDVNVEZBVKVFVGVBAVPVSJGAWAVPVSUKUCUELVMVSCVNBVLLVDWFB
- LVFVGVBVHVJ $.
- $}
-
${
$d B x $. $d I a x y $. $d J a x y $. $d M a x $. $d R a $. $d T a $.
$d U a $. $d Y a y $. $d ph a x y $.
From 4b8831cc7e865d6e09cdaadc2068a5b54bf8e3d8 Mon Sep 17 00:00:00 2001
From: Thierry Arnoux <5831830+tirix@users.noreply.github.com>
Date: Sun, 26 Jan 2025 15:27:30 +0100
Subject: [PATCH 10/12] Fix definitional soundness check.
---
set.mm | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/set.mm b/set.mm
index 99340c458e..7d0182d009 100644
--- a/set.mm
+++ b/set.mm
@@ -496103,6 +496103,7 @@ such that every prime ideal contains a prime element (this is a
cminply $a class minPoly $.
${
+ $d e f p $.
$( Define the minimal polynomial builder function. This definition is
similar to ~ df-aa . (Contributed by Thierry Arnoux, 19-Jan-2025.) $)
df-algnb $a |- AlgNb = ( e e. _V , f e. _V |-> U_ p e. ( dom ( e evalSub1 f
@@ -496111,7 +496112,7 @@ such that every prime ideal contains a prime element (this is a
$}
${
- $d e f p $.
+ $d e f p x $.
$( Define the minimal polynomial builder function . (Contributed by
Thierry Arnoux, 19-Jan-2025.) $)
df-minply $a |- minPoly = ( e e. _V , f e. _V |-> ( x e. ( e AlgNb f ) |->
From 6f85644fb09a9ddd146fd721508adaff86b165e5 Mon Sep 17 00:00:00 2001
From: Thierry Arnoux <5831830+tirix@users.noreply.github.com>
Date: Sun, 26 Jan 2025 18:42:36 +0100
Subject: [PATCH 11/12] As per @savask remark
---
set.mm | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/set.mm b/set.mm
index 7d0182d009..8030b609ce 100644
--- a/set.mm
+++ b/set.mm
@@ -496104,7 +496104,7 @@ such that every prime ideal contains a prime element (this is a
${
$d e f p $.
- $( Define the minimal polynomial builder function. This definition is
+ $( Define the algebraic number builder function. This definition is
similar to ~ df-aa . (Contributed by Thierry Arnoux, 19-Jan-2025.) $)
df-algnb $a |- AlgNb = ( e e. _V , f e. _V |-> U_ p e. ( dom ( e evalSub1 f
) \ { ( 0g ` ( Poly1 ` e ) ) } ) ( `' ( ( e evalSub1 f ) ` p ) " { ( 0g
From 82795f747770ab1b271609b7550905741048d5f0 Mon Sep 17 00:00:00 2001
From: Thierry Arnoux <5831830+tirix@users.noreply.github.com>
Date: Sun, 26 Jan 2025 23:18:36 +0100
Subject: [PATCH 12/12] As per @avekens comments
---
set.mm | 14 ++++++++------
1 file changed, 8 insertions(+), 6 deletions(-)
diff --git a/set.mm b/set.mm
index 8030b609ce..a2fc3ca438 100644
--- a/set.mm
+++ b/set.mm
@@ -455586,7 +455586,7 @@ orthogonal vectors (i.e. whose inner product is 0) is the sum of the
althtmldef "[:]" as "[:]";
latexdef "[:]" as "[:]";
htmldef "fldGen" as " fldGen ";
- althtmldef "fldGen" as " fldGen";
+ althtmldef "fldGen" as " fldGen ";
latexdef "fldGen" as "\mathbin{\operatorname{fldGen}}";
htmldef "AlgNb" as " AlgNb ";
althtmldef "AlgNb" as " AlgNb ";
@@ -494139,8 +494139,8 @@ such that every prime ideal contains a prime element (this is a
evls1scafv.r $e |- ( ph -> R e. ( SubRing ` S ) ) $.
evls1scafv.x $e |- ( ph -> X e. R ) $.
evls1scafv.1 $e |- ( ph -> C e. B ) $.
- $( Value of the univariate polynomial evaluation for a scalars.
- (Contributed by Thierry Arnoux, 21-Jan-2025.) $)
+ $( Value of the univariate polynomial evaluation for scalars. (Contributed
+ by Thierry Arnoux, 21-Jan-2025.) $)
evls1scafv $p |- ( ph -> ( ( Q ` ( A ` X ) ) ` C ) = X ) $=
( cfv csn cxp evls1sca fveq1d wcel wceq fvconst2g syl2anc eqtrd ) ADJBTET
ZTDCJUAUBZTZJADUJUKABCEFGHIJKLMNOPQRUCUDAJFUEDCUEULJUFRSCJDFUGUHUI $.
@@ -496128,9 +496128,11 @@ such that every prime ideal contains a prime element (this is a
algnbval.2 $e |- ( ph -> E e. Field ) $.
algnbval.3 $e |- ( ph -> F e. ( SubDRing ` E ) ) $.
$( The algebraic numbers over a field ` F ` within a field ` E ` . That
- is, the numbers ` X ` which are roots of nonconstant polynomials
- ` p ( X ) ` with coefficients in ` ( Base `` F ) ` . (Contributed by
- Thierry Arnoux, 26-Jan-2025.) $)
+ is, the numbers ` X ` which are roots of nonzero polynomials ` p ( X ) `
+ with coefficients in ` ( Base `` F ) ` . This is expressed by the idiom
+ ` ( ``' ( O `` p ) " { .0. } ) ` , which can be translated into
+ ` { x e. ( Base `` E ) | ( ( O `` p ) `` x ) = .0. } ` by ~ fniniseg2 .
+ (Contributed by Thierry Arnoux, 26-Jan-2025.) $)
algnbval $p |- ( ph -> ( E AlgNb F )
= U_ p e. ( dom O \ { Z } ) ( `' ( O ` p ) " { .0. } ) ) $=
( ve vf cvv wcel csn cfv ces1 c0g cdif cv ccnv cima ciun calgnb co cfield