-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfusion_matrix.py
655 lines (565 loc) · 22.6 KB
/
confusion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import torch
import numpy as np
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
from itertools import product
from matplotlib.collections import QuadMesh
from scipy.spatial.distance import cdist
from matplotlib.figure import Figure
from matplotlib.text import Text
from numpy.typing import NDArray, ArrayLike
Color = tuple[float, float, float, float]
class ConfusionMatrix:
def __init__(self, thrs_config: dict, class_names: dict, iou_thr=0.5,):
"""
Class to create and dislpay confusion matrix for MaskRCNN
or any type of instance segmentation and detection architectures
Parameters
----------
- iou_thr: IOU threshold
- thrs_config: dict of thresholds for every class
- class_names: dict of class names accordingly to class numbers
Attributes
----------
- box_matrix: confusion matrix that contains results from boxes
- mask_matrix: confusion matrix that contains results from masks
- display_labels: labels according to classes + miss
- figure_: contains last plot of confusion matrix
Examples
--------
>>> from confusion_matrix import MaskRcnnConfusionMatrix
>>> confusion_matrix = MaskRcnnConfusionMatrix(class_names={0: 'class1', 1: 'class2'},
... thrs_config={0: 0.5, 1: 0.5})
>>> for images, targets in test_dataloader:
>>> outputs = model(images)
>>> confusion_matrix.update(outputs, targets)
>>> confusion_matrix.plot(show=True)
"""
self.iou_thr = iou_thr
self.num_classes = len(thrs_config)
self.classes = class_names.values()
self.box_matrix = np.zeros((self.num_classes + 1, self.num_classes + 1))
self.mask_matrix = np.zeros((self.num_classes + 1, self.num_classes + 1))
self.thrs_config = thrs_config
self.display_labels = list(self.classes) + ["Miss"]
def update(self, predictions: dict, targets: dict, after_nms=False):
"""
Update confusion matrix for masks and boxes.
It is not very performative and effective implementations.
Needs to be rewritten in vectorize style, cause currently it's loops
Arguments:
---------
predictions: dict of prediction from mask_rcnn
targets: dict of targets from dataloader
after_nms: it is after nms already or it needs to be thresholded here
Returns:
-------
None, updates confusion matrix accordingly
"""
if isinstance(targets["labels"], torch.Tensor):
targets = {k: v.to("cpu").numpy() for k, v in targets.items() if type(v) is not str}
l_classes = targets["labels"]
l_bboxs = targets["boxes"]
l_masks = targets["masks"]
d_confs = predictions["scores"]
d_bboxs = predictions["boxes"]
d_masks = predictions["masks"]
d_classes = predictions["labels"]
if not after_nms:
box_thrs = [self.thrs_config[label_id]["box_thr"] for label_id in d_classes]
mask_thrs = [self.thrs_config[label_id]["mask_thr"] for label_id in d_classes]
ids = np.where(d_confs > box_thrs)[0]
d_classes = d_classes[ids]
d_bboxs = d_bboxs[ids]
d_masks = d_masks[ids]
box_labels_detected = np.zeros(len(l_classes))
mask_labels_detected = np.zeros(len(l_classes))
box_detections_matched = np.zeros(len(d_classes))
mask_detections_matched = np.zeros(len(d_classes))
for l_idx, (l_class, l_bbox, l_mask) in enumerate(zip(l_classes, l_bboxs, l_masks)):
for d_idx, (d_class, d_bbox, d_mask) in enumerate(zip(d_classes, d_bboxs, d_masks)):
box_iou = self.box_pairwise_iou(l_bbox, d_bbox)
mask_iou = self.mask_iou((l_mask, l_class), (d_mask, d_class))
if box_iou >= self.iou_thr:
self.box_matrix[l_class, d_class] += 1
box_labels_detected[l_idx] = 1
box_detections_matched[d_idx] = 1
if mask_iou >= self.iou_thr:
self.mask_matrix[l_class, d_class] += 1
mask_labels_detected[l_idx] = 1
mask_detections_matched[d_idx] = 1
for i in np.where(box_labels_detected == 0)[0]:
self.box_matrix[l_classes[i], -1] += 1
for i in np.where(box_detections_matched == 0)[0]:
self.box_matrix[-1, d_classes[i]] += 1
for i in np.where(mask_labels_detected == 0)[0]:
self.mask_matrix[l_classes[i], -1] += 1
for i in np.where(mask_detections_matched == 0)[0]:
self.mask_matrix[-1, d_classes[i]] += 1
def process_batch(self, predictions: dict, targets: dict, after_nms=True):
"""
Process batch of predictons and targets from model and dataloader
to update confusion matrix.
This is supposed to be effective vectorized implementations. Half of that have done, but not masks.
It means that this implementation only for boxes confusion matrix
Arguments:
predictions: dict of prediction from mask_rcnn
targets: dict of targets from dataloader
after_nms: it is after nms already or it needs to be thresholded here
Returns:
None, updates confusion matrix accordingly
"""
if isinstance(targets["labels"], torch.Tensor):
targets = {k: v.to("cpu").numpy() for k, v in targets.items() if type(v) is not str}
gt_classes = targets["labels"]
box_thrs = [self.thrs_config[label_id]["box_thr"] for label_id in predictions["labels"]]
try:
prediction_indexes = np.where(predictions["scores"] > box_thrs)[0]
prediction_classes = predictions["labels"][prediction_indexes]
except IndexError or TypeError as e:
# detections are empty, end of process
print("Какая то хуйня произошла!")
raise e
if len(prediction_classes) == 0 and len(gt_classes) > 0:
for gt_class in gt_classes:
self.box_matrix[self.num_classes, gt_class] += 1
return
elif len(prediction_classes) == 0 and len(gt_classes) == 0:
return
all_ious = self.box_pairwise_iou(targets["boxes"], predictions["boxes"])
want_idx = np.where(all_ious > self.iou_thr)
all_matches = [
[want_idx[0][i], want_idx[1][i], all_ious[want_idx[0][i], want_idx[1][i]]]
for i in range(want_idx[0].shape[0])
]
all_matches = np.array(all_matches)
if all_matches.shape[0] > 0: # if there is match
all_matches = all_matches[all_matches[:, 2].argsort()[::-1]]
all_matches = all_matches[np.unique(all_matches[:, 1], return_index=True)[1]]
all_matches = all_matches[all_matches[:, 2].argsort()[::-1]]
all_matches = all_matches[np.unique(all_matches[:, 0], return_index=True)[1]]
for i, gt_class in enumerate(gt_classes):
if all_matches.shape[0] > 0 and all_matches[all_matches[:, 0] == i].shape[0] == 1:
detection_class = prediction_classes[int(all_matches[all_matches[:, 0] == i, 1][0])]
self.box_matrix[detection_class, gt_class] += 1
else:
self.box_matrix[self.num_classes, gt_class] += 1
for i, detection_class in enumerate(prediction_classes):
if not all_matches.shape[0] or (all_matches.shape[0] and all_matches[all_matches[:, 1] == i].shape[0] == 0):
detection_class = prediction_classes[i]
self.box_matrix[detection_class, self.num_classes] += 1
def box_pairwise_iou(self, boxes1: NDArray[np.float32], boxes2: NDArray[np.float32]) -> NDArray[np.float32]:
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
"""
Return intersection-over-union (Jaccard index) of boxes.
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
boxes1 (Array[N, 4])
boxes2 (Array[M, 4])
Returns:
iou (Array[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
This implementation is taken from the above link and changed so that it only uses numpy..
"""
if len(boxes1.shape) < 2:
boxes1 = boxes1.reshape(1, -1)
if len(boxes2.shape) < 2:
boxes2 = boxes2.reshape(1, -1)
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(boxes1.T)
area2 = box_area(boxes2.T)
lt = np.maximum(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = np.minimum(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
inter = np.prod(np.clip(rb - lt, a_min=0, a_max=None), 2) # type: ignore
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
def mask_iou(self, mask_and_label1: tuple[NDArray, NDArray], mask_and_label2: tuple[NDArray, NDArray]):
"""
Return intersection-over-union (Jaccard index) of masks.
Masks should be pixel arrays
Arguments:
two tuples of mask and label
"""
mask1, label1 = mask_and_label1
mask2, label2 = mask_and_label2
thrs1 = self.thrs_config[label1]["mask_thr"]
thrs2 = self.thrs_config[label2]["mask_thr"]
mask1_area = np.count_nonzero(mask1 >= thrs1)
mask2_area = np.count_nonzero(mask2 >= thrs2)
intersection = np.count_nonzero(np.logical_and(mask1, mask2))
iou = intersection / (mask1_area + mask2_area - intersection)
return iou
def mask_pairwise_iou(self, masks1: np.ndarray, masks2: np.ndarray, labels1: np.ndarray, labels2: np.ndarray):
# TODO: implement it finally!
"""Need to have been imnplemented eventually and tested"""
f1 = np.array(zip(masks1, labels1))
f2 = np.array(zip(masks2, labels2))
return cdist(f1, f2, metric=self.mask_iou) # type: ignore
def return_matrix(self):
"""Returns tuple of box and mask confusion matrix."""
return self.box_matrix, self.mask_matrix
def get_matrix_figure(self, type="box", pretty=True):
"""
Returns figure of confusion matrix of either box or mask type
Parameters
----------
type: str, either box or mask, default `box`
pretty: bool, default `True`
plot pretty, featurize confusion matrix or just regular
"""
if type == "box":
if pretty:
return pp_matrix(
self.box_matrix,
figsize=(14, 14),
rotation=False,
display_labels=self.display_labels,
)
else:
return self.plot(figsize=(10, 10), type_matrix="boxes")
else:
if pretty:
return pp_matrix(
self.mask_matrix,
figsize=(14, 14),
rotation=False,
display_labels=self.display_labels,
)
else:
return self.plot(figsize=(10, 10), type_matrix="masks")
def print_matrix(self):
for i in range(self.num_classes + 1):
print(" ".join(map(str, self.box_matrix[i])))
def pretty_plot(
self,
type="box",
figsize=(14, 14),
rotation=False,
cmap="viridis",
) -> Figure:
"""Plot feature rich confusion matrix.
"""
if type=="box":
return pp_matrix(
self.box_matrix,
figsize=figsize,
rotation=rotation,
display_labels=self.display_labels,
cmap=cmap,
show=True,
)
else:
return pp_matrix(
self.mask_matrix,
figsize=figsize,
rotation=rotation,
display_labels=self.display_labels,
cmap=cmap,
show=True,
)
def plot(
self,
include_values=True,
cmap="viridis",
xticks_rotation="vertical",
values_format=None,
ax=None,
colorbar=False,
type_matrix="boxes",
figsize=(9, 9),
) -> Figure:
"""Plot visualization of confusion matrix.
Parameters
----------
include_values : bool, default=True
Includes values in confusion matrix.
cmap : str or matplotlib Colormap, default='viridis'
Colormap recognized by matplotlib.
xticks_rotation : {'vertical', 'horizontal'} or float, \
default='horizontal'
Rotation of xtick labels.
values_format : str, default=None
Format specification for values in confusion matrix. If `None`,
the format specification is 'd' or '.2g' whichever is shorter.
ax : matplotlib axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
colorbar : bool, default=True
Whether or not to add a colorbar to the plot.
figsize : tuple, default (9,9)
Size of figure.
type_matrix : str, ether box or mask
Type of matrix that need to plot.
Returns
-------
display : :firuge:`plt.figure`
"""
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
else:
fig = ax.figure
cm = self.box_matrix if type_matrix == "boxes" else self.mask_matrix
n_classes = cm.shape[0]
self.im_ = ax.imshow(cm, interpolation="nearest", cmap=cmap)
self.text_ = None
cmap_min, cmap_max = self.im_.cmap(0), self.im_.cmap(1.0)
if include_values:
self.text_ = np.empty_like(cm, dtype=object)
# print text with appropriate color depending on background
thresh = (cm.max() + cm.min()) / 2.0
for i, j in product(range(n_classes), range(n_classes)):
color = cmap_max if cm[i, j] < thresh else cmap_min
if values_format is None:
text_cm = format(cm[i, j], ".2g")
if cm.dtype.kind != "f":
text_d = format(cm[i, j], "d")
if len(text_d) < len(text_cm):
text_cm = text_d
else:
text_cm = format(cm[i, j], values_format)
self.text_[i, j] = ax.text(j, i, text_cm, ha="center", va="center", color=color)
if self.display_labels is None:
display_labels = np.arange(n_classes)
else:
display_labels = self.display_labels
if colorbar:
fig.colorbar(self.im_, ax=ax)
ax.set(
xticks=np.arange(n_classes),
yticks=np.arange(n_classes),
xticklabels=display_labels,
yticklabels=display_labels,
ylabel="True label",
xlabel="Predicted label",
)
ax.set_ylim((n_classes - 0.5, -0.5))
plt.setp(ax.get_xticklabels(), rotation=xticks_rotation)
plt.tight_layout()
plt.grid(False)
self.figure_ = fig
self.ax_ = ax
return fig
# Helper function to draw pretty figure
# -------------------------------------
# This is main function to draw pretty confusion matrix
def pp_matrix(
df_cm: NDArray[np.float64] | pd.DataFrame,
annot=True,
cmap="viridis",
fmt=".2f",
fz=10,
lw=1,
cbar=False,
figsize=[9, 9],
show_null_values=False,
pred_val_axis="x",
show=False,
rotation=True,
display_labels=None,
):
"""
print conf matrix with default layout (like matlab)
params:
df_cm dataframe (pandas) without totals
annot print text in each cell
cmap Oranges,Oranges_r,YlGnBu,Blues,RdBu, ... see:
fz fontsize
lw linewidth
pred_val_axis where to show the prediction values (x or y axis)
'col' or 'x': show predicted values in columns (x axis) instead lines
'lin' or 'y': show predicted values in lines (y axis)
show show the plot or not
rotation rotate or not labels on figure
display_labels None, list of labels that display on figure
"""
if not isinstance(df_cm, pd.DataFrame):
df_cm = pd.DataFrame(df_cm, index=display_labels, columns=display_labels)
if pred_val_axis in ("col", "x"):
xlbl = "Predicted"
ylbl = "Actual"
else:
xlbl = "Actual"
ylbl = "Predicted"
df_cm = df_cm.T
# create "Total" column
insert_totals(df_cm)
# this is for print allways in the same window
fig, ax1 = get_new_fig("Conf matrix default", figsize)
ax = sn.heatmap(
df_cm,
annot=annot,
annot_kws={"size": fz},
linewidths=lw,
ax=ax1,
cbar=cbar,
cmap=cmap,
linecolor="w",
fmt=fmt,
)
# set ticklabels rotation
if rotation:
rotation_x = 45
rotation_y = 25
else:
rotation_x = 0
rotation_y = 90
ax.set_xticklabels(ax.get_xticklabels(), rotation=rotation_y, fontsize=10)
ax.set_yticklabels(ax.get_yticklabels(), rotation=rotation_x, fontsize=10)
# Turn off all the ticks
for t in ax.xaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
for t in ax.yaxis.get_major_ticks():
t.tick1On = False
t.tick2On = False
# face colors list
quadmesh = ax.findobj(QuadMesh)[0]
facecolors = quadmesh.get_facecolors()
# iter in text elements
array_df = np.array(df_cm.to_records(index=False).tolist())
text_add = []
text_del = []
posi = -1 # from left to right, bottom to top.
for t in ax.collections[0].axes.texts: # ax.texts:
pos = np.array(t.get_position()) - [0.5, 0.5]
lin = int(pos[1])
col = int(pos[0])
posi += 1
# set text
txt_res = configcell_text_and_colors(array_df, lin, col, t, facecolors, posi, fz, fmt, show_null_values)
text_add.extend(txt_res[0])
text_del.extend(txt_res[1])
# remove the old ones
for item in text_del:
item.remove()
# append the new ones
for item in text_add:
ax.text(item["x"], item["y"], item["text"], **item["kw"])
# titles and legends
ax.set_title("Confusion matrix")
ax.set_xlabel(xlbl)
ax.set_ylabel(ylbl)
# set layout slim
plt.tight_layout()
if show:
plt.show()
return plt.gcf()
# This is helper functions for pp_print function
def get_new_fig(fn, figsize=[9, 9]):
"""Init graphics"""
fig1 = plt.figure(fn, figsize)
ax1 = fig1.gca() # Get Current Axis
ax1.cla() # clear existing plot
return fig1, ax1
def configcell_text_and_colors(
array_df: np.ndarray,
lin: int,
col: int,
oText: Text,
facecolors: list[Color],
posi: int,
fz: int,
fmt: str,
show_null_values=False,
):
"""
config cell text and colors
and return text elements to add and to dell
"""
text_add = []
text_del = []
cell_val = array_df[lin][col]
tot_all = array_df[-1][-1]
per = (float(cell_val) / tot_all) * 100
curr_column = array_df[:, col]
ccl = len(curr_column)
# last line and/or last column
if (col == (ccl - 1)) or (lin == (ccl - 1)):
# tots and percents
if cell_val != 0:
if (col == ccl - 1) and (lin == ccl - 1):
tot_rig = 0
for i in range(array_df.shape[0] - 1):
tot_rig += array_df[i][i]
per_ok = (float(tot_rig) / cell_val) * 100
elif col == ccl - 1:
tot_rig = array_df[lin][lin]
per_ok = (float(tot_rig) / cell_val) * 100
elif lin == ccl - 1:
tot_rig = array_df[col][col]
per_ok = (float(tot_rig) / cell_val) * 100
per_err = 100 - per_ok # type: ignore
else:
per_ok = per_err = 0
per_ok_s = ["%.2f%%" % (per_ok), "100%"][per_ok == 100] # type: ignore
# text to DEL
text_del.append(oText)
# text to ADD
font_prop = fm.FontProperties(weight="bold", size=fz)
text_kwargs = dict(
color="w",
ha="center",
va="center",
gid="sum",
fontproperties=font_prop,
)
lis_txt = ["%d" % (cell_val), per_ok_s, "%.2f%%" % (per_err)]
lis_kwa = [text_kwargs]
dic = text_kwargs.copy()
dic["color"] = "g"
lis_kwa.append(dic)
dic = text_kwargs.copy()
dic["color"] = "r"
lis_kwa.append(dic)
lis_pos = [
(oText._x, oText._y - 0.3),
(oText._x, oText._y),
(oText._x, oText._y + 0.3),
]
for i in range(len(lis_txt)):
new_text = dict(
x=lis_pos[i][0],
y=lis_pos[i][1],
text=lis_txt[i],
kw=lis_kwa[i],
)
text_add.append(new_text)
# set background color for sum cells (last line and last column)
carr = (0.27, 0.30, 0.27, 1.0)
if (col == ccl - 1) and (lin == ccl - 1):
carr = (0.17, 0.20, 0.17, 1.0)
facecolors[posi] = carr
else:
if per > 0:
txt = "%s\n%.1f%%" % (cell_val, per)
else:
if show_null_values == False:
txt = ""
elif show_null_values == True:
txt = "0"
else:
txt = "0\n0.0%"
oText.set_text(txt)
# main diagonal
if col == lin:
# set color of the textin the diagonal to white
oText.set_color("w")
# set background color in the diagonal to blue
facecolors[posi] = (0.35, 0.8, 0.55, 1.0)
else:
oText.set_color("r")
return text_add, text_del
def insert_totals(df_cm):
"""insert total column and line (the last ones)"""
sum_col = []
for c in df_cm.columns:
sum_col.append(df_cm[c].sum())
sum_lin = []
for item_line in df_cm.iterrows():
sum_lin.append(item_line[1].sum())
df_cm["sum_lin"] = sum_lin
sum_col.append(np.sum(sum_lin))
df_cm.loc["sum_col"] = sum_col