forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvd_example.py
41 lines (33 loc) · 1.38 KB
/
svd_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import cornac as cn
# Load the MovieLens 100K dataset
ml_100k = cn.datasets.movielens.load_feedback()
# Instantiate an evaluation method to split data into train and test sets.
ratio_split = cn.eval_methods.RatioSplit(
data=ml_100k, test_size=0.2, rating_threshold=4.0, verbose=True
)
# Instantiate the models of interest
bo = cn.models.BaselineOnly(
max_iter=30, learning_rate=0.01, lambda_reg=0.02, verbose=True
)
svd = cn.models.SVD(
k=10, max_iter=30, learning_rate=0.01, lambda_reg=0.02, verbose=True
)
# Instantiate evaluation measures
mae = cn.metrics.MAE()
rmse = cn.metrics.RMSE()
# Instantiate and run an experiment.
cn.Experiment(eval_method=ratio_split, models=[bo, svd], metrics=[mae, rmse]).run()