-
Notifications
You must be signed in to change notification settings - Fork 0
/
encode_reader_val.py
269 lines (232 loc) · 11 KB
/
encode_reader_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import pandas as pd
from keras.preprocessing.sequence import pad_sequences
import system_utils
"""
This class read the session data and create Training and Testing Sets.
"""
class EncodeReaderVal(object):
def __init__(self, train_df, val_df, test_df1, test_df2, catalog, item2vec,
x_train_path="data_after_encode/x_train.npy", y_train_path="data_after_encode/y_train.npy",
x_val_path="data_after_encode/x_val.npy", y_val_path="data_after_encode/y_val.npy",
x_test_path1="data_after_encode/x_test1.npy", y_test_path1="data_after_encode/y_test1.npy",
x_test_path2="data_after_encode/x_test2.npy", y_test_path2="data_after_encode/y_test2.npy",
max_session_size=10, encode_mode=2):
# struct for help
self.catalog = catalog
self.item2vec = item2vec
self.train_df = train_df
self.val_df = val_df
self.test_df1 = test_df1
self.test_df2 = test_df2
self.word2ind = None
self.ind2word = None
# path for dump sets
self.x_train_path = x_train_path
self.y_train_path = y_train_path
self.x_val_path = x_val_path
self.y_val_path = y_val_path
self.x_test_path1 = x_test_path1
self.y_test_path1 = y_test_path1
self.x_test_path2 = x_test_path2
self.y_test_path2 = y_test_path2
# resize the data
self.max_session_size = max_session_size
# more parameters
self.encode_mode = encode_mode
# try to load
if system_utils.is_file_exist(self.x_train_path) and system_utils.is_file_exist(self.y_train_path) \
and system_utils.is_file_exist(self.x_val_path) and system_utils.is_file_exist(self.y_val_path) \
and system_utils.is_file_exist(self.x_test_path1) and system_utils.is_file_exist(self.y_test_path1) \
and system_utils.is_file_exist(self.x_test_path2) and system_utils.is_file_exist(self.y_test_path2):
self.x_train = np.load(self.x_train_path)
self.y_train = np.load(self.y_train_path)
self.x_val = np.load(self.x_train_path)
self.y_train = np.load(self.y_train_path)
self.x_test1 = np.load(self.x_test_path1)
self.y_test1 = np.load(self.y_test_path1)
self.x_test2 = np.load(self.x_test_path2)
self.y_test2 = np.load(self.y_test_path2)
else:
self.create_train_set()
if self.check_empty_set(self.val_df):
self.x_val = None
self.y_val = None
else:
self.x_val, self.y_val = self.create_test_set(test_df=val_df, x_test_path=x_val_path,
y_test_path=y_val_path)
if self.check_empty_set(self.test_df1):
self.x_test1 = None
self.y_test1 = None
else:
self.x_test1, self.y_test1 = self.create_test_set(test_df=test_df1, x_test_path=x_test_path1,
y_test_path=y_test_path1)
if self.check_empty_set(self.test_df2):
self.x_test2 = None
self.y_test2 = None
else:
self.x_test2, self.y_test2 = self.create_test_set(test_df=test_df2, x_test_path=x_test_path2,
y_test_path=y_test_path2)
# test
def check_empty_set(self, set):
return set is None or len(set.shape) == 0 or set.shape[0] == 0
def create_train_set(self):
self.seq_session_train = None
if not system_utils.is_file_exist(self.x_train_path) or not system_utils.is_file_exist(self.y_train_path):
seq_session_train = self.train_df
if system_utils.is_file_exist(self.x_train_path):
self.x_train = np.load(self.x_train_path)
else:
if self.encode_mode == 1: # embedding item id
items = self.catalog.get_items()
self.word2ind = {word: (index + 1) for index, word in enumerate(items)}
self.ind2word = {(index + 1): word for index, word in enumerate(items)}
self.x_train = self.encode_item_x(seq_session_train.actions.values, self.word2ind, self.ind2word
)
elif self.encode_mode == 2: # use embedding dict what made before
self.x_train = self.encode_des_x(seq_session_train.actions.values, self.item2vec
)
else: # no embedding (for test only)
self.x_train = seq_session_train.actions.values
np.save(self.x_train_path, self.x_train)
if not system_utils.is_file_exist(self.y_train_path):
self.y_train = self.create_y(seq_session_train)
np.save(self.y_train_path, self.y_train)
else:
self.y_train = np.load(self.y_train_path)
else:
self.x_train = np.load(self.x_train_path)
self.y_train = np.load(self.y_train_path)
def check_exist(self, path):
return system_utils.is_file_exist(path)
def encode_des_x(self, seq_session_train, item2vec, batch_size=8 * 1024):
batch_size = min(batch_size, seq_session_train.shape[0])
X = None
count = 0
temp = []
for session in seq_session_train:
x = []
for item in session:
x += [item2vec[int(item)]]
temp += [x]
if count >= batch_size:
count = 0
current_np_array = pad_sequences(np.asarray(temp), maxlen=self.max_session_size, dtype='float32')
if X is None:
X = current_np_array
else:
X = np.append(X, current_np_array, 0)
temp = []
count += 1
if count > 0:
current_np_array = pad_sequences(np.asarray(temp), maxlen=self.max_session_size, dtype='float32')
if X is None:
X = current_np_array
else:
X = np.append(X, current_np_array, 0)
# X = pad_sequences(X, maxlen=max_len_session, dtype='float32')
return X
def encode_item_x(self, seq_session_train, word2ind, ind2word=None, batch_size=8 * 1024):
batch_size = min(batch_size, seq_session_train.shape[0])
X = None
count = 0
temp = []
for session in seq_session_train:
x = []
for item in session:
x += [word2ind[int(item)]]
temp += [x]
if count >= batch_size:
count = 0
current_np_array = pad_sequences(np.asarray(temp), maxlen=self.max_session_size, dtype='float32')
if X is None:
X = current_np_array
else:
X = np.append(X, current_np_array, 0)
temp = []
count += 1
if count > 0:
current_np_array = pad_sequences(np.asarray(temp), maxlen=self.max_session_size, dtype='float32')
if X is None:
X = current_np_array
else:
X = np.append(X, current_np_array, 0)
# X = pad_sequences(X, maxlen=max_len_session, dtype='float32')
return X
def create_test_set(self, test_df, x_test_path, y_test_path):
if not system_utils.is_file_exist(x_test_path) or not system_utils.is_file_exist(
y_test_path):
seq_session_test = test_df
if self.encode_mode == 1: #
x_test = self.encode_item_x(seq_session_test.actions.values, self.word2ind, self.ind2word,
batch_size=4 * 1024)
elif self.encode_mode == 2:
x_test = self.encode_des_x(seq_session_test.actions.values, self.item2vec)
else:
x_test = seq_session_test.actions.values
np.save(x_test_path, x_test)
y_test = self.create_y(seq_session_test)
np.save(y_test_path, y_test)
else:
x_test = np.load(x_test_path)
y_test = np.load(y_test_path)
return x_test, y_test
def create_test_set1(self):
if not system_utils.is_file_exist(self.x_test_path1) or not system_utils.is_file_exist(
self.y_test_path1) or not system_utils.is_file_exist(
self.x_test_path2) or not system_utils.is_file_exist(self.y_test_path2):
seq_session_test = self.test_df1
if self.encode_mode == 1: #
self.x_test1 = self.encode_item_x(seq_session_test.actions.values, self.word2ind, self.ind2word,
batch_size=4 * 1024)
elif self.encode_mode == 2:
self.x_test1 = self.encode_des_x(seq_session_test.actions.values, self.item2vec)
else:
self.x_test1 = seq_session_test.actions.values
np.save(self.x_test_path1, self.x_test1)
self.y_test1 = self.create_y(seq_session_test)
np.save(self.y_test_path1, self.y_test1)
else:
self.x_test1 = np.load(self.x_test_path1)
self.y_test1 = np.load(self.y_test_path1)
def create_test_set2(self):
if not system_utils.is_file_exist(self.x_test_path2) or not system_utils.is_file_exist(
self.y_test_path2):
seq_session_test = self.test_df2
if self.encode_mode == 1: #
self.x_test2 = self.encode_item_x(seq_session_test.actions.values, self.word2ind, self.ind2word,
batch_size=4 * 1024)
elif self.encode_mode == 2:
self.x_test2 = self.encode_des_x(seq_session_test.actions.values, self.item2vec)
else:
self.x_test2 = seq_session_test.actions.values
np.save(self.x_test_path2, self.x_test2)
self.y_test2 = self.create_y(seq_session_test)
np.save(self.y_test_path2, self.y_test2)
else:
self.x_test2 = np.load(self.x_test_path2)
self.y_test2 = np.load(self.y_test_path2)
def create_y(self, seq_session_train):
end_with_purchase_train = np.zeros(seq_session_train.shape[0])
count = 0
for end_with in seq_session_train.buy.values:
if end_with > 0:
end_with_purchase_train[count] = 1
count += 1
return end_with_purchase_train
def get_x_train(self):
return self.x_train
def get_y_train(self):
return self.y_train
def get_x_val(self):
return self.x_val
def get_y_val(self):
return self.y_val
def get_x_test1(self):
return self.x_test1
def get_x_test2(self):
return self.x_test2
def get_y_test1(self):
return self.y_test1
def get_y_test2(self):
return self.y_test2