forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
efm_example.py
67 lines (59 loc) · 1.92 KB
/
efm_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example for Explicit Factor Models"""
import cornac
from cornac.datasets import amazon_toy
from cornac.data import SentimentModality
from cornac.eval_methods import RatioSplit
# Load rating and sentiment information
rating = amazon_toy.load_feedback()
sentiment = amazon_toy.load_sentiment()
# Instantiate a SentimentModality, it makes it convenient to work with sentiment information
md = SentimentModality(data=sentiment)
# Define an evaluation method to split feedback into train and test sets
split_data = RatioSplit(
data=rating,
test_size=0.15,
exclude_unknowns=True,
verbose=True,
sentiment=md,
seed=123,
)
# Instantiate the EFM model
efm = cornac.models.EFM(
num_explicit_factors=40,
num_latent_factors=60,
num_most_cared_aspects=15,
rating_scale=5.0,
alpha=0.85,
lambda_x=1,
lambda_y=1,
lambda_u=0.01,
lambda_h=0.01,
lambda_v=0.01,
max_iter=100,
num_threads=1,
trainable=True,
verbose=True,
seed=123,
)
# Instantiate evaluation metrics
rmse = cornac.metrics.RMSE()
ndcg_50 = cornac.metrics.NDCG(k=50)
auc = cornac.metrics.AUC()
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=split_data, models=[efm], metrics=[rmse, ndcg_50, auc]
).run()