forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfileLeanFoundationARM
279 lines (253 loc) · 11.2 KB
/
DockerfileLeanFoundationARM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# This is a version of DockerfileLeanFoundation for ARM
# Some packages from the AMD image are excluded because they are not available on ARM or take too long to build
# Use base system for cleaning up wayward processes
FROM phusion/baseimage:jammy-1.0.1
MAINTAINER QuantConnect <[email protected]>
# Use baseimage-docker's init system.
CMD ["/sbin/my_init"]
# Install OS Packages:
# Misc tools for running Python.NET and IB inside a headless container.
RUN add-apt-repository ppa:ubuntu-toolchain-r/test && apt-get update \
&& apt-get install -y git libgtk2.0.0 bzip2 curl unzip wget python3-pip python3-opengl zlib1g-dev \
xvfb libxrender1 libxtst6 libxi6 libglib2.0-dev libopenmpi-dev libstdc++6 openmpi-bin \
r-base pandoc libcurl4-openssl-dev \
openjdk-11-jdk openjdk-11-jre bbe \
&& apt-get clean && apt-get autoclean && apt-get autoremove --purge -y \
&& rm -rf /var/lib/apt/lists/*
# Install dotnet 9 sdk & runtime
# The .deb packages don't support ARM, the install script does
ENV PATH="/root/.dotnet:${PATH}"
RUN wget https://dot.net/v1/dotnet-install.sh && \
chmod 777 dotnet-install.sh && \
./dotnet-install.sh -c 9.0 && \
rm dotnet-install.sh
ENV DOTNET_ROOT="/root/.dotnet"
# Set PythonDLL variable for PythonNet
ENV PYTHONNET_PYDLL="/opt/miniconda3/lib/libpython3.11.so"
# Install miniconda
ENV CONDA="Miniconda3-py311_24.9.2-0-Linux-aarch64.sh"
ENV PATH="/opt/miniconda3/bin:${PATH}"
RUN wget -q https://cdn.quantconnect.com/miniconda/${CONDA} && \
bash ${CONDA} -b -p /opt/miniconda3 && rm -rf ${CONDA}
# Install java runtime for h2o lib
RUN apt-get update && apt-get install -y alien dpkg-dev debhelper build-essential && wget https://download.oracle.com/java/17/archive/jdk-17.0.12_linux-aarch64_bin.rpm \
&& alien -i jdk-17.0.12_linux-aarch64_bin.rpm \
&& update-alternatives --install /usr/bin/java java /usr/lib/jvm/jdk-17.0.12-oracle-aarch64/bin/java 1 \
&& rm jdk-17.0.12_linux-aarch64_bin.rpm
# Avoid pip install read timeouts
ENV PIP_DEFAULT_TIMEOUT=120
# Install numpy first to avoid it not being resolved when installing libraries that depend on it next
RUN pip install --no-cache-dir numpy==1.26.4
# Install newer (than provided by ubuntu) cmake required by scikit build process
RUN conda install -c conda-forge cmake==3.28.4 && conda clean -y --all
# The list of packages in this image is shorter than the list in the AMD images
# This list only includes packages that can be installed within 2 minutes on ARM
RUN pip install --no-cache-dir \
cython==3.0.9 \
pandas==2.1.4 \
scipy==1.11.4 \
numpy==1.26.4 \
wrapt==1.16.0 \
astropy==7.0.0 \
beautifulsoup4==4.12.3 \
dill==0.3.8 \
jsonschema==4.23.0 \
lxml==5.3.0 \
msgpack==1.1.0 \
numba==0.59.1 \
xarray==2024.11.0 \
plotly==5.24.1 \
jupyterlab==4.3.2 \
ipywidgets==8.1.5 \
jupyterlab-widgets==3.0.13 \
tensorflow==2.18.0 \
docutils==0.21.2 \
gensim==4.3.3 \
keras==3.7.0 \
lightgbm==4.5.0 \
nltk==3.9.1 \
graphviz==0.20.3 \
cmdstanpy==1.2.4 \
copulae==0.7.9 \
featuretools==1.31.0 \
PuLP==2.9.0 \
pymc==5.19.0 \
rauth==0.7.3 \
scikit-learn==1.4.2 \
scikit-optimize==0.10.2 \
aesara==2.9.4 \
tsfresh==0.20.2 \
tslearn==0.6.3 \
tweepy==4.14.0 \
PyWavelets==1.7.0 \
umap-learn==0.5.7 \
fastai==2.7.18 \
arch==7.2.0 \
copulas==0.12.0 \
cufflinks==0.17.3 \
gym==0.26.2 \
deap==1.4.1 \
pykalman==0.9.7 \
cvxpy==1.6.0 \
pyro-ppl==1.9.1 \
sklearn-json==0.1.0 \
dtw-python==1.5.3 \
gluonts==0.16.0 \
gplearn==0.4.2 \
jax==0.4.35 \
pennylane==0.39.0 \
PennyLane-Lightning==0.39.0 \
pennylane-qiskit==0.36.0 \
mplfinance==0.12.10b0 \
hmmlearn==0.3.3 \
ta==0.11.0 \
seaborn==0.13.2 \
optuna==4.1.0 \
findiff==0.10.2 \
sktime==0.26.0 \
hyperopt==0.2.7 \
bayesian-optimization==2.0.0 \
matplotlib==3.7.5 \
sdeint==0.3.0 \
pandas_market_calendars==4.4.2 \
ruptures==1.1.9 \
simpy==4.1.1 \
scikit-learn-extra==0.3.0 \
ray==2.40.0 \
"ray[tune]"==2.40.0 \
"ray[rllib]"==2.40.0 \
"ray[data]"==2.40.0 \
"ray[train]"==2.40.0 \
fastText==0.9.3 \
h2o==3.46.0.6 \
prophet==1.1.6 \
Riskfolio-Lib==6.1.1 \
torch==2.5.1 \
torchvision==0.20.1 \
ax-platform==0.4.3 \
alphalens-reloaded==0.4.5 \
pyfolio-reloaded==0.9.8 \
altair==5.5.0 \
modin==0.26.1 \
persim==0.3.7 \
ripser==0.6.10 \
pydmd==2024.12.1 \
EMD-signal==1.6.4 \
spacy==3.7.5 \
pandas-ta==0.3.14b \
pytorch-ignite==0.5.1 \
tensorly==0.9.0 \
mlxtend==0.23.3 \
shap==0.46.0 \
lime==0.2.0.1 \
mpmath==1.3.0 \
polars==1.16.0 \
stockstats==0.6.2 \
QuantStats==0.0.64 \
hurst==0.0.5 \
numerapi==2.19.1 \
pymdptoolbox==4.0-b3 \
panel==1.5.4 \
hvplot==0.11.1 \
py-heat==0.0.6 \
py-heat-magic==0.0.2 \
bokeh==3.6.2 \
river==0.21.0 \
stumpy==1.13.0 \
pyvinecopulib==0.6.5 \
ijson==3.3.0 \
jupyter-resource-usage==1.1.0 \
injector==0.22.0 \
openpyxl==3.1.5 \
xlrd==2.0.1 \
mljar-supervised==1.1.9 \
dm-tree==0.1.8 \
lz4==4.3.3 \
ortools==9.9.3963 \
py_vollib==1.0.1 \
thundergbm==0.3.17 \
yellowbrick==1.5 \
livelossplot==0.5.5 \
gymnasium==1.0.0 \
interpret==0.6.7 \
DoubleML==0.9.0 \
jupyter-bokeh==4.0.5 \
imbalanced-learn==0.12.4 \
openai==1.57.0 \
lazypredict==0.2.14a1 \
darts==0.31.0 \
fastparquet==2024.11.0 \
tables==3.10.1 \
dimod==0.12.17 \
dwave-samplers==1.3.0 \
python-statemachine==2.5.0 \
pymannkendall==1.4.3 \
Pyomo==6.8.2 \
gpflow==2.9.2 \
pyarrow==15.0.1 \
dwave-ocean-sdk==8.0.1 \
chardet==5.2.0 \
stable-baselines3==2.4.0 \
Shimmy==2.0.0 \
FixedEffectModel==0.0.5 \
transformers==4.46.3 \
langchain==0.2.17 \
pomegranate==1.1.1 \
MAPIE==0.9.1 \
mlforecast==0.15.1 \
x-transformers==1.42.24 \
Werkzeug==3.1.3 \
nolds==0.6.1 \
feature-engine==1.6.2 \
pytorch-tabnet==4.1.0 \
opencv-contrib-python-headless==4.10.0.84 \
POT==0.9.5 \
alibi-detect==0.12.0 \
datasets==2.21.0 \
scikeras==0.13.0 \
contourpy==1.3.1
# Install dwave tool
RUN dwave install --all -y
# Install 'ipopt' solver for 'Pyomo'
RUN conda install -c conda-forge ipopt==3.14.16 \
&& conda clean -y --all
# We install need to install separately else fails to find numpy
RUN pip install --no-cache-dir iisignature==0.24
# Install spacy models
RUN python -m spacy download en_core_web_md && python -m spacy download en_core_web_sm
RUN conda config --set solver classic && conda install -y -c conda-forge \
openmpi=5.0.6 \
&& conda clean -y --all
# Install nltk data
RUN python -m nltk.downloader -d /usr/share/nltk_data punkt && \
python -m nltk.downloader -d /usr/share/nltk_data punkt_tab && \
python -m nltk.downloader -d /usr/share/nltk_data vader_lexicon && \
python -m nltk.downloader -d /usr/share/nltk_data stopwords && \
python -m nltk.downloader -d /usr/share/nltk_data wordnet
# Install Pyrb
RUN wget -q https://cdn.quantconnect.com/pyrb/pyrb-master-250054e.zip && \
unzip -q pyrb-master-250054e.zip && cd pyrb-master && \
pip install . && cd .. && rm -rf pyrb-master && rm pyrb-master-250054e.zip
# Install SSM
RUN wget -q https://cdn.quantconnect.com/ssm/ssm-master-646e188.zip && \
unzip -q ssm-master-646e188.zip && cd ssm-master && \
pip install . && cd .. && rm -rf ssm-master && rm ssm-master-646e188.zip
# Install uni2ts
RUN wget -q https://cdn.quantconnect.com/uni2ts/uni2ts-main-ffe78db.zip && \
unzip -q uni2ts-main-ffe78db.zip && cd uni2ts-main && \
pip install . && cd .. && rm -rf uni2ts-main && rm uni2ts-main-ffe78db.zip
# Install chronos-forecasting
RUN wget -q https://cdn.quantconnect.com/chronos-forecasting/chronos-forecasting-main-b0bdbd9.zip && \
unzip -q chronos-forecasting-main-b0bdbd9.zip && cd chronos-forecasting-main && \
pip install ".[training]" && cd .. && rm -rf chronos-forecasting-main && rm chronos-forecasting-main-b0bdbd9.zip
RUN echo "{\"argv\":[\"python\",\"-m\",\"ipykernel_launcher\",\"-f\",\"{connection_file}\"],\"display_name\":\"Foundation-Py-Default\",\"language\":\"python\",\"metadata\":{\"debugger\":true}}" > /opt/miniconda3/share/jupyter/kernels/python3/kernel.json
# Install wkhtmltopdf and xvfb to support HTML to PDF conversion of reports
RUN apt-get update && apt install -y xvfb wkhtmltopdf && \
apt-get clean && apt-get autoclean && apt-get autoremove --purge -y && rm -rf /var/lib/apt/lists/*
# Install fonts for matplotlib
RUN wget -q https://cdn.quantconnect.com/fonts/foundation.zip && unzip -q foundation.zip && rm foundation.zip \
&& mv "lean fonts/"* /usr/share/fonts/truetype/ && rm -rf "lean fonts/" "__MACOSX/"
# label definitions
LABEL strict_python_version=3.11.11
LABEL python_version=3.11
LABEL target_framework=net9.0