forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeacon_tafeng.py
56 lines (50 loc) · 1.61 KB
/
beacon_tafeng.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright 2023 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example of Correlation-Sensitive Next-Basket Recommendation Model (Beacon)"""
import cornac
from cornac.eval_methods import NextBasketEvaluation
from cornac.metrics import NDCG, HitRatio, Recall
from cornac.models import Beacon
data = cornac.datasets.tafeng.load_basket(
reader=cornac.data.Reader(
min_basket_size=3, max_basket_size=50, min_basket_sequence=2
)
)
next_basket_eval = NextBasketEvaluation(
data=data, fmt="UBITJson", test_size=0.2, val_size=0.08, seed=123, verbose=True
)
models = [
Beacon(
emb_dim=2,
rnn_unit=4,
alpha=0.5,
rnn_cell_type="LSTM",
dropout_rate=0.5,
nb_hop=1,
n_epochs=15,
batch_size=32,
lr=0.001,
verbose=True,
)
]
metrics = [
Recall(k=10),
Recall(k=50),
NDCG(k=10),
NDCG(k=50),
HitRatio(k=10),
HitRatio(k=50),
]
cornac.Experiment(eval_method=next_basket_eval, models=models, metrics=metrics).run()