-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_classification_dataset.py
127 lines (98 loc) · 4.31 KB
/
parse_classification_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
'''
Date : January 2017
Authors : Pierre-Marc Jodoin from the University of Sherbrooke
Description : code used to parse the MIO-TCD classification dataset, classify
each image and save results in the proper csv format. Please see
http://tcd.miovision.com/ for more details on the dataset
Execution : simply type the following command in a terminal:
>> python parse_classification_dataset.py ./train/ your_results_train.csv
or
>> python parse_classification_dataset.py ./test/ your_results_test.csv
NOTE: this code was developed and tested with Python 3.5.2 and Linux
(Ubuntu 14.04)
Disclamer:
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
from os import listdir
from os.path import isfile, join, splitext
from tqdm import tqdm
import csv
import sys
import torch
from model import PreTrainedModel, transform, device
from PIL import Image
classes = ['articulated_truck', 'background', 'bus', 'car', 'work_van']
model_path: str
model: PreTrainedModel
def classify_image(path_to_image):
'''
Classify the image contained in 'path_to_image'.
You may replace this line with a call to your classification method
'''
img = Image.open(path_to_image)
img_transformed = transform(img).float()
img_transformed = img_transformed.unsqueeze_(0)
img_transformed = img_transformed.to(device)
with torch.no_grad():
output = model(img_transformed)
index = output.data.cpu().numpy().argmax()
label = classes[index]
return label
def parse_dataset(path_to_dataset):
'''
Parse every image contained in 'path_to_dataset' (a path to the training
or testing set), classify each image and save in a csv file the resulting
assignment
dataset_result: dict structure returned by the function. It contains the
label of each image
'''
llist = listdir(path_to_dataset)
dataset_result = {}
for name in tqdm(llist):
dn = join(path_to_dataset, name)
if isfile(dn):
label = classify_image(dn)
file_nb, file_ext = splitext(name)
else:
file_list = listdir(dn)
for file_name in file_list:
file_name_with_path = join(dn, file_name)
label = classify_image(file_name_with_path)
file_nb, file_ext = splitext(file_name)
if file_nb in dataset_result.keys():
print('error! ', file_nb, dataset_result[file_nb], ' vs ', file_name_with_path)
dataset_result[str(int(file_nb))] = label
return dataset_result
def save_classification_result(dataset_result, output_csv_file_name):
'''
save the dataset_result (a dict structure containing the class of every image)
into a valid csv file.
'''
with open(output_csv_file_name, 'w', newline='') as f:
writer = csv.writer(f)
for row in dataset_result.items():
writer.writerow(row)
if __name__ == '__main__':
if len(sys.argv) < 4:
print("\nUsage : \n\t python parse_classification_dataset.py PATH OUTPUT_CSV_FILE_NAME MODEL_PATH\n")
print("\t PATH : path to the training or the testing dataset")
print("\t OUTPUT_CSV_FILE_NAME : name of the resulting csv file\n")
print("\t MODEL_PATH : path to the torch model\n")
else:
print('\nProcessing: ', sys.argv[1], '\n')
model_path = sys.argv[3]
model = PreTrainedModel()
model.load_state_dict(torch.load(model_path))
model = model.to(device=device)
model.eval()
dataset_result = parse_dataset(sys.argv[1])
save_classification_result(dataset_result, sys.argv[2])