forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_activation_quantized_tensor.py
170 lines (148 loc) · 5.56 KB
/
linear_activation_quantized_tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
from torchao.dtypes.utils import (
_implements,
_dispatch__torch_function__,
_dispatch__torch_dispatch__,
)
from typing import Callable
from torch.utils._python_dispatch import return_and_correct_aliasing
__all__ = [
"LinearActivationQuantizedTensor",
"to_linear_activation_quantized",
]
aten = torch.ops.aten
class LinearActivationQuantizedTensor(torch.Tensor):
"""
Applies activation quantization for linear operator
"""
def __new__(
cls,
original_weight_tensor: torch.Tensor,
input_quant_func: Callable,
):
kwargs = {}
dtype = original_weight_tensor.dtype
kwargs["dtype"] = dtype
kwargs["requires_grad"] = False
kwargs["device"] = original_weight_tensor.device
shape = original_weight_tensor.shape
return torch.Tensor._make_wrapper_subclass(cls, shape, **kwargs) # type: ignore[attr-defined]
def __init__(
self,
original_weight_tensor: torch.Tensor,
input_quant_func: Callable,
):
self.original_weight_tensor = original_weight_tensor
self.input_quant_func = input_quant_func
def __tensor_flatten__(self):
return ["original_weight_tensor"], [self.input_quant_func]
@classmethod
def __tensor_unflatten__(
cls, tensor_data_dict, tensor_attributes, outer_size, outer_stride
):
original_weight_tensor = tensor_data_dict["original_weight_tensor"]
input_quant_func, = tensor_attributes
return cls(
original_weight_tensor,
input_quant_func,
)
@classmethod
def from_float(cls, input_float, input_quant_func):
return cls(input_float, input_quant_func)
def _apply_fn_to_data(self, fn):
return self.__class__(
fn(self.original_weight_tensor),
self.input_quant_func,
)
def _get_to_kwargs(self, *args, **kwargs):
device, dtype, _, memory_format = torch._C._nn._parse_to(*args, **kwargs)
device = self.device if device is None else device
dtype = self.dtype if dtype is None else dtype
memory_format = (
memory_format if memory_format is not None else torch.preserve_format
)
kwargs = {
"device": device,
"dtype": dtype,
"memory_format": memory_format,
}
return kwargs
def to(self, *args, **kwargs):
kwargs = self._get_to_kwargs(*args, **kwargs)
return self.__class__(
self.original_weight_tensor.to(**kwargs),
self.input_quant_func,
)
implements = classmethod(_implements)
__torch_function__ = classmethod(_dispatch__torch_function__)
__torch_dispatch__ = classmethod(_dispatch__torch_dispatch__)
implements = LinearActivationQuantizedTensor.implements
@implements(torch.nn.functional.linear)
def _(func, types, *args, **kwargs):
input_tensor, weight_tensor, bias = (
args[0],
args[1],
args[2] if len(args) > 2 else None,
)
if isinstance(weight_tensor, LinearActivationQuantizedTensor):
input_quant_func = weight_tensor.input_quant_func
original_weight_tensor = weight_tensor.original_weight_tensor
aqt = input_quant_func(input_tensor)
return torch.nn.functional.linear(aqt, original_weight_tensor, bias)
raise NotImplementedError("LinearActivationQuantizedTensor: No specialized dispatch found for linear op")
@implements([aten.mm.default, aten.addmm.default])
def _(func, types, *args, **kwargs):
if not args[0].is_floating_point():
raise NotImplementedError(f"LinearActivationQuantizedTensor: expecting a floating point input")
if func == aten.addmm.default:
assert args[1].shape[-1] == args[2].shape[0], (
f"need mat1 shape: {args[1].shape} final"
f"dim to match mat2 shape: {args[2].shape} first dim "
)
input_tensor, weight_tensor, bias = (
args[1],
args[2],
args[0],
)
input_quant_func = weight_tensor.input_quant_func
original_weight_tensor = weight_tensor.original_weight_tensor
aqt = input_quant_func(input_tensor)
return func(bias, aqt, original_weight_tensor)
else:
# aten.mm.default
assert args[0].shape[-1] == args[1].shape[0], (
f"need mat1 shape: {args[0].shape} final dim"
f"to match mat2 shape: {args[1].shape} first dim"
)
input_tensor, weight_tensor = (
args[0],
args[1],
)
input_quant_func = weight_tensor.input_quant_func
original_weight_tensor = weight_tensor.original_weight_tensor
aqt = input_quant_func(input_tensor)
return func(aqt, original_weight_tensor)
@implements(aten.detach.default)
def _(func, types, *args, **kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.detach)
)
@implements(aten.clone.default)
def _(func, types, *args, **kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.clone)
)
@implements(aten._to_copy.default)
def _(func, types, *args, **kwargs):
return return_and_correct_aliasing(
func,
args,
kwargs,
args[0].to(*args[1:], **kwargs)._apply_fn_to_data(torch.clone),
)
@implements(aten.t.default)
def _(func, types, *args, **kwargs):
return return_and_correct_aliasing(
func, args, kwargs, args[0]._apply_fn_to_data(torch.t)
)
to_linear_activation_quantized = LinearActivationQuantizedTensor.from_float